# The Oil Mining Company, Inc. (TomCo)



# **Utah Groundwater Discharge Permit Application**

# **Holliday Block**

Submitted by:

The Oil Mining Company, Inc.

TomCo Energy plc

50 Jermyn Street

London

SW1Y 6LX

United Kingdom

UK: +44 20 7097 1645 US: +1 801 833 0412

*To:*Utah Division of Water Quality
288 North 1460 West
Salt Lake City, UT 84114-4870

Prepared with the assistance of: Lowham Walsh LLC / E & E, Inc. 7440 South Creek Road Sandy, UT 84093

Date: December 3, 2014

Deleted: 50 Jermyn Street¶ London¶ SW1Y 6LX¶ United Kingdom¶

# TABLE OF CONTENTS

| C | ERTIFIC | ATES OF PROFESSIONAL ENGINEERS                               | XI  |
|---|---------|--------------------------------------------------------------|-----|
| E | XECUTIV | VE SUMMARY                                                   | XVI |
| 1 | ADM     | INISTRATIVE INFORMATION                                      | 1   |
| 2 | INTR    | ODUCTION                                                     | 2   |
| 3 | BACE    | KGROUND INFORMATION                                          | 5   |
| 4 | FACI    | LITY CLASSIFICATION AND TYPE                                 | 5   |
|   | 4.1     | FACILITY CLASSIFICATION                                      | 5   |
|   | 4.2     | TYPE OF FACILITY                                             | 5   |
|   | 4.3     | SIC/NAICS CODES                                              | 5   |
|   | 4.4     | PROJECT FACILITY LIFE                                        | 6   |
| 5 | TOM     | CO OIL SHALE MINE AND OPERATION DESCRIPTION                  | 6   |
|   | 5.1     | GENERAL OPERATION DESCRIPTION                                | 6   |
|   | 5.2     | EARLY PRODUCTION SYSTEM CAPSULE                              | 11  |
|   | 5.2.1   | Capsule Floor and Walls                                      | 12  |
|   | 5.2.2   | Placing Ore, Progressing the Walls, and Laying Heating Pipes | 17  |
|   | 5.2.3   | Capsule Pipe Wall or Floor Penetrations                      | 18  |
|   | 5.2.4   | Access Ramp                                                  | 19  |
|   | 5.2.5   | Capsule Roof Finishing                                       | 19  |
|   | 5.2.6   | Material Handling Equipment                                  | 19  |
|   | 5.2.7   | Capsule Consolidation                                        | 19  |
|   | 528     | PAS Integrity on Consolidation: Vmuolda                      | 20  |

|   | 5.3   | FUNCTIONALLY EQUIVALENT ALTERNATIVES TO THE BAS CONTAINMENT AND |    |
|---|-------|-----------------------------------------------------------------|----|
|   |       | CONFINEMENT                                                     | 20 |
|   | 5.4   | POST COOLING SPENT SHALE CHARACTERIZATION                       | 23 |
|   | 5.5   | Capsule Basal Containment Monitoring                            | 24 |
|   | 5.6   | RECLAMATION                                                     | 26 |
| 6 | ISSUI | ED AND PENDING PERMITS                                          | 28 |
|   | 6.1   | PERMIT HISTORY                                                  | 28 |
|   | 6.2   | PENDING AND FUTURE PERMITS                                      | 28 |
| 7 | WAT   | ER INFORMATION                                                  | 29 |
|   | 7.1   | WELL AND SPRING IDENTIFICATION                                  | 29 |
|   | 7.2   | SURFACE WATER BODY IDENTIFICATION                               | 30 |
|   | 7.3   | DRAINAGE IDENTIFICATION                                         | 30 |
|   | 7.4   | WELL-HEAD PROTECTION AREA IDENTIFICATION                        | 30 |
|   | 7.5   | DRINKING WATER SOURCE IDENTIFICATION                            | 31 |
|   | 7.6   | WELL LOGS                                                       | 31 |
| 8 | GENE  | CRAL DISCHARGE IDENTIFICATION                                   | 34 |
|   | 8.1   | DISCHARGE POINT IDENTIFICATION                                  | 34 |
|   | 8.2   | PLANNED DISCHARGES                                              | 34 |
|   | 8.3   | POTENTIAL DISCHARGES                                            | 34 |
|   | 8.4   | MEANS OF DISCHARGE                                              | 34 |
|   | 8.5   | FLOWS, SOURCES OF POLLUTION, AND TREATMENT TECHNOLOGY           | 35 |
|   | 8.6   | DISCHARGE EFFLUENT CHARACTERISTICS                              | 35 |

| 9  | HYDF   | ROLOGY REPORT                                         | 35 |
|----|--------|-------------------------------------------------------|----|
|    | 9.1    | Introduction                                          | 35 |
|    | 9.1.1  | Regional Geology and Landform                         | 35 |
|    | 9.2    | Project Area Geology                                  | 41 |
|    | 9.2.1. | Introduction                                          | 41 |
|    | 9.2.2. | Conceptual Site Model                                 | 41 |
|    | 9.2.3  | Drilling, Well Installation, and Groundwater Sampling | 45 |
|    | 9.3    | PROJECT AREA GROUNDWATER                              | 60 |
|    | 9.3.1  | Southern Uinta Basin Groundwater Setting              | 60 |
|    | 9.3.2  | Project Area Groundwater Investigation                | 63 |
| 10 | CONS   | TRUCTION QUALITY CONTROL PLAN                         | 95 |
|    | 10.1   | BENTONITE AMENDED SOIL QUALITY CONTROL                | 95 |
|    | 10.1.1 | General                                               | 95 |
|    | 10.1.2 | Test Fill Development and Materials for Construction  | 95 |
|    | 10.2   | BOTTOM LINER TEST FILL                                | 96 |
|    | 10.3   | SIDE LINER TEST FILL                                  | 96 |
|    | 10.4   | TEST FILL EVALUATION                                  | 97 |
|    | 10.5   | PROPOSED BAS TESTING FREQUENCY                        | 98 |
|    | 10.6   | BOTTOM AND TOP                                        | 98 |
|    | 10.7   | SIDE WALLS                                            | 98 |
| 11 | GROU   | JNDWATER DISCHARGE CONTROL PLAN                       | 98 |
|    | 11.1   | GEOLOGIC COMPARISON BETWEEN RED LEAF AND TOMCO        | 99 |

| 11.2      | SPENT SHALE LEACHATE EVALUATION                                          | 100 |
|-----------|--------------------------------------------------------------------------|-----|
| 12 RECI   | LAMATION AND CLOSURE EVALUATION                                          | 105 |
| 12.1      | Infiltration Modeling                                                    | 105 |
| 12.1      | TIME FOR SPENT SHALE TO REACH FIELD CAPACITY                             | 106 |
| 13 COM    | PLIANCE MONITORING PLAN                                                  | 107 |
| 14 CERT   | TIFICATION/SIGNATURE                                                     | 109 |
| 15 REFE   | ERENCES                                                                  | 110 |
| Tables    |                                                                          |     |
| TABLE 7-1 | WATER RIGHTS WITHIN, AND WITHIN ONE MILE OF, THE TOMCO PROJECT AREA      |     |
| TABLE 7-2 | OIL AND GAS WELLS WITHIN, AND WITHIN ONE MILE OF, THE TO PROJECT AREA    |     |
| TABLE 9-1 | SELECTED OIL AND GAS WELL NEAR THE PROJECT AREA                          | 38  |
| TABLE 9-2 | 2 SITE MONITORING WELLS                                                  | 54  |
| TABLE 9-3 | PACKER TEST SUMMARY                                                      | 68  |
| TABLE 9-4 | WATER LEVEL MEASUREMENTS, 2013 VERSUS 2014                               | 70  |
| TABLE 9-5 | SUMMARY OF INSTRUMENTATION TIMES, TEST DURATIONS, DRAWDOWN, AND RECOVERY | 71  |
| TABLE 9-6 | 6 MW-01 PUMP SETTING AND DISCHARGE MEASUREMENTS                          | 72  |
| TABLE 9-7 | SUMMARY OF RESULTS FROM MW-01                                            | 74  |
| TABLE 9-8 | MW-02 PUMP SETTING AND DISCHARGE MEASUREMENTS                            | 77  |
| TABLE 9-9 | SUMMARY OF RESULTS FROM MW-02                                            | 78  |
| TABLE 9-1 | 0 MW-03 PUMP SETTING AND DISCHARGE MEASUREMENTS                          | 81  |

| TABLE 9-11 | SUMMARY OF RESULTS FROM MW-03                                                                       | . 82 |
|------------|-----------------------------------------------------------------------------------------------------|------|
| TABLE 9-12 | SUMMARY OF TOMCO MONITORING WELL TEST OBSERVATIONS                                                  | . 86 |
| TABLE 9-13 | UTAH GROUNDWATER QUALITY STANDARDS AND ANALYTICAL RESULTS FROM TOMCO MONITOR WELLS                  | . 88 |
| TABLE 9-14 | SEEP AND SPRING LOCATIONS AND WATER QUALITY CHARACTERISTICS                                         | . 94 |
| TABLE 11-1 | REPRESENTATIVE VALUES OF COMPARED BED THICKNESSES AND ASSAY VALUES BETWEEN TOMCO AND RED LEAF SITES | 100  |
| TABLE 11-2 | SPENT SHALES SPLP – GENERAL CHEMISTRY FROM RED LEAF RESOURCES                                       | 102  |
| TABLE 11-3 | SPENT SHALE SPLP – DETECTED METALS                                                                  | 103  |
| TABLE 11-4 | SPENT SHALE SPLP – DETECTED VOCS                                                                    | 103  |
| TABLE 11-5 | SPENT SHALE SPLP – DETECTED SVOCS                                                                   | 104  |

# Figures

| FIGURE 2-1  | LOCATION MAP                                                                                                           | 4  |
|-------------|------------------------------------------------------------------------------------------------------------------------|----|
| FIGURE 5-1  | EPS GENERAL SITE PLAN                                                                                                  | 8  |
| FIGURE 5-2  | POST MINE TOPOGRAPHY CROSS-SECTIONS                                                                                    | 9  |
| FIGURE 5-3  | WATERSHEDS 1                                                                                                           | 0  |
| FIGURE 5-4  | EPS LIFE CYCLE SECTIONS FOR NORTH TO SOUTH 1                                                                           | 4  |
| FIGURE 5-5  | EPS CAPSULE LIFE CYCLE SECTIONS FOR WEST TO EAST 1                                                                     | 5  |
| FIGURE 5-6  | BAS WALL PROGRESSION WITH FORMS 1                                                                                      | 7  |
| FIGURE 5-7  | EPS CAPSULE CONSTRUCTION ENGINEERING FUNCTIONAL EQUIVALENTS TO BASE CASE DESIGN CAPSULE ROOF, WALLS, AND FLOOR DETAILS | :2 |
| FIGURE 7-1  | WATER RIGHTS AND OIL AND GAS WELLS                                                                                     | 3  |
| FIGURE 9-1  | PROJECT AREA FEATURES                                                                                                  | 7  |
| FIGURE 9-2  | TYPE STRATIGRAPHIC COLUMN4                                                                                             | 0  |
| FIGURE 9-3  | CROSS SECTION A – A'                                                                                                   | 7  |
| FIGURE 9-4  | CROSS SECTION B - B'                                                                                                   | 8  |
| FIGURE 9-4A | CROSS SECTION E – E'                                                                                                   | 9  |
| FIGURE 9-5  | SELECTED BOREHOLE GEOPHYSICS FROM THE MAHOGANY ZONE 5                                                                  | 0  |
| FIGURE 9-6  | SELECTED BOREHOLE GEOPHYSICS FROM THE DOUGLAS CREEK MEMBER5                                                            | 1  |
| FIGURE 9-7  | MW-01 DRAWDOWN COMPUTED FOR PUMPING AND RECOVERY PERIOD OF RECORD                                                      |    |
| FIGURE 9-8  | MW-01 DRAWDOWN AND INITIAL RECOVERY WITH GROUNDWATER TEMPERATURE                                                       | 6  |

| FIGURE 9-9  | MW-02 DRAWDOWN COMPUTED FOR PUMPING AND RECOVERY PERIOD OF RECORD        |
|-------------|--------------------------------------------------------------------------|
| FIGURE 9-10 | MW-02 DRAWDOWN AND INITIAL RECOVERY WITH GROUNDWATER TEMPERATURE         |
| FIGURE 9-11 | MW-03 DRAWDOWN COMPUTED FOR PUMPING AND RECOVERY PERIOD OF RECORD        |
| FIGURE 9-12 | MW-03 DRAWDOWN AND INITIAL RECOVERY WITH GROUNDWATER TEMPERATURE         |
| FIGURE 9-13 | VIEW INTO GRADUATED BUCKET CONTAINING BLACK DISCHARGE WATER FROM MW-0385 |

# Appendices

| OPERATIONS AND RECLAMATION DRAINAGE DESIGN PLAN         |
|---------------------------------------------------------|
| STEEL SPECIFICATIONS: COLLECTION PAN AND CAPSULE PIPING |
| PROJECT MONITORING WELLS AND COREHOLES                  |
| GEOPHYSICAL LOG                                         |
| MONITOR WELL LABORATORY ANALYTICAL RESULTS              |
| MONITOR WELL AGE DATING CALCULATIONS                    |
| SPLP LEACHATE ANALYSIS                                  |
| RECLAMATION COVER PERFORMANCE MODELING                  |
|                                                         |

APPENDIX I: ADDITIONAL EPS INFORMATION

APPENDIX J: MONITORING WELL FIELD EVALUATION, 2014

APPENDIX K: GEOLOGICAL EVALUATION OF TOMCO AND RED LEAF
PROPERTIES

# **Acronyms and Abbreviations**

ASTM American Society for Testing and Materials

AWAL American West Analytical Laboratories

BAS bentonite-amended soil

cm/sec centimeters per second

CO2 carbon dioxide

CSS Collection, Separation, and Storage

DOGM Utah Division of Oil, Gas and Mining

DWQ Utah Division of Water Quality

EPA U.S. Environmental Protection Agency

EPS Early Production System

gpm gallons per minute

GPS global positioning system

HELP Hydrologic Evaluation of Landfill Performance

LMO Notice of Intention to Conduct Large Mining Operations

MSE mechanically stabilized earth

MW Monitoring Well

NAICS North American Industry Classification System

NPDES National Pollutant Discharge Elimination System

NRCS Natural Resources Conservation Service

NTNWS Non-Transient Non-Community Water System

°F degrees Fahrenheit

pMC percent modern carbon

psi pounds per square inch

RLR Red Leaf Resources

SDRI sealed double ring infiltrometer

SIC Standard Industrial Classification

SITLA State of Utah School and Institutional Trust Lands Administration

SPLP Synthetic Precipitation Leaching Procedure

SVOC semi-volatile organic compound

TomCo The Oil Mining Company, Inc.

UAC Utah Administrative Code

USGS United States Geological Survey

VOC volatile organic compounds

# **Certificates of Professional Engineers**

This document was prepared by Lowham Walsh, LLC and Norwest Corp. utilizing design and processing information provided by Red Leaf Resources, Inc., and it is consistent with Red Leaf Resources' EPS capsule design. To fulfill the requirements of U.A.C. R317-6-6.3, this document was prepared under the direction, and bears the seals, of professional engineers as outlined on the following pages.

I, Thomas S. Norman, certify that the information presented in the following sections of this Utah Groundwater Discharge Permit Application for the Holliday Block submitted by The Oil Mining Company, Inc. (TomCo) are true and correct to the best of my knowledge and information.

| ON 12.5. 14                                          |
|------------------------------------------------------|
| No. 8656806 THOMAS S. NORMAN OFFICE OFFICE THOMAS S. |
| TE OF UTAN                                           |

| Section | Item                                                    | PE Review Date   |
|---------|---------------------------------------------------------|------------------|
| 0       | Executive Summary                                       | December 5, 2014 |
| 1       | Administrative Information                              | December 5, 2014 |
| 2       | Introduction                                            | December 5, 2014 |
| 3       | Background Information                                  | December 5, 2014 |
| 4       | Facility Classification and type                        | December 5, 2014 |
| 6       | Issued and Pending Permits                              | December 5, 2014 |
| 7       | Water Information                                       | December 5, 2014 |
| 8       | General Discharge information                           | December 5, 2014 |
| 9       | Hydrology Report                                        | December 5, 2014 |
| 11      | Groundwater Discharge Control Plan                      | December 5, 2014 |
| App C   | Project Monitoring Wells and Coreholes                  | December 5, 2014 |
| App D   | Geophysical Log                                         | December 5, 2014 |
| App E   | Monitor Well Laboratory Analytical Results              | December 5, 2014 |
| App F   | Monitor Well Age Dating Calculations                    | December 5, 2014 |
| App G   | SPLP Leachate Analysis                                  | December 5, 2014 |
| App J   | Monitoring Well Field Evaluation                        | December 5, 2014 |
| App K   | Geologic Evaluation of TomCo and Red Leaf<br>Properties | December 5, 2014 |

Thomas Norman, P.E. – Utah P.E. No.8656806-2202

# NORWEST CORPORATION

I, Craig J. Hawe, certify that all the information presented in the following sections of this Ground Water Discharge Permit Application are true and correct to the best of my knowledge and information.

| Section       | Item                                                                               | PE Review Date |
|---------------|------------------------------------------------------------------------------------|----------------|
| 5.2           | Early Production System Capsule                                                    | 12/02/2014     |
| Figure 5.1    | EPS Site Plan                                                                      | 12/02/2014     |
| Figure 5.4    | EPS Capsule Life Cycle – Section for South to North                                | 12/02/2014     |
| Figure 5.5    | EPS Capsule Life Cycle – Section for West to East                                  | 12/02/2014     |
| Figure 5.7    | Functional Equivalents to Base Case Design – Capsule Roof, Walls and Floor Details | 12/02/2014     |
| Figure 5.8    | Tunnel and Bulkhead Sealing                                                        | 12/02/2014     |
| Section<br>10 | Construction Quality Control Plan                                                  | 12/02/2014     |
| Appendix<br>I | Additional EPS Information                                                         | 12/02/2014     |

Craig J. Hawe, P.S.E. – Utah P.E. No.175858-2203

# NORWEST CORPORATION

I, Paul Kos, certify that all the information presented in the following sections of this Ground Water Discharge Permit Application are true and correct to the best of my knowledge and information.

| Section | Item                                              | PE Review Date    |
|---------|---------------------------------------------------|-------------------|
| 12      | Reclamation and Closure Evaluation                | December 3, 2014  |
| App A   | Early Production System Storm Water Drainage Plan | November 17, 2014 |
| Арр Н   | Reclamation Cover Performance Modeling            | December 3, 2014  |



Paul J. Kos, P.E. - Utah P.E. No. 8548614-2202



# **Certificate of Engineer**

I, Sekhar Bhattacharyya, went through all the information presented in the following sections of this Groundwater Discharge Permit Application and certify the contents as true and correct to the best of my understanding and information.

| Section     | Item                                                                        | PE Review Date |
|-------------|-----------------------------------------------------------------------------|----------------|
| Section 5.1 | General Operation Description                                               | 12/2/2014      |
| Section 5.3 | Functionally Equivalent Alternatives to the BAS Containment and Confinement | 12/2/2014      |
| Section 5.4 | Post Cooling Spent Shale Characterization                                   | 12/2/2014      |
| Section 5.5 | Capsule Basal Containment Monitoring                                        | 12/2/2014      |
| Section 5.6 | Reclamation                                                                 | 12/2/2014      |
| Section 13  | Compliance Monitoring Plan                                                  | 12/2/2014      |



Sekhar Bhattacharyya, P.E. - Utah P.E. No. 8887624-2202

# **Executive Summary**

This Utah Groundwater Discharge Permit Application (GWDPA) prepared by The Oil Mining Company, Inc. (TomCo) is for a single retort capsule, termed the Early Productions System (EPS) capsule. The EPS capsule will be a stand-alone capsule approximately three-fourths the size of a full scale commercial capsule. TomCo plans to simultaneously mine oil shale and construct the EPS for extracting oil on approximately 1,186 acres of land leased from the State of Utah School and Institutional Trust Lands Administration (SITLA; mineral lease ML-49571). TomCo has entered into a licensing agreement with Red Leaf Resources to use their EcoShale<sup>TM</sup> In-Capsule Technology, a proven method for extracting petroleum from oil shale. The EcoShale<sup>TM</sup> process involves placing ore in sealed capsules, heating the encapsulated ore, and extracting liquid hydrocarbons via a pipe and tank storage system. The capsules' design is intended to prevent impacts to groundwater and the surrounding ecosystem by utilizing an impermeable liner of bentonite amended soil (BAS). The EPS has been designed so that the functionality and effectiveness of its key components can be further evaluated and modified to maximize performance for future use in full scale operations. TomCo's EPS capsule design as presented in this GWDPA is consistent with Red Leaf Resources' EPS capsule design as presented in its Construction Permit, issued by Utah Division of Water Quality on May 30, 2014.

TomCo has conducted a number of studies in support of its future mining plans and this GWDPA. As part of site specific geologic and hydrology studies, TomCo drilled nine coreholes in 2010 into the Mahogany Zone of the Parachute Creek Member, which is the principal ore zone. The Parachute Creek and Douglas Creek Members of the Green River Formation are also significant geologic units at the project area; they control hydrology and consequently are important to site development. The Mahogany Zone has very low permeability. It is closest to the surface in the southern portion of TomCo's project area and deepest in the northeast corner. Corehole results found that the Mahogany Zone itself was very tight and did not appear to be water bearing, though several sandstone lenses above and below the Mahogany Zone were recognized in the cores. However, there did

not appear to be a correlation between the apparent sandstones and the occurrence of groundwater.

In fall 2013, a groundwater investigation was conducted at the site to assess hydrologic conditions. The groundwater program consisted of three monitoring wells drilled and installed to depths of 200 feet below ground surface in the Parachute Creek Member at locations where groundwater shows occurred in coreholes. Additionally, one monitoring well was drilled and installed at a depth of 1,100 feet below ground surface in the Douglas Creek Member. The groundwater characterization program included packer production tests to determine well pumping productivities and groundwater samples to determine levels of metals, organics, and other constituents.

Productivity of the shallower wells screened in the Parachute Creek Member was very poor. Multiple production and packer tests were performed on the wells, and none were able to sustain production rates of 1 gallon per minute. By contrast, the deeper well drilled into the Douglas Creek Member produced water at a sustained rate of 20 gallons per minute at a depth of approximately 920 feet below ground surface.

Monitoring well water quality for wells screened in the Parachute Creek Member was poor compared to the deeper well screened in the Douglas Creek Member. A comparison of parameter concentrations between the shallower wells and the deep well shows a number of distinct differences, with constituent levels in water from the Parachute Creek Member exceeding a number of Utah Groundwater Quality standards, resulting in a Limited Use (Class III) classification. Water from the Douglas Creek Member did not exceed any water quality standards, and age dating of this water yielded potential ages between 7,600 and 15,200 years before present.

The main purpose of the GWDPA is to determine the potential impact of TomCo's project on groundwater at the site. Based on the above information and other studies described in this GWDPA, the likelihood of any contaminants impacting the Douglas Creek Aquifer from mining activity in the Mahogany Zone appears extremely remote. Geologic studies indicate significant vertical separation, 350 to 400 feet between the mining horizon and the Douglas Creek Aquifer. As evidenced by cuttings and borehole

geophysics obtained from the monitoring well in the Douglas Creek Aquifer, sedimentary rocks between the two zones appear to be impermeable shales and marlstones. The impermeability of this layer is further supported by groundwater studies that, based on differences in constituent levels between wells screened in the Parachute and Douglas Creek Members, suggest that there is no hydrologic communication between these two zones. Equally as important as site geology, the EPS has been designed to minimize infiltration of water into the capsule, reduce the probability of spent shale coming into contact with outside water, and contain the entire retort process within the EPS, thereby substantially reducing the potential for groundwater and other ecological impacts. Spent shale leachate analyses were completed on three samples taken from Red Leaf Resources' preliminary test capsules, which processed ore that shares the same geological characteristics as found at the TomCo site (see **Appendix K**). Of the over 30 parameters tested that have groundwater standards associated with them, only antimony (Sb) showed levels that were slightly higher than groundwater standards. However, antimony levels naturally exceeded groundwater quality standards in samples taken from two of the four groundwater monitoring wells located within the TomCo project area (see Section 9.3.2). Likewise, Red Leaf Resources' Synthetic Precipitation Leaching Procedure extract had a pH of about 10, which was similar to the background pH measured at TomCo's monitoring wells (Red Leaf Resources 2013). However, similar tests will be run on spent shale from the TomCo EPS capsule to further evaluate this material when it becomes available for testing,

# 1 Administrative Information

# Applicant Name, Mailing Address, Telephone Number, Contact Information, Designated Agent:

The Oil Mining Company, Inc.:

UK Address: 50 Jermyn St. London, England SW1Y 6LX

United Kingdom

UK: +44 20 7097 1645 US: +1 801 833 0412

## **Authorized Utah Agent:**

Ron Vance 1656 Reunion Ave. Suite 250 West Jordan, UT 84095 801-466-8802

#### **Lead Consultant:**

Lowham Walsh Engineering & Environmental Services 7440 S. Creek Rd. – Suite 400 Sandy, Utah 84093 1-801-561-1036

## **Facility Legal Location**

The project area is located in Uintah County, Utah, in Township 12 South, Range 24 East, and includes the entirety of Section 13 and portions of Sections 11, 12, and 14. The Oil Mining Company, Inc. (TomCo) has leased approximately 1,186 acres (an area called the "Holliday

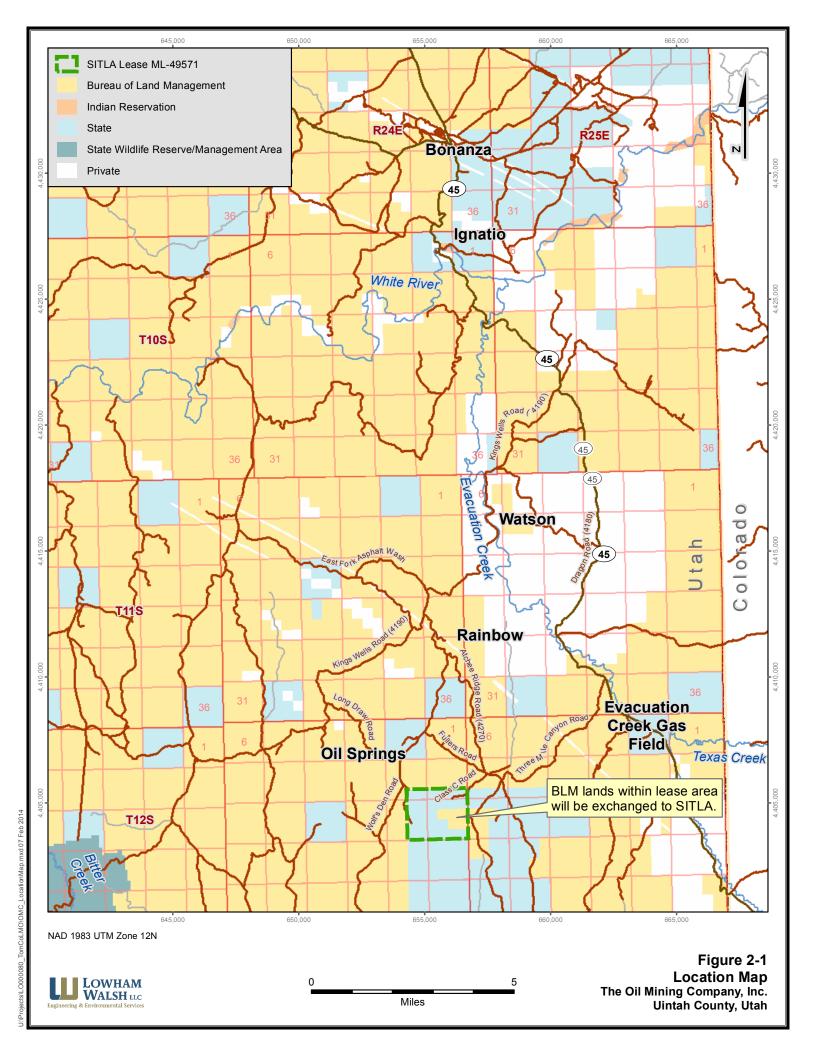
Block") from the State of Utah School and Institutional Trust Lands Administration (SITLA) as mineral lease ML-49571.

#### **Owner and Operator Information**

TomCo is the applicant, owner, and operator for the facility described in this application. TomCo is a Utah Incorporated Company and is 100 percent owned by TomCo Energy, plc. Further information may be found at: http://www.tomcoenergy.uk.com//

#### **Facility and Contact Information**

Holliday Block Mine Project TomCo Energy, Plc 50 miles southeast of Vernal, UT There is currently no staff on site.


# 2 Introduction

TomCo holds an oil shale mineral lease on 1,186 acres on SITLA (SITLA mineral lease ML-49571) lands in the Uinta Basin, Utah. TomCo plans to simultaneously mine oil shale and create an Early Production System (EPS) retort capsule for extracting oil at this site. TomCo has entered into a licensing agreement with Red Leaf Resources (RLR) to use its EcoShale<sup>TM</sup> In-Capsule Technology for this process. The EcoShale<sup>TM</sup> In-Capsule Technology uses heat to extract kerogen from oil shale as gases and liquids. As part of the extraction process, the shale will be encapsulated, left in place, and the disturbance area reclaimed, with no impact to surface or groundwater resources.

The project area is located in Uintah County, Utah, in Township 12 South, Range 24 East, and includes the entirety of Section 13 and portions of Sections 11, 12, and 14 (**Figure 2-1**). The project area is approximately 30 road miles south of Bonanza, Utah. It is accessed via State Route 45, the Dragon Road, and Kings Well Road.

While commercial-scale operations are expected to occur at this site in the future, this GWDPA is for a single EPS capsule only. The EPS capsule has been designed so that the functionality and effectiveness of its key components can be further evaluated and modified to maximize performance for future use in full scale operations. TomCo's design as presented in this GWDPA is consistent with Red Leaf Resources' final design as presented in its Construction Permit, issued by the Utah Division of Water Quality (DWQ) on May 30, 2014.

The general details of the EPS capsule are included in the GWDPA for reference purposes. The construction details are provided in the construction permit application, and the construction permit application is included as a reference. Any changes to the construction permit application will be considered part of this application. The Professional Engineering seal of this document pertains to the groundwater monitoring aspects of the GWDPA and not to the constructability and controls of the EPS Capsule.



# 3 BACKGROUND INFORMATION

As noted above, TomCo has a contractual agreement with RLR to use this firm's technology in its mining and processing operation. In February 2007, RLR provisionally filed its first set of technology patent applications for the EcoShale™ In-Capsule Technology; this provisional filing was modified to a full patent application filing in February 2008. RLR has filed additional technology and development patent applications, including three U.S. two published patents and 13 other patents under development.

TomCo's agreement with RLR allows the company to receive updates to the technologies used at RLR's facility on Seep Ridge Road (the Southwest #1 Project, M/047/0120). RLR has been in continuous operation since 2008 testing capsules of the EcoShale™ In-Capsule Process through its Small Mining Operation, S/047/0102, and shares results of tests and studies with TomCo.

## 4 FACILITY CLASSIFICATION AND TYPE

#### 4.1 Facility Classification

The mine will be a large mine operation, permitted by the Utah Division of Oil, Gas and Mining (DOGM).

## 4.2 Type of Facility

The facility will be an oil shale production operation to extract kerogen from mined oil shale ore. It will include equipment maintenance, laboratory support facilities, and ancillary facilities, as necessary.

#### 4.3 SIC/NAICS Codes

The Standard Industrial Classification (SIC) and North American Industry Classification System (NAICS) codes that describe the proposed facility are 1311 (SIC) and 211111 (NAICS) for petroleum extraction, production, and oil shale mining and beneficiating.

# 4.4 Project Facility Life

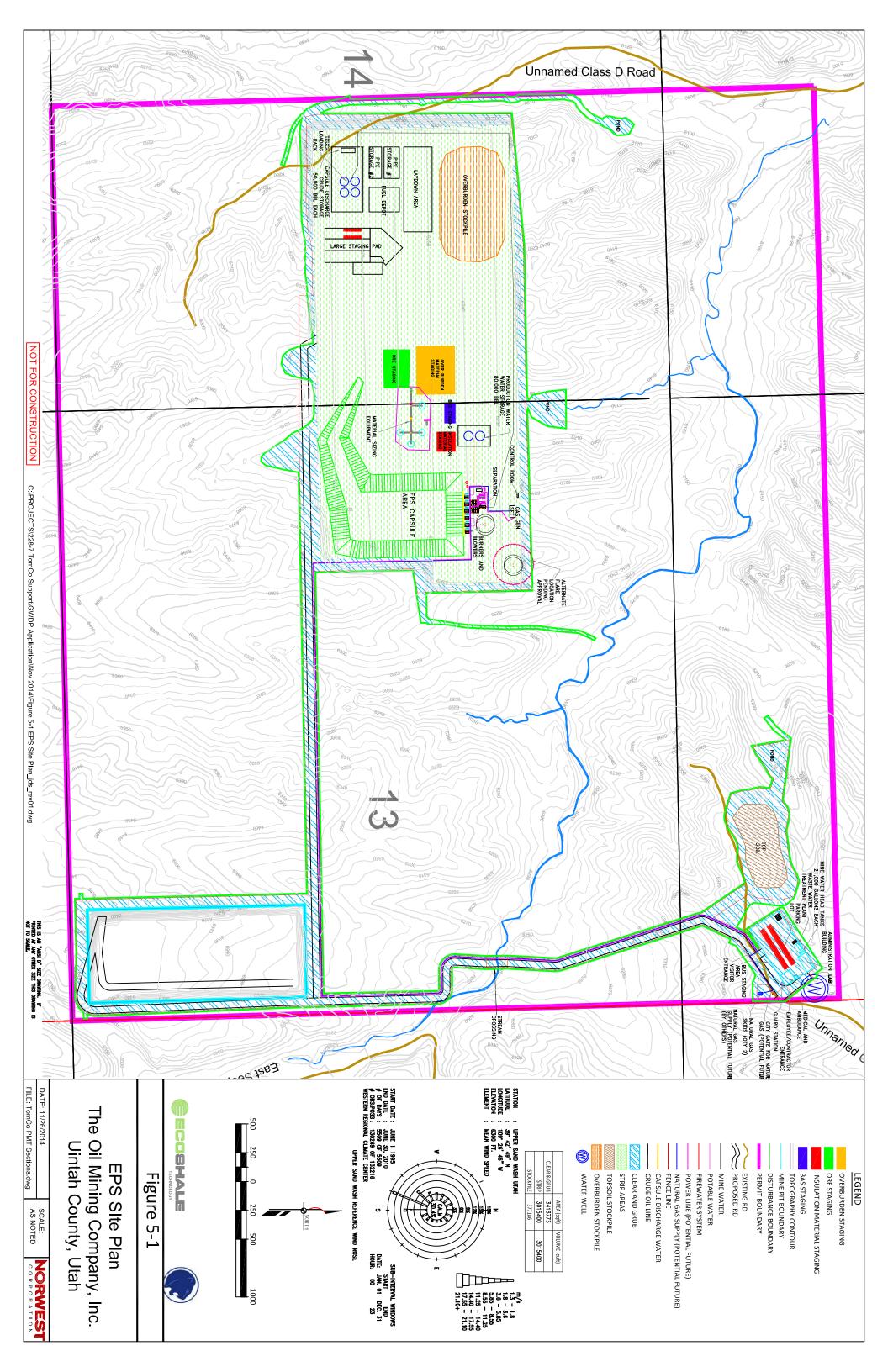
The initial life of mining operations for EPS capsule construction, operation, and reclamation is two years.

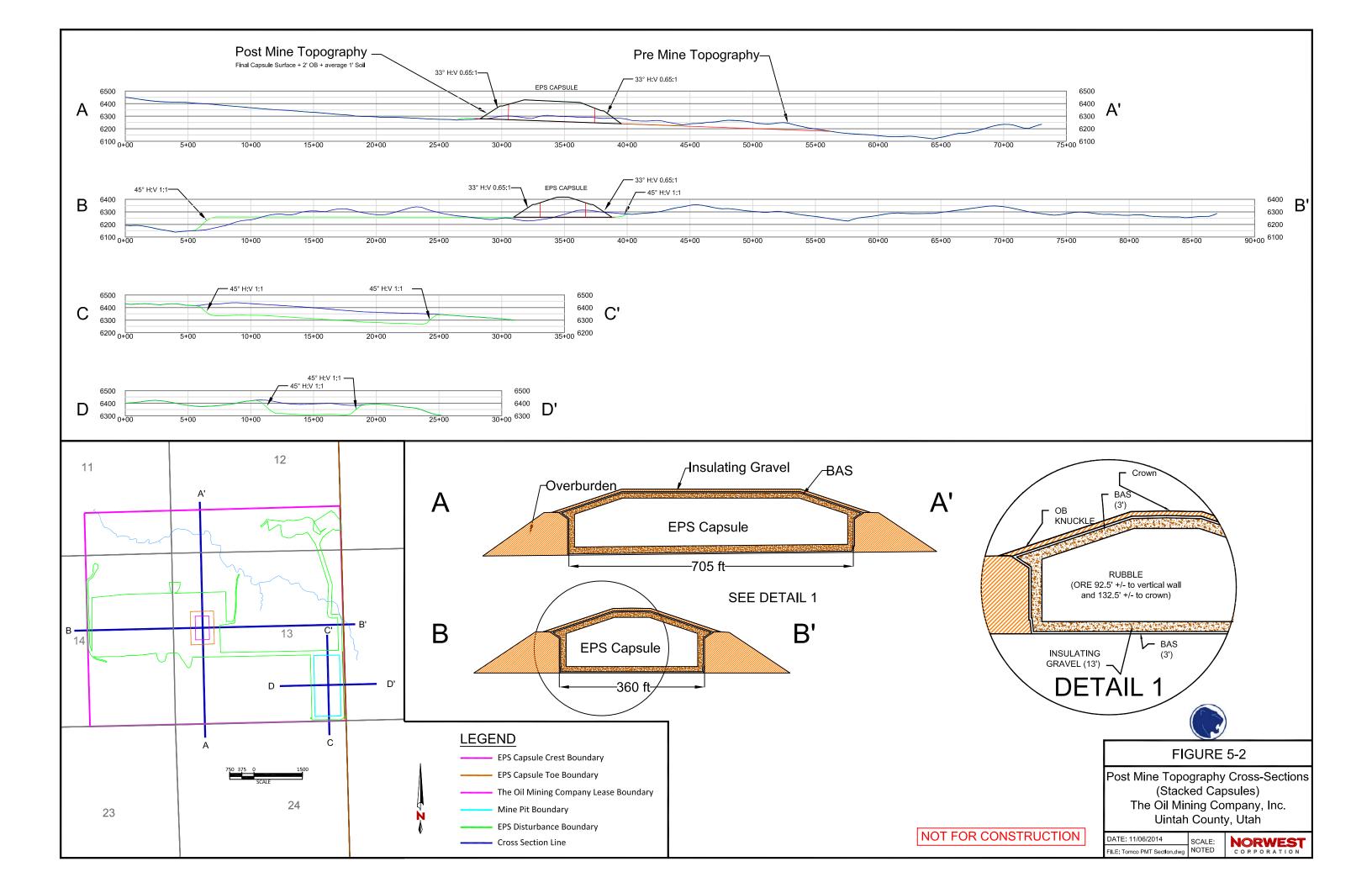
# 5 TOMCO OIL SHALE MINE AND OPERATION DESCRIPTION

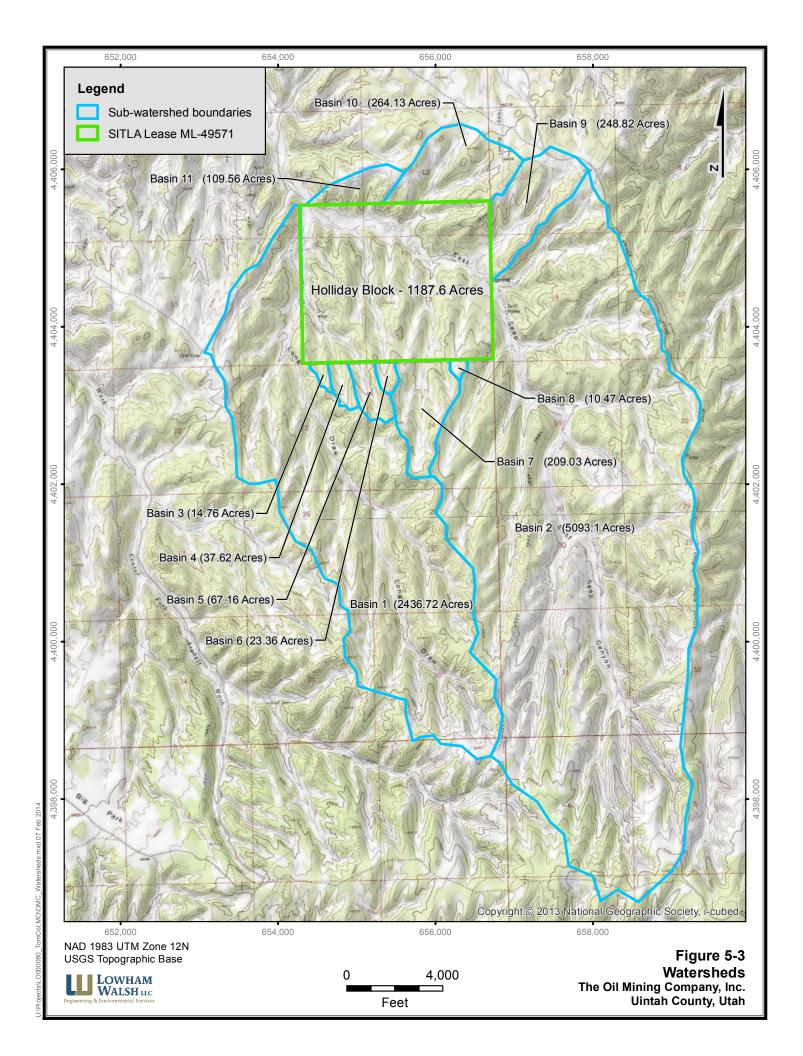
In support of developing full-scale mining and oil-production operations, the phase of the project covered by this GWDPA is for a single EPS capsule. It will be approximately 75 percent of the size of the full commercial scale capsules. The location of the EPS capsule and related facilities is shown on **Figure 5-1**.

# 5.1 General Operation Description

The EcoShale<sup>TM</sup> In-Capsule Technology uses heat to extract kerogen from oil shale deposits to produce crude oil. The operation is designed to maximize resource recovery and accommodate construction of "capsules" designed for low temperature heating of the shale to extract the hydrocarbons as gases and liquids. All mined materials are utilized completely and play a role in the technology for capsule construction, hydrocarbon extraction, and reclamation.


Mining will be required to produce materials necessary to create the EPS capsule. The mining sequence will consist of the following operations:


- Construction of sediment control measures;
- Land clearing (where required);
- Soil removal and stockpiling;
- Pre-stripping of unconsolidated overburden (when required);
- Drilling and blasting of overburden;
- Overburden removal;
- Overburden loading, hauling, and screening;


- Drilling and blasting of ore and interburden;
- Ore and interburden loading, hauling, and screening;
- Selective use of screened materials in construction of capsule;
- Heating and oil recovery;
- · Final grading; and
- Soil placement and revegetation.

Mining will take place in Section 13, T12S R24E. The mine pit will be located in the southeast 1/4 Section 13, while the capsule will be placed in the west 1/2 Section 13 and the east 1/2 Section 14, T12S, R24E. Topsoil will be salvaged and carefully stockpiled from all areas to be disturbed and will be used during the reclamation phase. **Figure 5-1** shows where disturbance will occur and where major construction components will be located. **Figure 5-2** shows cross-sections of the capsules and of the topography pre-construction, during EPS testing, and after reclamation.

The watershed in which the project area is located is shown in **Figure 5-3**. A water management plan has been developed to manage potential surface water inflows and outflows (**Appendix A**). Two clean water collection and diversion ditches will be installed prior to any development to divert upland runoff around the project area. This system will be designed to carry flows from a 100-year, 24-hour storm event. Water intercepted by mining-related disturbance will be managed by storing water on site, using berms and sumps to provide source control and limit the migration of any pollutants around the site. If high flows occur, water will be directed to engineered ditches and ponds, where it will be stored and be used for BAS production and dust control, or will be stored until it evaporates. These ditches have been designed to carry runoff flows resulting from a 10-year, 24-hour event, as explained further in the Drainage Design Plan (Norwest 2014), attached as **Appendix A**. The ditch and sump locations are shown on **Figure A** of the Drainage Design Plan. TomCo plans to use water collected in the sumps for its operations to supplement other water resources at the site. TomCo maintains a water lease option agreement for 1,000 acre feet of surface water with the Uintah Water Conservancy District for this purpose.







# 5.2 Early Production System Capsule

This section describes the design of the EPS capsule to be used for this project. The portion of this description that consists of proprietary information is provided in **Appendix I** and is clearly marked confidential business information. TomCo requests that **Appendix I** in its entirety be maintained as confidential applicant material in accordance with the DWQ's rules and policies. **Appendix I** is provided under separate cover.

Ore material and a portion of the overburden needed to construct the EPS capsule will be excavated from a pit to be located in the southeast corner of the project area. Additional overburden needed to complete capsule construction and construct a work surface for associated activities will be excavated from the EPS capsule pad area located in the western half of the project area (Figure 5-1). The EPS capsule location will slope approximately 3 degrees to the north toward the Collection, Separation, and Storage (CSS) plant.

When first constructed, the EPS capsule will be approximately 360 feet wide, 705 feet long, and 115 feet high at the capsule edge and approximately 167 feet high at the top of the capsule crown. Figures 5-4 and 5-5 show cross-sections of the capsule, looking east and north, respectively. The EPS capsule will be buttressed on all four sides by engineered fill in an "overburden backing wall," as explained in more detail in Section 5.2.2.

The EPS capsule's key components are designed to standards believed necessary to confirm proofs of concept for the full scale commercial capsules. These standards are intended to enable observation, measurement, and assessment of key design concepts and components during the EPS project phase. Data obtained during EPS operation will be applied to the final design of the commercial scale capsules. Key EPS concepts and components include the following:

- Bedding materials for piping;
- Pipe sizing and spacing;
- Insulation effectiveness;
- Design effects on fluid and gas recovery;

**Deleted:** Utah Division of Water Quality's (

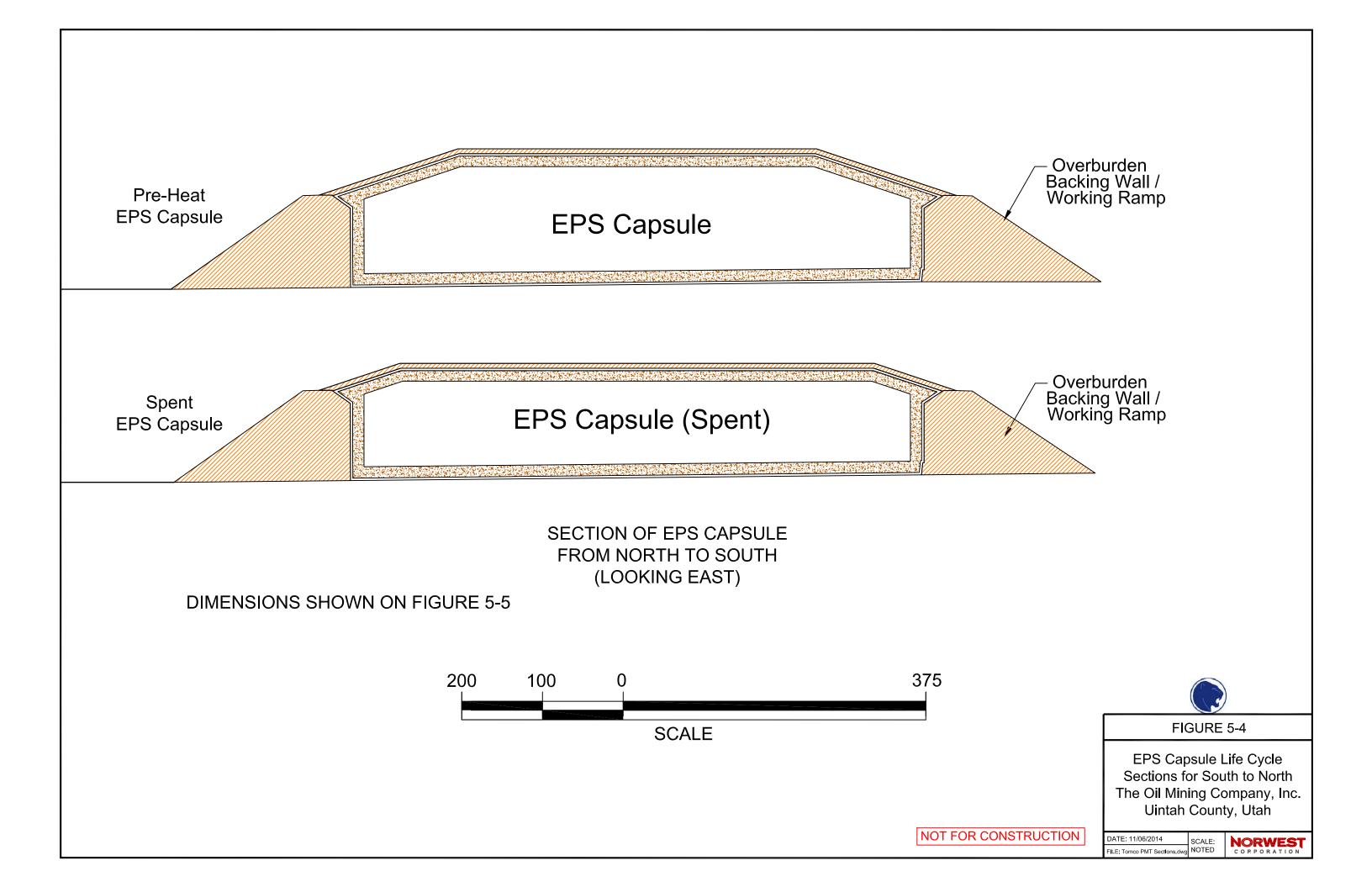
Deleted: 385

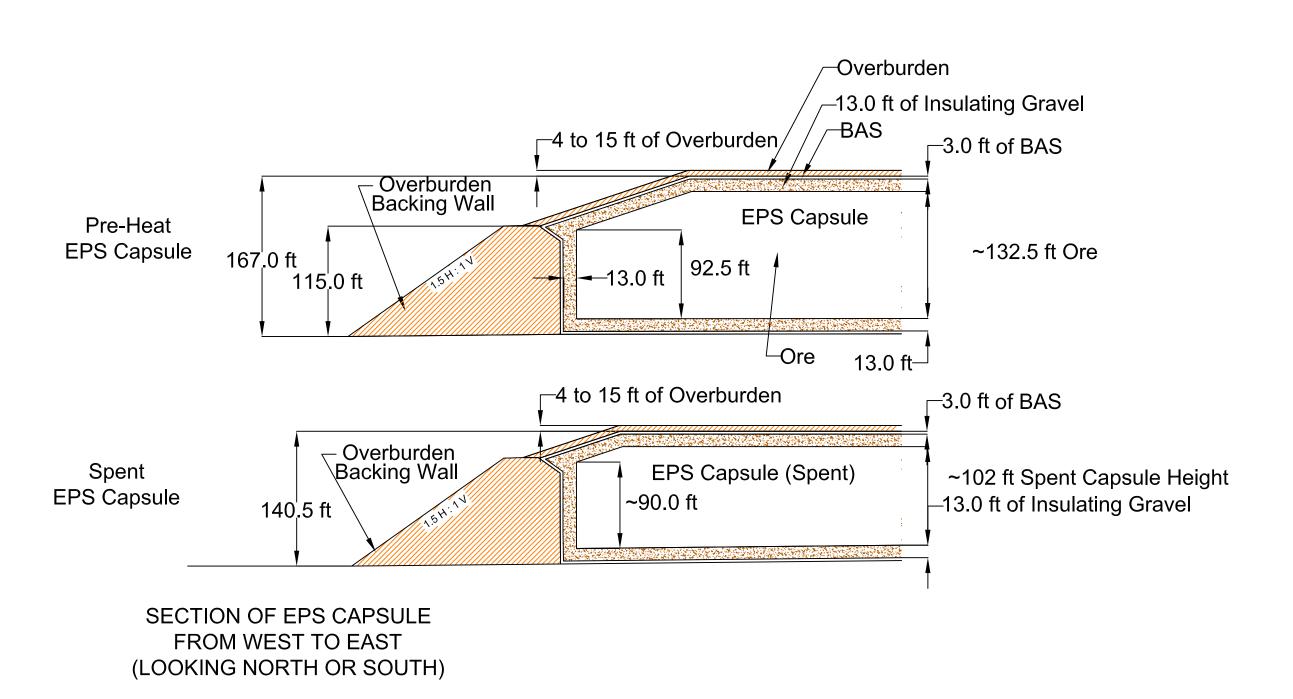
Deleted: 695

Deleted: 109

Deleted: 170

- Bulkhead design, including bentonite-amended soil (BAS) penetrations for heating and product recovery piping, heat delivery, and product recovery manifold effectiveness;
- BAS thickness;
- Construction procedures;
- Capsule dimensions; and
- Capsule containment effectiveness, especially roof performance during capsule settling.


## 5.2.1 Capsule Floor and Walls


The capsule floor will be constructed with 3 feet of compacted BAS covered by 13 feet of gravel (2 x 3/8 inches crushed shale) with an oil collection pan embedded within the gravel. The BAS is designed to prevent impacts to groundwater and the surrounding ecosystem. Inside the BAS layer is a 13-foot-thick rind of coarse-sized material or gravel, which serves as insulation inside the BAS barrier to conserve heat and protect the BAS from thermal breakdown (**Figure 5-5**). The floor of the mining horizon dips to the north at 3 degrees to allow oil to flow towards the low point of the capsule, where it will be collected. The land in the area where the EPS capsule is to be constructed has been pre-stripped to a flat horizon (east to west), dips to the north at 3 degrees, and will serve as the base upon which the capsule will be constructed.

Some of the overburden shale material deemed to be non-ore- or non-oil-bearing rock will be blasted to create fines and gravel. Rock that has a size up to 3/8 inches is classified as "fines," and "gravel" is defined as shale between 3/8 and 2 inches diameter. Fines are used to make BAS, which involves using a special size fraction of materials mixed with bentonite and appropriate quantities of water in a pug mill (or similar equipment) to produce a bentonite sealing material for placement in the capsules. The saturated hydraulic conductivity of the BAS layer will be 1.0 x 10<sup>-7</sup> centimeters per second (cm/sec) or less. A 3-foot layer of BAS will surround the capsule top, bottom, sides, and ends.

Deleted: Shale

The blended BAS mixture will be moisture conditioned to a water content between optimum and +4 percent and will be placed in lifts of loose material no greater than 18 inches in thickness at 95 percent compaction. The BAS Quality Control Plan presented in **Section 10**, below, describes the procedure to be used to develop installation and compaction practices based on performance evaluation of BAS test fills. Among other things, the lift thicknesses of loose BAS placed for compaction will be reduced if test results support this. Alternative methods for BAS placement may be used (see **Section 5.3**).





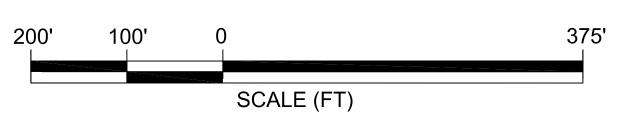



Figure 5-5

EPS Capsule Life Cycle Sections for West to East The Oil Mining Company, Inc. Uintah County, Utah

NOT FOR CONSTRUCTION

DATE: 11/06/2014 SCALE:
FILE: Tomco PMT Sections.dwg NOTED

NORWEST CORPORATION Gravel will be placed between the ore and BAS as insulation to protect the BAS from the higher temperatures that will be distributed through the ore.

Construction of the floor of the capsule begins with creating the required positive drainage profile, using dozers. Next, the BAS layer will be placed with trucks delivering the BAS and road graders or dozers spreading this material across the entire capsule floor. Traditional roller or sheep foot compactors will run over the BAS to compact it.

Following placement of the BAS, the first layer of gravel will be placed on the surface of the BAS with trucks and graders. The first gravel layer will be placed to create the final grade required for the oil drainage path through and out of the capsule.

The oil collection pan is the next component of the floor to be built. The oil collection pan will be constructed from steel sheets. The panels of the oil collection pan will be laid across the floor of the capsule with lapping joints to develop an integrated surface for the oil to flow across. The oil collection panels will be placed like roof shingles, with the upstream lap higher than the downstream sheet. The oil collection pan steel sheets shall be installed with a minimum of 4 inches of overlap. The specified overlap shall be maintained throughout backfilling. Steel specifications are provided in **Appendix B**, and a design specification showing overlap detail is included in the Confidential section of the TomCo Construction Permit application. The pan will slope to the north at an angle of approximately 3 degrees to a collection drain trough. Forklifts will be used to place the pans. Mine personnel will handle the non-galvanized carbon steel gauge sheets directly to ensure proper lapping. The pans will direct oil into a channel or formed pan, which will connect to a pipe and, through a sealed conduit, conduct petroleum liquids to the product collection manifold at the north end of the capsule.

After a row of pans and collection channels are placed, a second gravel layer will be placed on top of the oil collection pan to protect the pan by distributing the load from continued equipment traffic. The beginning of the BAS side walls develops as the gravel floor advances vertically. The BAS wall will be 3 feet thick and will be placed using mobile equipment.

**Deleted:** Steel specifications are provided in Appendix B.

Deleted: each

As the BAS wall progresses above the gravel floor, the gravel wall will begin to develop. Gravel will also encapsulate the ore. Gravel will insulate the BAS from the heat used to retort the oil shale. To minimize degradation, scrapers will not routinely drive on the rubble material.

Construction of vertical walls requires the placement of backing material with bottom-up construction or with layered stacking. Layered stacking is required for the perimeter backing wall to provide sufficient safety factor for construction and to establish compaction to support the vertical walls.

# 5.2.2 Placing Ore, Progressing the Walls, and Laying Heating Pipes

Above the bottom insulation layer, approximately 132.5 feet of ore will be placed within the cell in lifts at the same time the side walls, end walls and insulation layers are built (**Figure 5-5**). The ore will be placed with standard articulated haul trucks and dozers. BAS will be placed using portable forms, as depicted in **Figure 5-6**. The forms enable the placement of BAS as a discrete wall without possible effects from the adjacent gravel during placement. After a course of BAS has been placed and gravel has been placed against the forms, the forms will be removed and used again for the ongoing wall construction, leaving a smooth outer BAS wall in contact with the porous gravel.

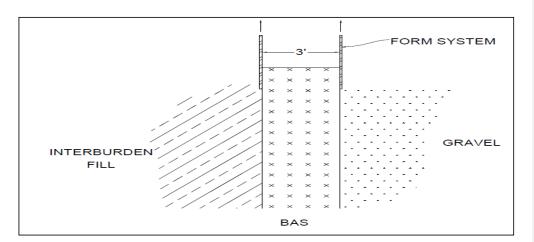



Figure 5-6 BAS Wall Progression with Forms

Deleted: 138

The outer wall of the EPS capsule will be created from BAS and gravel. All four walls are internally vertical. The north wall is where all the system equipment will tie into the capsule. Six layers of heating pipes will be placed along the length of the capsule as the ore placement continues until the level of ore in the capsule has reached the required thickness. Pipes will be milled on site using a mobile pipe rolling mill or alternative vendors, supply chains, and/or pipe manufacturing. Pipes will be corrugated. Typical specification for the steel to be used in pipe milling is provided in **Appendix** B. Placement of rubble will continue while the pipes are placed. Layering of ore, bedding, and placement of pipes and instrumentation will continue until the capsule is full. At the north end of each capsule, a bulkhead and manifold system will contain the piping to distribute heated air to the capsule and recover liquid and gas products from the incapsule collection pipes for storage and water separation prior to transport.

Initially, the capsule will be heated to approximately the boiling point of water and held at that temperature until steam production diminishes. This step is completed prior to increasing the heat to pyrolysis temperatures. The heating pipes heat the ore to a maximum temperature of approximately 725 degrees Fahrenheit (°F) and, through pyrolysis, liberate liquid and gaseous components of kerogen.

### 5.2.3 Capsule Pipe Wall or Floor Penetrations

The heating pipes will be connected to the blowers and heaters just beyond the boundaries of the capsule's northern wall. To keep the BAS seal functioning, the BAS needs to be protected from heat that is introduced into the capsules from the heating pipes. Proprietary fabrications have been designed and will be installed to enable BAS protection from heating. The penetrations will be through the floor for the EPS capsule.

A vent stack located above the bulkhead is intended to provide natural ventilation of hot air from the vicinity of the bulkhead floor penetrations to facilitate cooling in the tunnels.

### 5.2.4 Access Ramp

A pad and access ramp will be constructed along the south end of the capsule. The pad and the access ramp will be constructed using traditional methods for earth structures that utilize haul trucks, graders, and compactors.

#### 5.2.5 Capsule Roof Finishing

The east and west margins of the capsule surface will be constructed of sloped gravel and earthen materials (**Figures 5-4 and 5-5**). The slope enables the upper BAS layer to remain intact and keep the capsule sealed when it settles following heating. Finishing the capsule margins with slopes at the angle of repose will reduce the amount of backing material needed for the top part of the capsule. Ore will be placed to the required depth, after which 13 feet of gravel will be placed over the ore. After the BAS is placed, additional haul trucks and graders will cover the BAS with run of mine interburden/overburden material to a depth of 4 to 15 feet.

## 5.2.6 Material Handling Equipment

The material handling equipment will be used to size and sort the materials for capsule construction. The equipment will consist of a designed system of screens, conveyors, and crushers that will size the mined material. Separate equipment streams will be used to handle ore and overburden/interburden. Off-spec ore and overburden/interburden will be sized and sorted as necessary to produce construction fill, insulating gravel, and the sized fines for the BAS.

## 5.2.7 Capsule Consolidation

After capsule heating and oil recovery, the oil shale is expected to lose its strength, resulting in significant capsule settlement (consolidation). The EPS capsule will be constructed to a total height of up to 167 feet; however, following consolidation, the capsules will be reduced to a height as low as 140 feet. Recent data review has led RLR's engineers to believe that consolidation is likely to be approximately 25 percent. Some of the consolidation will occur during capsule construction as the ore is placed within the capsule, but this will not affect the final covering of BAS.

Deleted: gravel

Deleted: 170

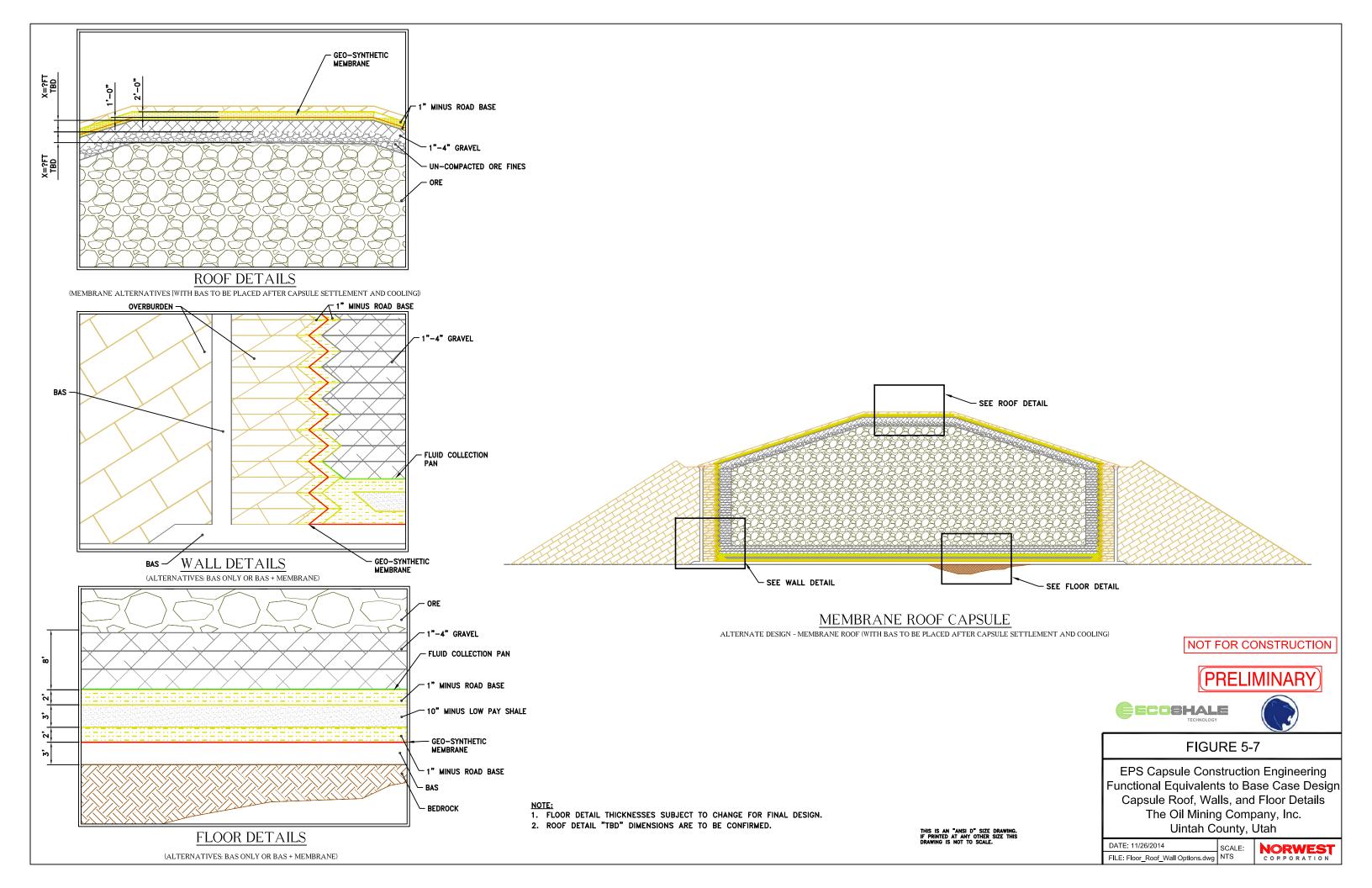
Deleted: 135

Information used to predict capsule deformation includes material properties of gravel insulation, shale, and BAS. Material properties were determined by RLR from laboratory testing that included laboratory reactor retorting of oil shale samples, reactor heat/compression testing of the shale, BAS permeability testing, and evaluating the conditions found during RLR's pilot run, 2012 site constructability testing, and geotechnical work done by outside laboratories. These data were compared to published and unpublished information on the behavior of consolidating spent oil shale based on work done in Colorado in the late 1970s. From this comparative work on capsule design, it is known that a sufficient thickness of earthen cover above the covering BAS layer is needed to maintain the BAS in compression. The thickness required to do so will be evaluated in the design, construction, and operation of the EPS.

## 5.2.8 BAS Integrity on Consolidation: Knuckle

One purpose of the sloped upper edges of the capsule is to prevent excessive shear of the BAS as consolidation occurs. Previous studies found that excessive shear occurred where vertical BAS walls joined a horizontal upper BAS layer and would not remain intact. However, the BAS in the sloped capsule roof must remain under compression as capsule consolidation occurs. The side slopes are therefore finished with the addition of earthen fill to create a knuckle. This knuckle design can be used for various capsule heights, with the depth of the knuckle related to the level of expected subsidence. **Figure 5-2** depicts the knuckle construction. The extra fill placed over both the sloped wall and the adjoining roof surface completes the knuckle that maintains compressive stress on the BAS and gravel layers as settlement of the heated capsule occurs and the adjacent unheated capsule remains at its constructed height.

Consolidation in the EPS capsule will be monitored carefully and assessed after cooling to determine if the BAS has maintained its plasticity and remained intact. If the integrity of the BAS has been affected, it will be repaired.


# 5.3 Functionally Equivalent Alternatives to the BAS Containment and Confinement

The base case for EPS includes an outer 3-foot rind of BAS surrounding the insulated ore retorting zone. Functionally equivalent alternatives to the base case BAS encapsulation are being

Deleted: 3

considered for the bottom, side, and cover BAS layers. The purpose of evaluating these alternatives is to optimize functionality, constructability, and costs.

The environmental functions of the BAS are containment of process gases and liquids, prevention of infiltration of meteoric water, and containment of any meteoric water that may, despite all precautions, find its way into the capsule. To serve the water quality protection functions, all BAS layers or their functional equivalents must be able to maintain their uniform low permeability throughout capsule construction, heating, hydrocarbon recovery, and cooling. To be considered functionally equivalent for environmental purposes, the BAS alternatives must have a permeability of  $\leq 1 \times 10^{-7}$  cm/sec. **Figure 5-7** is a schematic drawing illustrating the functional alternatives described in this section. If an alternative design is selected, the application will be modified and submitted to the DWQ for review and approval.



The following alternatives are being considered. Note that all of these functionally equivalent alternatives remain under review; consideration and preliminary designs by RLR engineers and TomCo may or may not employ any of these alternatives.

- The upper or cover BAS layer may be installed after capsule cooling and settlement as a 3-foot-thick BAS cap with permeability of ≤ 1 x 10-7 cm/sec. During operations, a membrane cover sealed to the BAS side wall's integrated flexible membrane will serve to confine gas and liquid product while preventing infiltration of meteoric water in the event that capsule operations were unexpectedly interrupted.
- An alternative ("hybrid") BAS cover concept would be a combination of a BAS layer with a permeability of ≤ 1 x 10-7 cm/sec and a flexible membrane.
- The basal BAS layer will have 3 feet of BAS compacted in lifts, with a permeability of 1 x 10-7 cm/sec. No changes in the basal BAS are under consideration for this project; however, a flexible membrane liner may be incorporated to ensure recoverability of product and to ensure that liquid product is not lost to the BAS.

## 5.4 Post Cooling Spent Shale Characterization

Following retorting and cooling of the EPS capsule to below 100 °F, but not more than two years after the cessation of capsule heating, TomCo will drill into the EPS capsule and obtain spent shale material, including material from the upper and lower 30 feet of spent shale. This procedure will be carried out as follows:

- Samples from these zones will be obtained from three to five EPS footprint locations.
- Prior to drilling, TomCo will solicit input from the DWQ regarding location selection and the number of locations to be drilled.
- Samples will be analyzed utilizing the Synthetic Precipitation Leaching Procedure (SPLP) for a suite of organic and inorganic analytes developed in cooperation

with the DWQ. TomCo will submit a report outlining an evaluation of these results to the DWQ within 60 days of receiving the results of sample analyses.

## 5.5 Capsule Basal Containment Monitoring

Monitoring and sampling for detection of any discharge from the capsule will be conducted at three different zones located within, below, and adjacent to the EPS capsule. TomCo will be able to monitor these zones from a monitoring location established at the base of the backfill/mechanically stabilized earth (MSE) wall on the north (downgradient) side of the capsule. From the monitoring location, the three zones will be checked on a regular basis, further described below, to detect potential leaks, and to evaluate EPS capsule performance. These three zones are:

- Collection Pan
- Lower Containment (BAS) Layer
- Bedrock Under Capsule Edge

These systems are shown in the Construction Permit in Confidential Drawing RL-EPS-W-0004 and are described below. These monitoring locations are located downgradient of the capsule and outside the backfill/MSE wall.

Collection Pan: A collection pan covers the floor of the EPS capsule and is designed to collect and convey oil produced during ore processing. A trough, formed between the collection pan and the bulkhead, is located near the north (downgradient) end of the capsule. A system of sealed pipes will be used during operations to collect hydrocarbons from the trough via gravity flow for delivery to the base of the backfill/MSE wall on the north side of the capsule. During production, hydrocarbons will be routed from the exit point at the north side of the capsule to tanks to be processed for sale. The trough in the collection pan is sized to adequately contain at least two weeks of liquid hydrocarbons at full production rates. Fluid levels in the trough can be monitored from outside the capsule via a float valve system. An electronic alarm will be installed to alert workers if an overflow occurs. A system is in place to unclog pipes, should this occur, to prevent overflow of the trough.

After the heating and cooling process is complete, this system will continue to be used to monitor and evaluate liquids that reach the monitoring station, if produced in measurable quantities. All but one of the pipes leading from the collection pan trough will be capped. The remaining pipe will remain in place to be used for monitoring. An engineered monitoring port will be installed with a valved fitting and sealed to the monitoring station to prevent leakage from the pipe system. A system is in place to unclog pipes, should this occur.

Lower Containment Layer: A second monitoring system will be constructed should fluids bypass the floor pan either during or after processing. Piping will be placed across the north (downgradient) end of the capsule to capture fluids that reach the top of the lower BAS layer. Because of the slope of the capsule, fluids reaching this area flow to the north end of the capsule. Captured fluids would flow via gravity to a monitoring location at the north end of the capsule where they can be captured and evaluated if produced in measurable quantities. An engineered monitoring port will be installed with a valved fitting and sealed to the backfill/MSE wall to prevent leakage from the pipe system. A system will be in place to unclog pipes, should this occur, to prevent hydrocarbon build-up in this location of the capsule.

Bedrock Under Capsule Edge: A third monitoring system will be constructed should fluids pass through the BAS base liner. A perforated drain system, similar to a french drain, will be constructed between the bedrock foundation and the outside edge of the BAS containment layer on the east, west, and north sides of the capsule to collect liquids. These fluids would flow via gravity to the monitoring location, where they can be captured and evaluated if produced in measurable quantities. An engineered monitoring port will be installed with a valved fitting and sealed to the backfill/MSE wall to prevent leakage from the pipe system. A system is in place to unclog pipes, should this occur.

Monitoring Frequency: The EcoShale<sup>™</sup> capsule's liquid product collection system and leak detection system will be checked at the monitoring locations during heating, cooling, and product recovery phases on a weekly basis. Sixty days after heating pipes are turned off, monitoring for liquids will shift to a monthly basis. If liquids are detected, samples will be collected and analyzed for the groundwater quality parameters described below. The volume of liquid produced will be recorded. Presence of liquids will trigger resumption of weekly

monitoring until four consecutive weeks have passed without additional liquids accumulation, at which time sampling will revert to monthly.

After six months have passed without additional liquid accumulation, monitoring will take place on a bi-annual basis for the remainder of the permit term.

Monitoring Parameters: Within 90 days of completion of construction of the EPS capsule, TomCo will submit a sampling analysis plan. If any liquid is found in quantities large enough to obtain a sample for analysis, TomCo will sample and analyze this liquid for the following parameters: temperature, pH, TDS, total phosphorus, arsenic, nitrate, boron, selenium, benzene, toluene, ethylbenzene, xylenes, and naphthalene (BTEXN), TPH-GRO, TPH-DRO, and Total Recoverable Petroleum Hydrocarbons (TRPH).

Results from these analyses from semi-annual sampling will be reported to DWQ within 90 days of sampling. If sufficient liquid for sampling is not available, a monitoring report will be submitted within 30 days following the sampling event. An annual report of volumes removed from the monitoring points, the periods when fluids were observed, and the results of any sample analysis will be provided to the DWQ annually. The report will be submitted by March 1 for the previous year.

Liquid hydrocarbons draining from the metal collection pan will not be discharged to the environment. TomCo will remove all hydrocarbons from the site while they flow from capsule drains. Water discharges from the pan will be contained until a disposal method is approved by DWQ. The analyses outlined above will help DWQ determine appropriate disposal methods.

# 5.6 Reclamation

After the heaters have been removed from the EPS, a cooling period will be allowed. After cooling and settlement is completed, the EPS capsule will be ready for regrading and further mine development if the project moves forward, or final reclamation if the project terminates after the EPS capsule is completed.

Further mine development involves construction of additional capsules to be constructed adjacent to the EPS capsule, according to the DOGM Notice of Intention to Conduct Large

#### Deleted:

Deleted: TomCo will notify DWQ within 60 days of when heating pipes were shut down. Beginning six months after shutdown of EPS capsule retorting operations and continuing semi-annually for the term of the permit, TomCo will monitor drainage from the metal collection pan, the top of the lower BAS liner, and the six channels that lead to the liner penetration bulkheads semi-annually for water or liquid hydrocarbons discharging from the capsule.

After production from the capsule is complete, the pipes from the collection pan trench (tunnel) will be separated from the product collection tank. All but one of the six pipes will be capped inside the piping trench. The remaining product pipe will remain in place and be used for monitoring. Any liquids reaching the collection trench will flow to the single remaining collection pipe and then to the monitoring point at the distal end of the trench (Figure 5-8).¶

The presence of liquid build-up on the top of the BAS near the collection drain trough for the steel floor pan will be monitored. As shown on Figure 5-8, a monitoring port will be installed in the concrete slab covering each collection trench in the area adjacent to the heating pipes. A valved fitting will be installed and sealed in the slab roof of the trench during capsule construction. After the capsule has cooled sufficiently, the fittings will be cleaned, the valve removed, and a pipe attached to a roof fitting in a selected trench. The pipe will extend to the monitoring point at the distal end of the trench. Any liquids that might enter the monitoring trench itself would, if present in significant quantities, flow along the sloping trench floor toward the distal end of the trench where the monitoring point will be located. The monitoring point will consist of a sump installed in the trench floor. The capsule floor and product collection trough pipe will extend to the monitoring sump and be fitted with

Deleted: ¶

Deleted: drainage

Deleted: for

Deleted: as long as

Deleted: -----------Page Break------

Deleted: Figure 5-8 EPS Capsule
Construction Engineering Tunnel and
Bulkhead Sealing Tunnel and Capsule Section¶

Deleted: ------Page Break-----

Mining Operations (LMO) M/<u>047</u>/0120 submitted January 3, 2014, and preliminarily approved on October 10, 2014. Mine development is described in the DOGM permit application in Section 106.2. A 5-year mine plan with reclamation cost calculations is included in Section R647-4-113. No mining will take place under this LMO until a reclamation surety instrument based on these calculations is accepted by the DOGM.

TomCo will submit a revised GWDPA to the DWQ incorporating the findings from this EPS capsule project, and will not begin construction of subsequent capsules until the DWQ has approved the revised plan.

The following is a summary of the reclamation plan as described in the LMO

The EPS final pit depth is approximately 95 feet. If further mine development does not occur, the site will be reclaimed. Final grading to achieve acceptable surface contours for positive drainage will be conducted, where necessary, using overburden material not used in capsule construction. This is expected to include both run of mine and overburden material. The latter may also be used as supplemental plant growth material if its chemical characteristics are suitable. Salvaged soil will then be used to establish vegetative cover for the final graded capsule.

The final top surface of the EPS will be regraded to reduce runoff onto the side slopes and minimize erosion potential by excavating small areas with a small\_dozer to create a shallow, concave surface to collect precipitation, encourage establishment of more mesic vegetation communities, and reduce run-off. The excavated surfaces will be constructed such that these small areas are surficial and no deeper than 1 foot or wider than 3 feet in diameter. These microsite features are truly surficial and are not perceptible on the scale of the post-mining topography map. Given the limited precipitation and high evapotranspiration rates for the Uinta Basin, puddling of moisture is not anticipated to last for extended periods. This is because, in addition to the 3-foot BAS layer, the EPS capsule will be topped with 4 to 15 feet of overburden to account for uneven deformation after heating, and 6 to 12 inches of soil. By managing the top surface of the capsule in this manner, run-off will be limited, as will resultant erosion.

Pit endwalls and the final highwall will be regraded and stabilized by sloping back the walls or backfilling material against them to achieve a slope angle of 45 degrees, in compliance with Deleted: 040

Deleted:

DOGM rules and to minimize potential safety hazards. All disturbed areas will be left in a stable configuration and planted with a seed mix dominated by native species suited to the topography and physical characteristics of the site.

The residual hydrocarbon in the capsules following retorting is coke (RLR 2010), which is a gray, hard, porous, insoluble solid that consists of fused mineral matter and fixed carbon. Due to capsule design and system operation, a minimal amount of the product generated during pyrolysis may not be recoverable and may remain within the capsules after extraction.

# 6 ISSUED AND PENDING PERMITS

## 6.1 Permit History

TomCo obtained Exploration Permit EXP 047/0061 in support of corehole drilling in 2010 and amended this same permit in 2013 to allow monitor well drilling.

## 6.2 Pending and Future Permits

An LMO was filed with the DOGM on January 10, 2014 and was provisionally approved on October 10, 2014.

The project area is located in "Indian Country," and most federal permits for this area are therefore under the jurisdiction of the U.S. Environmental Protection Agency (EPA).

Nationwide permits for storm water discharge under the federal National Pollutant Discharge Elimination System (NPDES) will be obtained from EPA Region 8 for construction of the facility. Oil shale facilities are exempt from NPDES permits during operations. Prior to construction activities, a Storm Water Pollution Prevention Plan will be prepared and updated to remain current. Plans will be available on site prior to commencement of construction or mining activities.

At this time, TomCo does not anticipate affecting waters of the U.S.; therefore, an application for a permit under section 404 of the federal Clean Water Act for the dredging and filling will not be necessary.

TomCo will operate as a minor source emitter in continuous operations, beginning with blower testing in 2014. TomCo will register as such in accordance with newly promulgated EPA air regulations for operation in Indian Country. Prior to registration, the facilities have not been subject to implementation of a minor source permitting program.

The project may have a Non-Transient Non-Community Water System (NTNWS). The engineering plans and specifications for an NTNWS must be approved prior to construction by the Executive Secretary of the Utah Division of Drinking Water.

Sanitary waste water is and will be, upon commencement of the proposed operations, collected and removed from the site by a licensed contractor. Solid waste will be collected and taken to a municipal or commercial landfill.

# 7 WATER INFORMATION

# 7.1 Well and Spring Identification

Oil and gas wells and water rights within a 1-mile radius of the project area are shown in **Figure 7-1** and listed in **Tables 7-1 and 7-2**. The United States Geological Survey (USGS) National Hydrography Dataset was used to identify any mapped springs in the general vicinity; there were no springs in TomCo's project area and one spring within a half mile of the site's boundary (USGS 2013). The records of the Utah Division of Water Rights were used to identify wells and springs in the area. There were no springs having a recorded water right, either within the project area or within a mile of the project area. No drinking water wells within a mile radius of the project area were identified. The water rights records search identified one existing water right within the project boundary (Water Right # 49-1111). The water right is owned by the BLM and is a point-to-point right for surface watering of livestock from Long Draw Wash. The point-to-point diversion is defined as "directly on stream from a point at N 660 feet E 660 feet from the

SW corner, Section 25, Township 12S, Range 24E to a point at S 660 feet from the NW corner, Section 14, Township 12S Range 24 East." According to the DWQ's records, the claim under this Water Right Number has not yet been established in accordance with statute and its validity is in question.

In addition to the water sources identified from public information sources, a seep and spring inventory for the project area and 0.5-mile buffer was completed in fall 2013. The inventory area and locations of springs, seeps, and possible seeps identified during the inventory are discussed in **Section 9.5.1**, below, as are the water sources identified in public records and referenced above. None of the seeps and springs identified in the survey has an associated water right.

# 7.2 Surface Water Body Identification

No bodies of surface water have been identified within a 1-mile radius of the mine operation.

# 7.3 Drainage Identification

TomCo's project area is crossed by numerous small ephemeral drainages typical of high-desert landscapes and does not contain any perennial surface water sources. Most of the smaller drainages lack an Ordinary High Water Mark and are not considered jurisdictional by the U.S. Army Corps of Engineers (Epic Engineering 2013). One main intermittent drainage traverses the northern third of the project area from east to west, with four tributary drainages feeding in from the south. The main drainage was determined in a field evaluation to be a Water of the U.S. by the U.S. Army Corps of Engineers in May 2013. Portions of two of the tributary drainages were also determined to be Waters of the U.S. The location and extent of this Water of the U.S. is shown on Figure 7-1.

## 7.4 Well-head Protection Area Identification

No well-head protection areas have been identified within a 0.5-mile radius of the mine operation.

# 7.5 Drinking Water Source Identification

No drinking water sources within a 0.5-mile radius of the mine operation have been identified in the project area. No drinking water sources subject to the protection of Utah Administrative Code (UAC) 309-600 have been identified within a 1-mile radius of the mine operation.

# 7.6 Well Logs

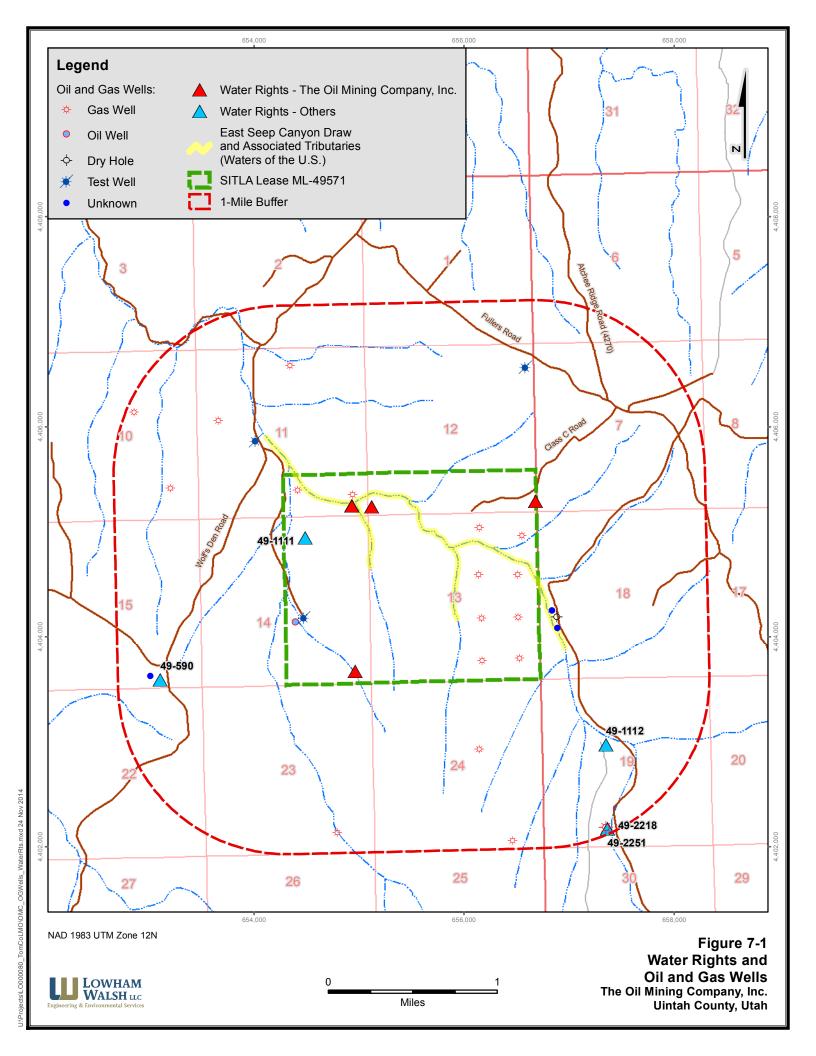
The only active wells found within the project's boundaries are owned by TomCo. Well logs from these wells and area hydrogeology are discussed in **Section 9**.

Table 7-1 Water Rights within, and within One Mile of, the TomCo Project Area

| ,        |       |         |                        |                          |              |                |         |
|----------|-------|---------|------------------------|--------------------------|--------------|----------------|---------|
| Township | Range | Section | Water Rights<br>Number | Owner                    | Acre<br>Feet | Well Type      | Status  |
| 12S      | 24E   | SE 11   | 1349006M00             | TomCo                    | 0.00         | Underground    | APPLAPP |
| 12S      | 24E   | SE 11   | 1349007M00             | TomCo                    | 0.00         | Underground    | APPLAPP |
| 12S      | 24E   | SE 14   | 1349007M00             | TomCo                    | 0.00         | Underground    | APPLAPP |
| 12S      | 24E   | SW 12   | 1349007M00             | TomCo                    | 0.00         | Underground    | APPLAPP |
| 12S      | 24E   | SE 12   | 1349007M00             | TomCo                    | 0.00         | Underground    | APPLAPP |
| 12S      | 24E   | NE 14   | 49-1111                | BLM                      | 0.00         | Point to Point | PAC     |
| 12S      | 25E   | SW 19   | 49-1112                | BLM                      | 0.00         | Point to Point | PAC     |
| 12S      | 24E   | SW 15   | 49-590                 | BLM                      | 0.25         | Surface        | PAC     |
| 125      | 25E   | SW 19   | 49-2218                | Medallion<br>Exploration | 20.00        | Underground    | TEMPEXP |
| 125      | 25E   | SW 19   | 49-2251                | Medallion<br>Exploration | 20.00        | Underground    | TEMPEXP |

Key:

APPLAPP Application to Appropriate Approved BLM Bureau of Land Management


BLM Bureau of Land Management PAC Pending Adjudication Claim

TEMPEXP Temporary Application for One Year, Expired

TomCo The Oil Mining Company, Inc.

Table 7-2 Oil and Gas Wells within, and within One Mile of, the TomCo Project Area

| Table 7-2 Oil and Gas Wells within, and within One Mile of, the TomCo Project Area |       |         |                    |           |                          |                          |  |  |
|------------------------------------------------------------------------------------|-------|---------|--------------------|-----------|--------------------------|--------------------------|--|--|
| Township                                                                           | Range | Section | API Number         | Well Type | Status                   | Operator                 |  |  |
| 125                                                                                | 24E   | SWSE 15 | 43-047-10263-00-00 | Unknown   | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 24E   | NWSE 14 | 43-047-11137-00-00 | Oil       | Plugged and<br>Abandoned | Sky-High Oil Company     |  |  |
| 125                                                                                | 24E   | SWNE 10 | 43-047-31056-00-00 | Gas       | Abandoned                | Texas Oil and Gas        |  |  |
| 125                                                                                | 24E   | SWNW 11 | 43-047-32557-00-00 | Gas       | Plugged and<br>Abandoned | XTO Energy Inc.          |  |  |
| 12S                                                                                | 24E   | SESE 10 | 43-047-32681-00-00 | Gas       | Plugged and<br>Abandoned | XTO Energy Inc.          |  |  |
| <b>12S</b>                                                                         | 24E   | SESE 24 | 43-047-33172-00-00 | Gas       | Abandoned                | Lone Mtn. Production Co. |  |  |
| 12S                                                                                | 24E   | NWNE 11 | 43-047-33183-00-00 | Gas       | Abandoned                | Lone Mtn. Production Co. |  |  |
| 12S                                                                                | 24E   | SESE 11 | 43-047-36625-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 125                                                                                | 24E   | SWSE 11 | 43-047-36626-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 125                                                                                | 24E   | NWNE 13 | 43-047-36627-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 125                                                                                | 24E   | NENE 13 | 43-047-36628-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | SESE 13 | 43-047-36629-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | SWSE 13 | 43-047-36630-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | SWNE 13 | 43-047-36631-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | SENE 13 | 43-047-36632-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | NESE 13 | 43-047-36633-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | NWSE 13 | 43-047-36634-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 125                                                                                | 24E   | NWSE 14 | 43-047-37799-00-00 | Test      | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 24E   | NENE 12 | 43-047-37800-00-00 | Test      | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 12S                                                                                | 24E   | NESW 11 | 43-047-37801-00-00 | Test      | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 24E   | SWNE 24 | 43-047-38484-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 12S                                                                                | 24E   | SWSE 23 | 43-047-38652-00-00 | Gas       | Abandoned                | Enduring Resources LLC   |  |  |
| 125                                                                                | 25E   | NWSW 18 | 43-047-11157-00-00 | Dry Hole  | Plugged and<br>Abandoned | Medallion Exploration    |  |  |
| 12S                                                                                | 25E   | NWSW 18 | 43-047-20480-00-00 | Unknown   | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 25E   | NWSW 18 | 43-047-20482-00-00 | Unknown   | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 25E   | NWSW 18 | 43-047-20484-00-00 | Unknown   | Plugged and<br>Abandoned | Continental Oil Company  |  |  |
| 125                                                                                | 25E   | SESW 19 | 43-047-32660-00-00 | Gas       | Shut-In                  | Medallion Exploration    |  |  |



# 8 General Discharge Identification

# 8.1 Discharge Point Identification

TomCo's mine operation is designed to be a zero-discharge facility. There are no point discharges from the operation, and the facility is conservatively designed. Containment of all product liquids and gases is ensured through secondary containment of all tanks and clay seals 3\_feet thick surrounding the capsule.

## 8.2 Planned Discharges

As noted above, TomCo's mine operation is designed to be a zero-discharge facility. There is no planned discharge of water or other liquid. The capsule design prevents storm water from contacting waste materials. During construction and production, storm water will be managed on site with ponds and sumps as outlined in the Surface Water Monitoring Plan located in Appendix A. Water collected in these sumps may be used for dust suppression.

## 8.3 Potential Discharges

Because TomCo's mine operation is designed to be a zero-discharge facility, there is no potential for discharge of non-storm-water-induced water or other liquids from the operations.

## 8.4 Means of Discharge

The capsules are designed to prevent both infiltration of water and discharge of fluids. The capsules are conservatively designed, and the cover material is engineered as a low permeability cap that will be covered with a pre-determined thickness of earthen borrow, graded, covered with salvaged topsoil, and revegetated, negating the necessity of post-closure care after revegetative cover has been established.

Stockpiles of mined ore are not potential sources of contamination, as <u>most storm water is</u> <u>directed away from the site, with the exception of any storm water (direct precipitation) that <u>comes in contact with the ore. This storm water</u> will be <u>utilized or contained on site until it evaporates</u>. Following the commencement of capsule construction, ore will be mined and placed</u>

Deleted: C

**Deleted:** Storm

Deleted: and

Deleted: as part of the project's water supply

**Deleted:** coming

Deleted: to

in the open capsule, and storm water diverted away from the EPS capsule and managed on site to prevent discharge of contact water.

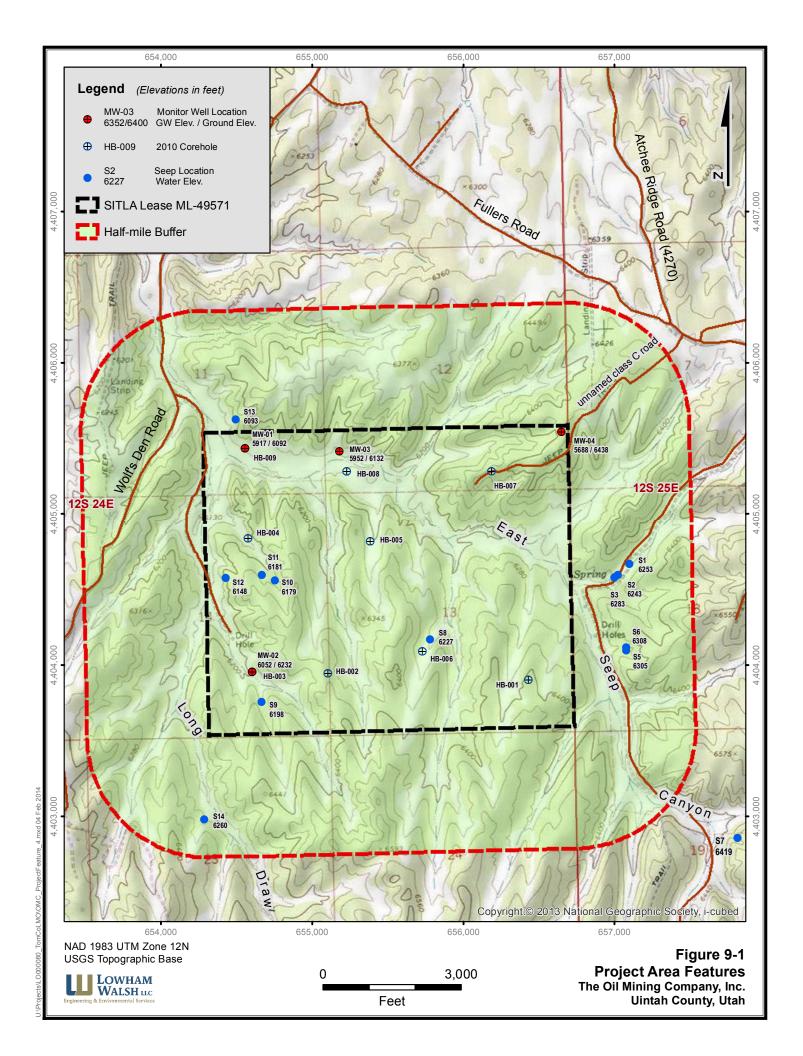
No underground storage tanks or buried lines are planned for the project. Materials such as processed oil and other fuels or oil-related materials will be stored in tanks constructed of compatible material meeting all applicable requirements and will have secondary containment. Pipes and plumbing associated with storage will be visually observable or have leak detection technology.

# 8.5 Flows, Sources of Pollution, and Treatment Technology

All surface flows—which would include storm water with incidental contact to disturbed areas and, in the unlikely event that a spill were to occur, hydrocarbons—will be contained in both primary containment (within bermed areas around tanks, or within the bermed EPS capsule area or mine area shown on Figure 5-1) and secondary containment (within Pond 8, as shown in Appendix A, Figure A). No treatment of waste water or waste solid is required, as there is no generation of associated waste streams. Solid materials will be fully encapsulated. Storm water will be collected for beneficial use.

## 8.6 Discharge Effluent Characteristics

TomCo's mine operation is designed to be a zero-discharge facility. There is no planned discharge water or other liquid from the operation.


# 9 HYDROLOGY REPORT

## 9.1 Introduction

### 9.1.1 Regional Geology and Landform

TomCo's project area is located in the Uinta Basin section of the Colorado Plateau physiographic province (Stokes 1986). This physiographic province is also known as the Colorado Plateau's Level III Eco region (Woods et al. 2001). The project area is shown in **Figure 9-1**.

The Uinta Basin is a structural depression with Eocene fluvial and lacustrine sedimentary rocks exposed at the surface. The project area is located in the southern part of the basin and is underlain by north-dipping middle Eocene strata. The region is characterized by a dissected plateau with strong relief (Stokes 1986). Elevations in the basin range from under 5,000 feet in the basin center near the Green and White Rivers and above 8,000 feet at the southern basin margins. Incised tributaries of the two rivers flow northward as ephemeral, intermittent, and perennial streams providing the framework for rapid runoff throughout the southern portion of the basin.



The southern Uinta Basin is underlain almost entirely by the Green River Formation, which is composed of two members: the Parachute Creek Member and the underlying Douglas Creek Member. The Parachute Creek Member is characterized by the presence of oil shale throughout its thickness. The Mahogany Zone is a 100-foot-plus interval in the upper third of the unit that represents the horizon with the highest concentration of kerogen and is the zone to be mined by TomCo.

**Table 9-1** shows a summary of the Hot Rod Oil Government Chorney B-NCT-1 oil well to the southwest of the TomCo project area. This well, the nearest to the project area, was used by Sprinkel (2009) to develop the "Interim Geologic Map of the Seep Ridge 30'x60' Quadrangle." This map shows only the upper portions of the log, from the surface through the regional Mesa Verde Aquifer to the Dakota Sandstone. It places the Douglas Creek Member of the Green River Formation at 1,100 feet below ground surface (bgs) and shows the relative location of the Mahogany Zone within the Green River Formation. The Douglas Creek Member potentially contains the uppermost aquifer in the Green River Formation in the eastern Uinta Basin. The distance between the base of the Mahogany Zone and the top of the Douglas Creek Member is about 600 feet.

Table 9-1 Selected Oil and Gas Well Near the Project Area

| Well ID &<br>Location                  | Formations                                        | Geologic<br>Unit Symbol | Top<br>(feet bgs | Thickness<br>(feet) |  |  |
|----------------------------------------|---------------------------------------------------|-------------------------|------------------|---------------------|--|--|
| Hot Rod Oil Government Chorney B-NCT-1 |                                                   |                         |                  |                     |  |  |
|                                        | Parachute Creek Member, Green<br>River Formation  | Тдр                     | 0                | 1,120               |  |  |
| SE1/4SW1/4                             | Mahogany oil-shale zone, Green<br>River Formation |                         | 415              |                     |  |  |
| Sec23, T13S,<br>R22E                   | Douglas Cr Member, Green River Formation          | Tgd                     | 1,120            | 995                 |  |  |
| API:<br>4304730115                     | Green River-Wasatch Formations transition zone    | Tg-Tw                   | 2,115            | 185                 |  |  |
| Surface: 6,624<br>feet' AMSL           | Wasatch Formation                                 | Tw                      | 2,300            | 1,765               |  |  |
|                                        | Upper Mesaverde Group                             | Kmv                     | 4,065            | 1,390               |  |  |
|                                        | Sego Sandstone of Mesaverde<br>Group              | Kmv                     | 5,455            | 515                 |  |  |

 Table 9-1
 Selected Oil and Gas Well Near the Project Area

| Well ID &<br>Location | Formations                              | Geologic<br>Unit Symbol | Top<br>(feet bgs | Thickness<br>(feet) |
|-----------------------|-----------------------------------------|-------------------------|------------------|---------------------|
|                       | Buck Tongue of Mancos Shale             | Kmv                     | 5,970            | 100                 |
|                       | Castlegate Sandstone of Mesaverde Group | Kmv                     | 6,070            | 280                 |
|                       | Mancos Shale                            | Kms                     | 6,350            | 3,505               |
|                       | Frontier Formation                      | Kfd                     | 9,855            | 335                 |
|                       | Mowry Shale                             | Kfd                     | 10,190           | 30                  |
|                       | Dakota Sandstone                        | Kfd                     | 10,220           | 40                  |

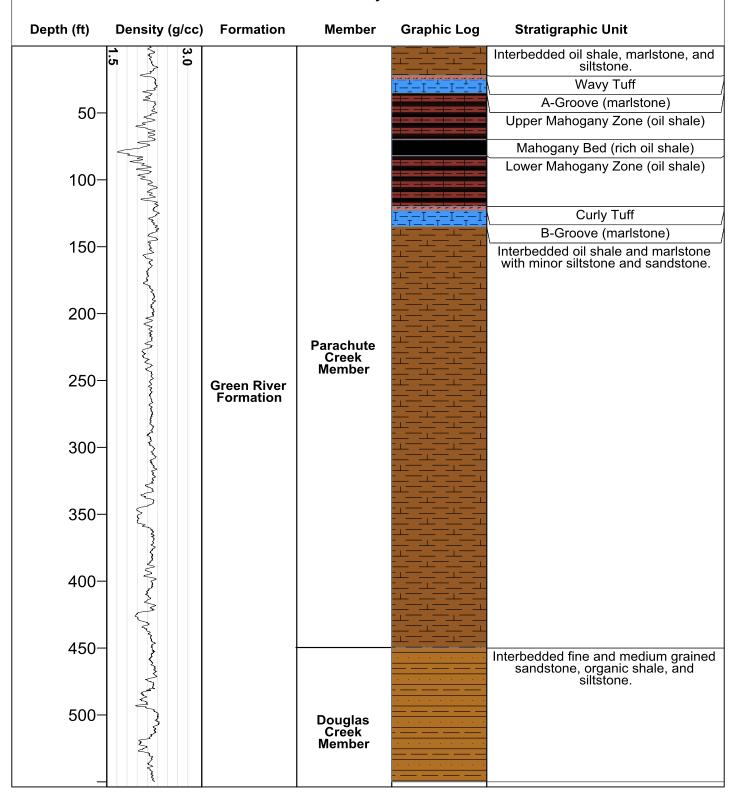
Source: Sprinkel 2009

Key: AMSL bgs

SL above mean sea level below ground surface

ID Identifier

The Hot Rod well shown in **Table 9-1** penetrated substantial thicknesses of the Parachute Creek Member. The well penetrated 1,120 feet of the Parachute Creek Member, which represents a fairly complete section of this sedimentary unit (Vanden Berg 2008).


Key stratigraphic markers, the Wavy and Curly Tuffs, are located within the Mahogany Zone. The tuffs, which resulted from volcanic eruptions, are recognized throughout the Green River Basin. Two other units, which are less well recognizable, are the A Groove and the B Groove. Their relationship to the Mahogany Zone can be seen in the type Stratigraphic Column for the Site (**Figure 9-2**). The Mahogany Bed, the principal ore zone for this project area, is located approximately 400 feet above the top of the Parachute Creek Member. Throughout its thickness, the Parachute Creek member is kerogen-rich and is commonly described as oil shale (Vanden Berg 2008).

The Parachute Creek Member is closest to the surface in the project area. In some parts of the project area, it is overlain by a mantle of soils. The Parachute Creek Member outcrops in the southeast portion of the project area and in several small canyons across the site. The Douglas Creek Member begins at the base of the Parachute Creek Member and, depending on the elevation across the project area, ranges from 400 to 700 feet bgs.

# Figure 9-2

# Type Stratigraphic Column

The Oil Mining Company, Inc. Uintah County, Utah



The Parachute Creek Member is known to be carbonate-rich and more kerogen rich in the center of the Uinta Basin to the northwest, where deeper water levels persisted throughout the period over which the sediments that formed the Parachute Creek Member were deposited. In the center of the basin, oil shale is present in significant quantities (measured in gallons per ton) throughout the 1,100-foot thickness of the member. To the east and south, toward the Douglas Creek Arch and Uncompahgre Uplift, respectively, deposition of terrigenous clastic sediments increased, forming silty and sandy marlstones and locally siltstone and sandstone horizons. Deposition of carbonate rocks and organic matter occurred when water levels in the lake in which the Green River Formation was deposited (termed Lake Uinta) were high and deep-water; anoxic conditions prevailed. Fluctuations in lake depth over time nearer the basin margins resulted in greater quantities of clastic sediments when lake levels dropped, and more carbonate and organic matter deposition occurred with higher lake levels and deeper water conditions (Keiglin 1977; Pipiringos 1978).

## 9.2 Project Area Geology

#### 9.2.1. Introduction

The Mahogany Zone is the primary ore-bearing zone, and therefore the primary zone of interest in the project area. It is located within the Parachute Creek Member at the base of the Upper Green River Formation and is of Eocene Age. The Mahogany Zone is bounded on two sides by volcanic tuffs, the Wavy Tuff and the Curly Tuff, that have been age dated at 48.7 million years and 49.3 million years, respectively (Birgenheier et al. 2013). The approximate thickness of the zone in the project area is 85 feet. Tests previously performed on the Mahogany Zone in other areas of the Green River Basin indicate that it will produce up to 30 gallons of oil per ton (Wallace 2012). Within the Mahogany bed itself, which is about 8 feet thick in the project area, production may be as high as 50 gallons per ton (Vanden Berg 2008).

### 9.2.2. Conceptual Site Model

Prior to the initiation of field studies in September 2013, a conceptual site model was developed for this project and submitted as part of the *Groundwater Monitoring Plan TomCo Mine Site Uinta County Utah* (Lowham Walsh 2013). This conceptual site model is presented below.

In eastern Utah, the Green River Formation contains two significant members that are important to site hydrology and the development of the Holliday Block. These are the Parachute Creek Member, which comprises the Upper and Middle Green River Formation, and the Douglas Creek Member, which comprises the Middle and Lower Green River Formation (Birgenheier 2013). The Parachute Creek Member outcrops on the project area and contains the Mahogany Zone, which is the ore bearing zone for this project. The Parachute Creek Member is of very low permeability and would be classified as shale or a dolomitic/calcareous marlstone. Coarser sandstone and siltstone beds have been identified above and below the Mahogany Zone. Some of these could have sufficient permeability to hold groundwater, although their aerial extent is discontinuous due to their alluvial origin, and they likely do not hold sufficient groundwater to be classified as aquifers. Beneath the Mahogany Zone, the Parachute Creek Member is made up of organic shales and leaner shales that are not as productive as the Mahogany Zone. The thickness of the lower Parachute Creek Member has not been measured in the project area, but it is anticipated to be 400 to 600 feet before grading into the Douglas Creek Member. Sediments from the Douglas Creek Member, which are classified as a fluvial deltaic facies, resulted during a period when the size of the Green River lake system had decreased and deltas prograded across the western fringe of the basin. A number of sand-based fluvial channels were deposited during this period. These sandstones have sufficient permeability and aerial and vertical extent to be classified as aquifers in some areas. Recent wells drilled into the Douglas Creek Member at the adjacent Enefit and RLR properties were both completed at depths of 900 to 1,000 feet bgs and produce groundwater in the range of tens of gallons per minute (gpm).

In 2010, TomCo drilled nine coreholes across the project area to determine the thickness and depth of the Mahogany Zone. The depth of penetration of the coreholes ranged between 116 to 304 feet bgs. In general, the Mahogany Zone is closest to the surface in the southern portion of the PA, particularly in the southeast, and deepest in the northeast corner where the 304-foot-deep corehole was located. The Mahogany Zone itself was very tight and did not appear to be water bearing. However, a number of sandstones below the Mahogany Zone were recognized in the cores. For the most part, these sandstones were fine grained, poorly sorted, or filled with tar (i.e., tar sand) and were not classified as aquifer media. Three of the coreholes actually had "shows" of groundwater, suggesting that they could contain limited water bearing zones. Support for this

contention comes from similar work that RLR has performed within the Mahogany Zone. RLR installed a number of nested wells above and below the Mahogany Zone. Wells were installed at six locations, with one well screened above the Mahogany Zone and the other screened below the Mahogany Zone. The monitoring zones were all screened in zones that visually appeared to be sandstones or siltstones and could have sufficient permeability to be water bearing. The permeability of these zones was measured with rising head slug tests. The results all came back in the range of clay, i.e.,  $10^{-7}$  cm/sec. Some of the wells had such low permeability that the groundwater had not recovered to pre-test levels after one week. In May 2013, a site visit to the Holliday Block was performed by Mark Novak and Woody Campbell of DWO and Mike Vanden Berg of the USGS. The purpose of the site visit was to investigate the stratigraphy of the Mahogany Zone to determine if any permeable zones may exist in strata above and below the Mahogany Zone that could transport groundwater in the site area. Of particular concern were sandstones beneath the Mahogany Zone that could transmit groundwater. The team observed a spring on the eastern portion of the site that may have resulted from a sandstone layer or from a secondary porosity that originated from fractured bedrock. They also observed sand beds below the Mahogany Bed in outcrops west of the site.

The surveys and analyses conducted in the vicinity of the project suggest that the Douglas Creek Aquifer will not be impacted by mining activities. Groundwater may be stored in permeable sandstones beneath the Mahogany Zone. However, the depositional environments of these sandstones are likely discontinuous fluvial channels that would provide little or no potential for groundwater movement. They are generally described as sandstone lenses, implying that they are limited both vertically and horizontally. Because they are surrounded by impermeable shale, it is unlikely that groundwater in these lenses would be able to migrate. However, because they are located beneath the mining horizon, they could eventually accumulate trace levels of naturally occurring inorganics (metals) and hydrocarbons or that could be released during mining. The risk that impacted groundwater from these lenses may migrate downward into the Douglas Creek Aquifer is very low.

The Douglas Creek Member contains more massive sandstones than those observed in the younger Parachute Creek Member. The depositional system of the Douglas Creek Member is likely composed of multistoried channel sands of a delta that prograded out into the Green River

Deleted: Utah Geological Survey

Basin during a period of time when the lake level was much lower. Groundwater is produced at higher rates in the Douglas Creek Member. The likelihood of any contaminants impacting the Douglas Creek Aquifer from mining activity in the Mahogany Zone seems extremely remote. At least a 400-foot section of mostly impermeable shale and marlstone separates the two formations. Even with occasional sand lenses and secondary porosity resulting from fractured bedrock, there is unlikely to be enough interconnectivity between the two formations for them to communicate hydrologically. Further, the Douglas Creek Aquifer has been recognized in the project area as confined, which provides additional support for the contention that it is hydrologically separate from the Parachute Creek Member.

The purpose of the conceptual site model is to determine site geology and hydrology (i.e., hydrogeology and surface hydrology) so that the mine can be developed without any adverse impacts to site hydrology in the project area. Initial valuable information for the project was developed during the drilling of nine coreholes by TomCo in 2010. One objective of TomCo's 2013 well drilling program was to build upon the 2010 TomCo study to fill data gaps so that the ultimate goals of protecting groundwater and developing the mine site can be achieved. The following critical key features were investigated to meet these objectives:

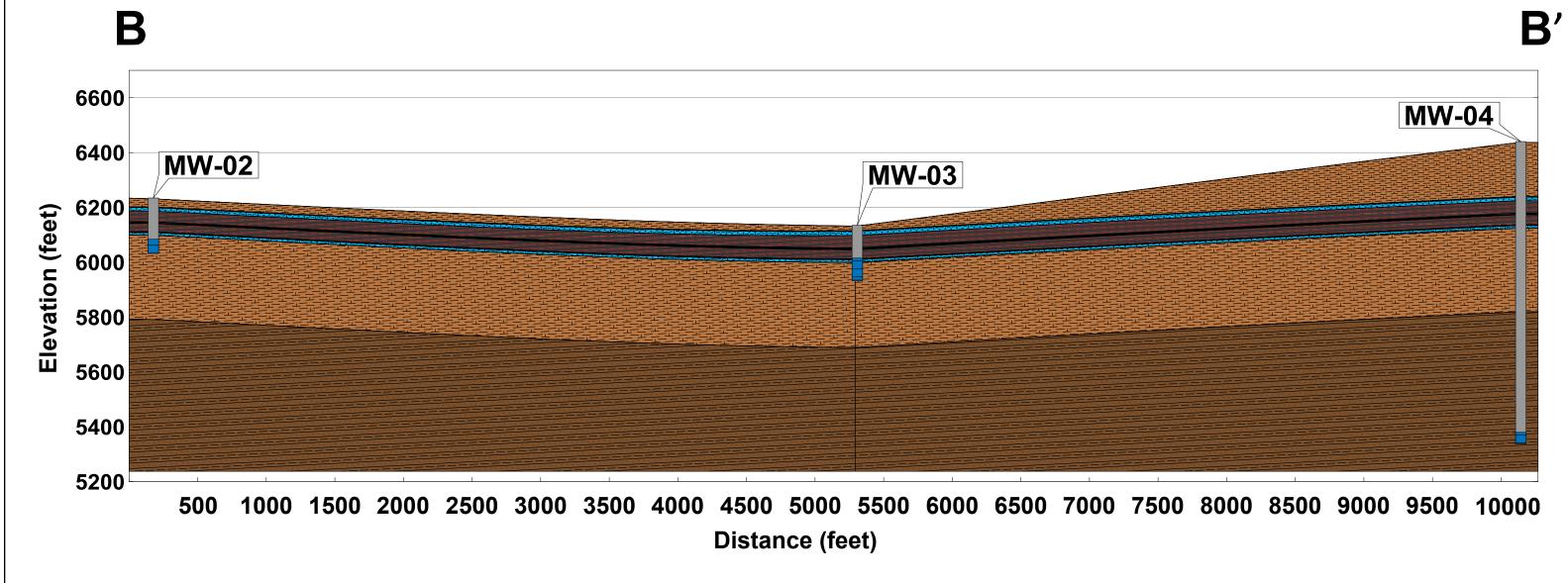
• The Parachute Creek Member is of very low permeability due to the fact that its sediments are fine grained silts and clays that are not capable of transmitting significant groundwater. In some portions of the project area, there may be discontinuous sands with the potential of having higher permeability. However, their discontinuity, along with the facts that they are very poorly sorted and/or have pore spaces infilled with tar, make them very unlikely to transmit significant amounts of groundwater. Groundwater Quality within the Parachute Creek Member is poor and there also appears to be very little groundwater in this formation. Of the nine coreholes drilled in the Parachute Creek Member in 2010, only three of those had "shows" of groundwater (see Appendix C). However, the three coreholes with groundwater shows were investigated to determine the hydraulic characteristics and groundwater quality of the Parachute Creek Member.

- A number low permeability zones beneath the B Groove of the Parachute Creek Member (R-6 Unit) provide hydraulic separation between the oil shales of the Parachute Creek Member and the deeper Douglas Creek Member.
- The Douglas Creek Aquifer is more permeable and can be classified as an aquifer.
   An additional monitoring well was drilled to determine the hydraulic characteristics and water quality of the Douglas Creek Member and the amount of hydraulic separation between the Douglas Creek and the Parachute Creek Member.

## 9.2.3 Drilling, Well Installation, and Groundwater Sampling

Four monitoring wells in the project area were drilled and completed by Himes Drilling Company of Grand Junction Colorado in September and October of 2013. Lowham Walsh provided oversight and directed the work effort. The location of coreholes drilled in 2010 and monitoring wells drilled in 2013, along with groundwater elevations, are shown in **Figure 9-1**.

Screening-level groundwater samples were collected prior to well completion by using packer production tests. This provided in-field information that was used to determine the best monitoring zone in each well. Groundwater samples were also collected after the wells were completed and developed. The drilling method used on all boreholes was air rotary. Three intermediate boreholes were advanced to a total depth of 200 feet bgs and were completed in the Parachute Creek Member of the Green River Formation. Two-inch-diameter monitoring wells were installed into these three boreholes. One deep borehole was advanced to 1,100 feet bgs and was completed in the Douglas Creek Member of the Green River Formation. A 4-inch diameter monitoring well was installed in the Douglas Creek Member borehole.


Drill cuttings of subsurface lithologies encountered in the borehole were returned to the surface by the air rotary drilling system and were described in the field by a Lowham Walsh geologist. Boring logs and well diagrams of these monitoring wells are available in **Appendix C**. A type stratigraphic log of the site area is provided in **Figure 9-2**. Cross-sections of the geology of the project area are provided in **Figures 9-3** and **9-4**. Selected portions of the borehole geophysical

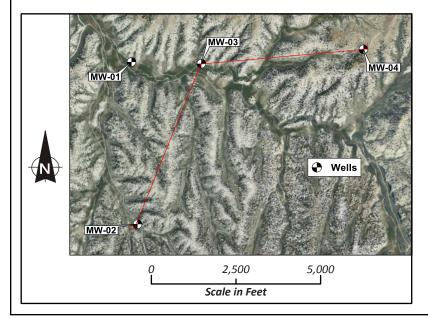

logs are provided in Figures 9-5 and 9-6. The complete borehole geophysical log appears in Appendix D.

Figure 9-3 Cross Section A - A' The Oil Mining Company, Inc. Uintah County, Utah 6600 MW-04 6400 MW-03 MW-01 **6200** Elevation (feet) 6000 5800 5600 5400 **5200**<sup>[</sup> 500 1500 2000 2500 3500 4000 4500 5000 5500 6000 1000 3000 6500 7000 **Distance (feet) Note:** 2X vertical exageration. **Monitoring Wells Stratigraphy** Casing Mahogany Bed Parachute Creek Screen Wavy Tuff **Curly Tuff** A Groove B Groove Mahogany Zone **Douglas Creek** 5,000 2,500 Scale in Feet

Figure 9-4
Cross Section B - B'
The Oil Mining Company, Inc.

The Oil Mining Company, Inc.
Uintah County, Utah





**Note:** 2X vertical exageration.

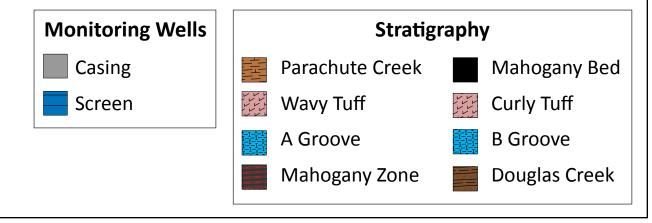
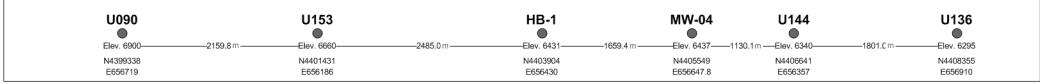






Figure 9-4a



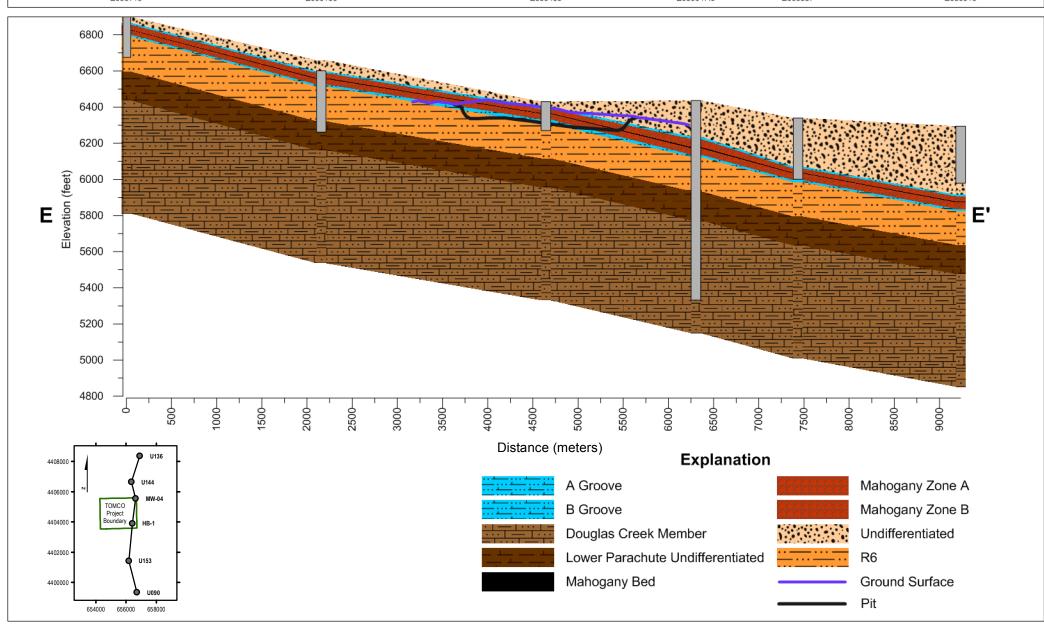



Figure 9-5
Selected Borehole Geophysics from the Mahogany Zone

The Oil Mining Company, Inc. Uintah County, Utah

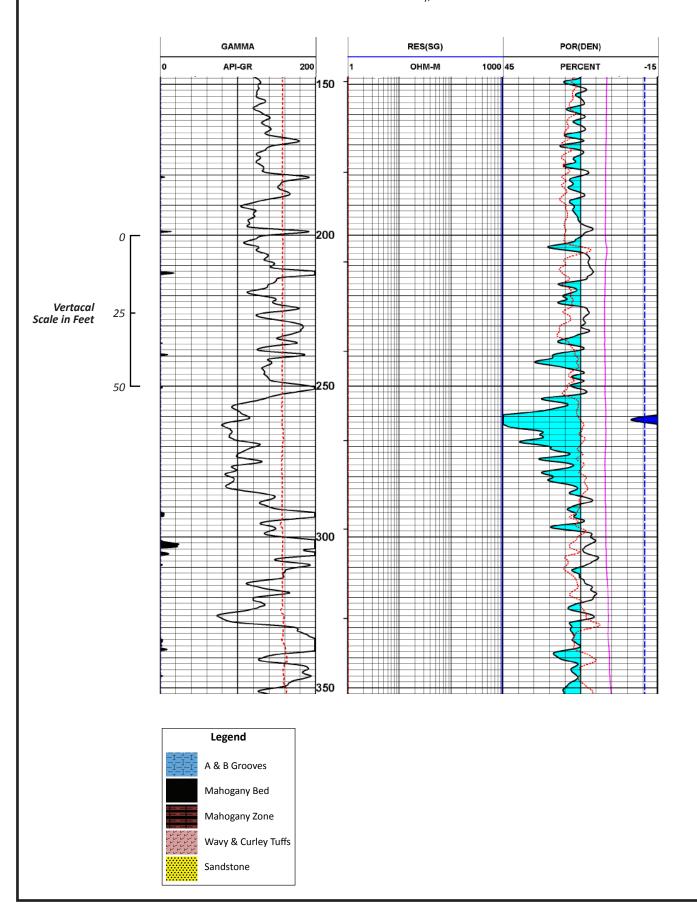
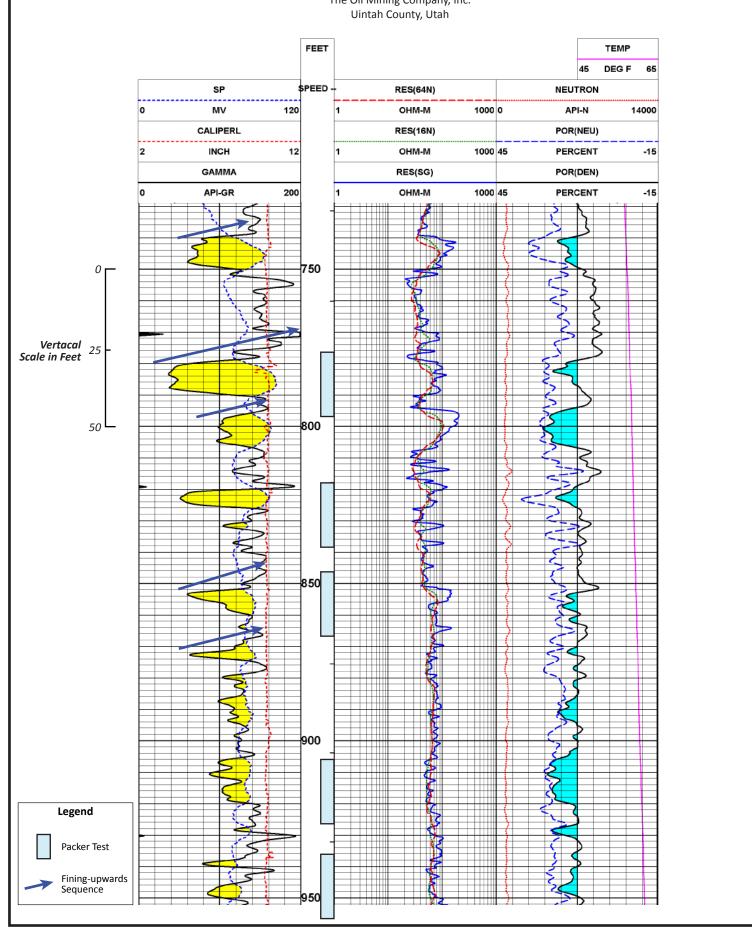




Figure 9-6 **Selected Borehole Geophysics from** the Douglas Creek Member

The Oil Mining Company, Inc.



Drilling, well installation, and groundwater sampling procedures for the monitoring wells were conducting as follows:

### • Rig Type and Drilling Techniques

- A Porta-Drill truck-mounted drill rig with an on-board air compressor was used to complete both the intermediate and deep wells. For the intermediate depth wells, a 10-inch drill bit was initially used to advance the boring from the surface to competent bedrock. Seven-inch steel casing was set and cemented in place at the following depths: Monitoring Well (MW)-01, 27 feet bgs; MW-02, 20 feet bgs; and MW-03, 14.3 feet bgs.
- After the steel surface casing was set, each borehole was advanced to 200 feet bgs using the 6.25-inch bit. The borings were advanced dry until groundwater was encountered, after which a foaming agent suitable for drinking water well use was injected into the air stream to provide greater lift for groundwater and drill cuttings. After the boring was complete, the borehole was flushed with additional foam to clean the borehole of loose chips, then flushed with just air to clean the borehole of residual foam.
- The deep borehole was created in a similar fashion except with larger diameter, a 14.75-inch drill bit was used to advance the boring from the surface to 20 feet bgs, then a 10.75-inch steel casing was set and cemented in place. From 20 to 1,100 feet bgs, the boring was advanced with an 8.75-inch drill bit with a Comp Air AC-3 750-cubic-feet/minute skid-mounted air compressor and foam injection after the initial encounter of groundwater. After the bit reached 1,100 feet bgs, the hole was cleaned with foam circulation, then air circulation.

#### • Packer Production Testing

Groundwater production tests were performed in each borehole in the form of dual packer production tests and open-borehole production tests. Packer testing was accomplished by inflating a top and bottom packer with nitrogen, isolating a zone of lithology, and pumping from the isolated zone while measuring flow rate from the pump. Originally, three or four packer tests were planned in each borehole. The purpose of packer testing was to determine individual production of specific zones (e.g., sandstones) where there had been "shows" of groundwater during drilling. Successful packer tests were completed in MW-02 and MW-04. In MW-01 and MW-03, the amount of groundwater and degree of permeability were too low to sustain production down to the lowest possible rate, which is less than 0.5 gpm. As a result, open-borehole production tests were substituted for packer tests in an attempt to test the entire saturated section in the intermediate wells. Open borehole production tests were performed by pumping groundwater near the bottom of the borehole at differing rates depending on the amount of drawdown. Regardless of test type, drawdown in the three intermediate depth wells remained severe and production rates were very low. For MW-01, a production rate of 0.48 gpm was obtained in the open hole test. Drawdown was continuous, and the test was terminated at a drawdown of 36.2 feet. For MW-02, a successful packer test produced water at 1.33 gpm, but recovery rate was very slow. An open well test produced 0.95 gpm with 83.5 feet of drawdown, suggesting overall dewatering of the well. For MW-03, open borehole tests produced 0.53 gpm to 0.87 gpm, with a drawdown of 77.8 feet. Well MW-04, which penetrated and was screened in the Douglas Creek aquifer, showed higher production rates, reaching 20 gpm with a slowing drawdown of 30.85 feet. Further detail on well drawdown and production is provided in Section 9.2.4, below.

Where possible, water quality samples were collected during groundwater sampling.

## • Borehole Geophysical Survey

A borehole geophysical survey was performed on the deep borehole (MW-04) by Century Wireline Services. Geophysical logs in the survey suite included: Spontaneous Potential; Gamma Ray; Caliper; Deep,

Deleted: In all but one

**Deleted:** well, drawdown in these wells

**Deleted:** were well below 1 gpm

Intermediate, and Shallow Resistivity; Density; and Neutron. Portions of the geophysical log that are representative of subsurface conditions are included in **Figures 9-5 and 9-6**. The entire log appears in **Appendix D**. The geophysical survey assisted with the interpretation of key stratigraphic units in the Parachute Creek and Douglas Creek Members.

### Well Completion

A monitoring well was installed in each borehole. The three intermediate depth monitoring wells were constructed of Schedule 80 PVC with a 2-foot sump and a 0.020-inch slotted Schedule 80 PVC screen. The deep monitoring well was constructed with carbon steel with a 2-foot sump and a 0.020-inch slotted carbon steel screen. Monitoring well identifiers, screen lengths, and total depths are listed in Table 9-2. Note that the initial screen intervals of the intermediate monitoring wells were planned to be 20 feet but were increased as the Parachute Creek Member proved to be very impermeable and would only produce groundwater at rates of less than 1 gpm.

**Table 9-2** Site Monitoring Wells

| Monitoring Well ID               | Screened Interval (feet bgs) | Total Depth (feet bgs) |
|----------------------------------|------------------------------|------------------------|
| MW-01                            | 148–198                      | 200                    |
| MW-02                            | 148–198                      | 200                    |
| MW-03                            | 117.3–197.3                  | 200                    |
| MW-04                            | 1,058–1,098                  | 1,100                  |
| Key:<br>bgs below ground surface |                              |                        |

Each monitoring well had the annular space filled with 6-9 Colorado Silica Sand across the screened interval, a transition zone of 10-20 Colorado Silica Sand, and a seal of hydrated bentonite pellets. For intermediate depth monitoring wells, bentonite chips were used as backfill for the remaining annular space, for the deep monitoring well bentonite grout was used. Complete well construction details are available in the boring logs, which are included in Appendix C.

## • Well Development

- All monitoring wells were developed via surging and air lifting. A plunger style surge block was used to surge the submerged screened interval, with the surge block moving up the interval in sections to ensure that the entire submerged screen was surged. Air lifting was then accomplished by placing a tremie pipe at the bottom of the well (within the sump) and forcing compressed air down the pipe to lift turbid water out. To further develop the intermediate wells, a second round of surging and air lifting was performed one week later, when the wells had had a chance to refill with available formation water. This second round of surging and airlifting was followed with pumping using a submersible pump placed at the bottom of the well to evacuate the remaining turbid water. Due to the low inflow rate of the installed wells, water quality stabilization criteria could not be used to determine well development.
- In MW-04, air lifting was much more successful and could be operated continuously. Air lifting was conducted for 8 hours in this well until water quality criteria were deemed stabilized.

Monitoring wells were given one week to stabilize, after which groundwater samples were collected with a submersible pump for all four monitoring wells. An attempt was made to purge three well volumes from each well before sampling; however, the three intermediate depth wells did not have sufficient recharge to yield three well volumes. These three wells were sampled with the last water available before running dry. The deep well had sufficient recharge to purge three well volumes before sampling. During sampling, water quality field parameters were collected simultaneously.

### 9.2.4 Discussion

A type stratigraphic column of the project area is presented in in **Figure 9-2**. The type log depicts the common characteristics of the subsurface geology for the Parachute Creek and Douglas Creek Members that were observed in in the project area. It is based on the geologic features observed from the four monitoring wells and nine coreholes that have been drilled and

completed. Three intermediate depth monitoring wells were drilled to 200 feet bgs, and all penetrated well into the Parachute Creek Member. One deep monitoring well was drilled to 1,100 feet through the Parachute Creek Member and an estimated 450 feet into the Douglas Creek Member. Boring logs for all wells and coreholes appear in **Appendix C**. The borehole geophysical log for MW-04 appears in **Appendix D**. The type log (**Figure 9-2**) provides the best overall representation of Green River Formation in the subsurface across the site. All of the principal stratigraphic units present across the project area in the Parachute Creek Member of the Green River Formation and also the Douglas Creek Member are present on the type log. These include:

- R-6 and R-8 of the Parachute Creek Member, which are composed of marlstones, shales, and siltstones; Mahogany Zone (R-7) and the Mahogany Bed. This formation is composed of more organic rich shales and is the mining horizon for this project;
- Wavy Tuff, a volcanic tuff from a volcanic eruption that affected the entire Green River Basin age dated at 48.7 million years before present;
- A Groove, composed of a dolomitic marlstone that is about 10 feet thick in the project area;
- B Groove, composed of a dolomitic marlstone that is about 10 feet thick in the project area;
- Curly Tuff, a volcanic tuff aged 49.3 million years before present; and
- Lower Parachute Creek strata, which is nearly 400 feet thick and eventually grades into the Douglas Creek Member.

The dominant lithologies of the borings were marlstone and shale. Sandstones were also identified above and below the B Groove in the Parachute Creek Member and in the lower portion of the Douglas Creek Member, although they were not a dominant lithology in these stratigraphic sections. Cross sections of site-wide stratigraphy sections appear on **Figures 9-3** and **9-4**.

These findings agree with the established literature that the Parachute Creek Member was deposited in a low-energy lacustrine environment and is thus composed primarily of fine-grained sediments (Holmes and Kimball 1987). The TomCo site is on the southeast fringe of the Green River Basin in Utah. The deepest portion of the basin lies to the north of the project area and trends east-southeast and west-northwest. The Mahogany Zone stands out in all three intermediate borings as a zone of increased kerogen content, with sections of the Mahogany Zone appearing oil productive in the borehole. During installation of several of the borings, cuttings were returned to the surface with a distinct order of petroleum hydrocarbons. The section producing the most abundant oil is interpreted as the Mahogany Bed and is recognized in the geophysical log in MW-04 from 258 to 264 feet bgs (Figure 9-5). The Mahogany Zone is encountered at 25 to 110 feet bgs in MW-01, at 45 to 120 feet bgs in MW-02, and 35 to 120 feet bgs in MW-03. The Mahogany Zone can be seen at the surface in outcrops, particularly in the southeast portion of the project area (Vanden Berg 2014; Lowham Walsh 2014). It occurs as beds of kerogen that are deposited in very fine layers as seasonal varves, interbedded with marIstones and shale, and occasional stringers of siltstone.

During the site visit conducted by the DWQ and Utah Geological Survey on May 21, 2013, the team observed apparent sandstones in outcrops of the Parachute Creek Member. These sandstones appeared to outcrop both above and below the B Groove and could be considered more permeable than the shales and marlstones. Several sandstone beds were identified in cuttings returned to the surface during drilling of the borings through the Parachute Creek Member. For the most part, the cuttings appeared to be in the range of siltstones and fine-grained sandstones. The sandstones can also be seen in the cores drilled in 2010 appearing immediately beneath the B Groove. When examined in cores, these sandstones beds appear to have very little primary porosity and permeability, due either to very poor sorting, resulting in a mixture of mud and sand, or later injection of tar into the primary sand matrix. These zones appear to have very low permeability based on the fact that of the three borings, only one produced a very slight amount of groundwater during drilling and subsequent packer tests. All four borings were subjected to packer production testing to measure sustained groundwater production rates. The results of these tests are fully discussed in Section 9.3.2.1 of this permit application.

MW-04 was drilled to a depth of 1,100 feet bgs. This well was of significant value to project area studies in that it provided a complete stratigraphic section of the entire area of interest. The objectives for drilling MW-04 to this depth were:

- To provide a means of monitoring for the Douglas Creek Aquifer;
- To acquire a complete section of the of the Parachute Creek and the Douglas Creek Members of the Green River Formation;
- To assess the amount of stratigraphic separation between the Parachute Creek and the Douglas Creek Members; and
- To determine the potential for groundwater use during mine site development and subsequent operations.

During drilling, this well was logged by the on-site geologist (see **Appendix** C). Prior to well completion, a borehole geophysics survey of the entire well was also completed (see **Appendix** D), including: Spontaneous Potential; Gamma Ray; Caliper; Deep, Intermediate and Shallow Resistivity; Density, and Neutron logs. The following major stratigraphic features were observed on the borehole geophysical log:

- Wavy and Curly Tuff;
- A Groove; B Groove;
- Mahogany Zone (R-7);
- Mahogany Bed;
- Transition to the Douglas Creek Member; and
- Fining upward sequences (i.e., deposition of subsequently finer grain sizes—sand, silt, clay—moving upward through the sandstone bed) in the Douglas Creek Member, representing fluvial systems that were being deposited as the delta prograded out into the Green River Basin (see Figures 9-5 and 9-6).

MW-04 is located in the northeast corner of the project area. The surface elevation of the well location is 6,438 feet above sea level. The average elevation of the three wells located in the East

Seep Canyon is about 6,152 feet above mean sea level. Thus, there is significantly more section in the R-8 unit of the Parachute Creek Member in MW-04. For instance, the top of the Mahogany Bed is recognized in MW-04 at a depth of 258 feet bgs. In MW-01, MW-02, and MW-03, the Mahogany Bed is generally in the range of 50 to 80 feet bgs. **Figure 9-5** is an annotated section of the geophysical log for MW-04 from 200 to 400 feet bgs. The log is annotated with all the important stratigraphic features in the Mahogany Zone interval, including the Wavy Tuff, A Groove, Upper and Lower Mahogany Zone, Mahogany Bed, Curly Tuff, and B Groove. The top of the Mahogany Zone begins at about 213 feet bgs. The Mahogany Bed itself appears from 258 to 265 feet, and the base of the Mahogany Zone appears at about 300 feet.

The Douglas Creek Member appears with the first prominent sandstone bed at about 664 feet bgs. The contact between the Douglas Creek and Parachute Creek Members often does not stand out sharply in the drilling returns and outcrops, and previous mapping of the two units suggests that the contact between them is gradational (Keighin 1977; Pipiringos 1978). This is consistent with observations made during logging of MW-04. While the first prominent sandstone is noted at 664 feet bgs, several less prominent and perhaps finer grained sandstone beds are noted between 510 feet bgs and 588 feet bgs. Approximately 15 sandstones are noted in the Douglas Creek Section, with typical bed thicknesses of 8 to 12 feet. The vertical bed architecture of several of the sandstone beds appear to be fining upward sequences. Fining upward sequences are signature stratigraphic intervals for high sinuosity (meandering) rivers. This interpretation is consistent with the depositional environments recognized in the Douglas Creek Member, which consisted of periodic prograding deltaic events extending into the Green River basin.

The sandstone bed that appears beneath the base of the B Groove in some of the coreholes has also been recognized in outcrop in the site area. In MW-04, the sandstone bed appears to be also present beneath the B groove at a depth of 320 to 330 feet bgs. Low permeability rocks result in significant stratigraphic separation between the Douglas Creek and the Parachute Creek Members over the following intervals: 338 to 400 feet bgs, 420 to 508 feet bgs, 522 to 568 feet bgs, and 602 to 662 feet bgs. Significant stratigraphic separation of at least 256 feet exists between the R-6 zone of the Parachute Creek Member and the Douglas Creek Member. These rocks are likely a combination of calcareous mudstones and rich and lean shales. This amount of

stratigraphic separation provides a significant barrier and isolates the Douglas Creek Member from the Parachute Creek Member. The importance of this separation is discussed further in **Section 9.3.2**.

# 9.3 Project Area Groundwater

# 9.3.1 Southern Uinta Basin Groundwater Setting

The State of Utah defines an aquifer as "a geologic formation, group of geologic formations or part of a geologic formation that contains sufficiently saturated permeable material to yield usable quantities of water to wells and springs" (UAC R317-6-1). The Utah State Water Plan (UDWR 1999) refers to the Mesa Verde Formation as the regional aquifer closest to the surface in the Project Area.

Groundwater underlies the lease area at depth (Freethy and Cordy 1991). Mesozoic-age rock underlies much of the upper Colorado River Basin, including the Uinta Basin. Several aquifers of regional extent are found within these rocks (Freethey and Cordy 1991). Groundwater associated with the Mesa Verde Group is the uppermost of these larger aquifers. Within the Uinta Basin, the saturated thickness associated with this aquifer often well exceeds 2,000 feet, but is buried quite deep (Freethey and Cordy 1991). Regionally, the direction of groundwater movement in this part of the Uinta Basin is toward the north and the White River. Water quality in the Mesa Verde and other regional aquifers ranges from relatively good to briny, with a range of 1,000 to 3,000 mg/L total dissolved solids expected in the aquifer underlying the project area (Price and Miller 1975).

State and federal publications (Price and Miller 1975; Sprinkel 2009) describe the Green River, Wasatch, and Mesa Verde Formations as intermixed strata of sandstone, shale, siltstone, and mudstone, with permeabilities ranging from very low to high. The Green River Formation is generally considered an aquiclude in the southern part of the Colorado River Basin, with low spring and well yields (Price and Miller 1975). In the central and northern parts of the basin, the Birds Nest Aquifer is located in the upper part of the Parachute Creek Member and is recharged from the area of Evacuation Creek to the east where the Birds Nest zone is partly exposed (BLM 2008).

The Utah Geological Survey has compiled information on surface and groundwater quality in the southeastern Uinta Basin in an Open-File Report (Wallace 2012). That report describes water quality and gross geology in selected wells, springs, and drill holes in the basin. In addition, 24 water quality samples from surface water bodies, springs, and wells were collected as part of the study; however, none were in the vicinity of the project area. Supplemental data for the study were provided by oil and gas companies and published sources.

A USGS Water-Resources Investigations report is of particular importance to this analysis (Holmes 1980). This report describes the results of groundwater test holes drilled by the USGS in the southeastern Uinta Basin from 1976 to 1978. The objective of the study was to evaluate the two recognized aquifers in the Green River Formation: the Birds Nest Aquifer in the Parachute Creek Member and the Douglas Creek Aquifer. A total of six wells were drilled; all reportedly penetrated some thickness of the Douglas Creek Member. Two of the six wells were completed in the south-central part of the basin. Test Hole 2 was drilled approximately 5 miles east of the project area on a small tributary of Bitter Creek, and Test Hole 3 was drilled approximately 7 miles to the northwest on Willow Creek. Each well encountered the Douglas Creek Member relatively near the ground surface.

After drilling through the Parachute Creek Member, Test Hole 2 was drilled to a depth of 1,290 feet and penetrated what Holmes (1980) described as intertonguing beds of the Douglas Creek and Wasatch Formations, beginning at a depth of 50 feet. Small quantities of water were encountered near the surface and at a depth of 400 feet. Significant water was encountered at a depth of 740 feet in what was described as the Douglas Creek Member. Discharge rates of up to 200 gpm were encountered as the hole was deepened. Based on geophysical logging, the water is inferred to be derived from sandstones. The well was cased to total depth and was un-cemented. Static water level was measured at 383 feet depth after completion of the well and prior to aquifer testing. The static water level observed indicates that the Douglas Creek Aquifer at this location is confined.

Test Hole 3 was drilled to a depth of 1,092 feet and penetrated alluvium to a depth of 190 feet, where it entered the Douglas Creek Member. After drilling through a 60-foot-thick tongue of the Wasatch Formation, the well bottomed in the Douglas Creek Member. The upper 250 feet of the

hole was cased to eliminate caving. Measured discharge rate was variable and reached a maximum flow rate of 190 gpm at 550 feet. Again, based on geophysical logging, it appeared that sandstone was the dominant lithology in the well. The well was not cased and is open from 250 to 1,092 feet. No aquifer tests were conducted. Static water level was 11 feet bgs after completion, again indicating that the Douglas Creek Aquifer is confined in this area.

The following section discusses regional groundwater conditions and their relationship to TomCo's project area.

### 9.3.2 Project Area Groundwater Investigation

#### 9.3.2.1 Hydrogeology

The geological and hydrogeological study developed for the TomCo site was based on the conceptual site model that was developed for the project area, as discussed in Section 9.2.2. Several other investigations provided background for the development of the conceptual site model. These include the 2010 corehole investigation that was performed in the project area and hydrogeological studies that were performed on the Red Leaf site, which is approximately 10 miles of project area. These studies, which both focused on the same subsurface rock formation—the Parachute Creek Member—as the study performed for the TomCo site, provided critical geologic and hydrogeologic information that was used to develop the conceptual site model and subsequent investigations for the project area in the fall of 2014. Studies performed at the RLR site demonstrated that the sedimentary rocks that make up the Parachute Creek Member—principally, shales, mudstones, and marlstones—did not have sufficient porosity and permeability to contain or transmit significant amounts of groundwater (RLR 2013). In 2010, nine coreholes were drilled across the project area. All cores were drilled well below the B Groove, so they tested important strata above and below the Mahogany Zone, which is the primary ore zone for this project. The cores were entirely void of groundwater, except for three-Coreholes HB-003, HB-008, and HB-009-which had groundwater shows in the Mahogany Zone. Minor sandstone beds, some filled with tar, were also recognized both above and below the Mahogany zone. The vast majority of the cored stratigraphic section comprised shales, mudstones, and marlstones.

From this preliminary work at the TomCo site, and supporting studies at the RLR site, the conceptual site model discussed previously was developed to provide an understanding of site hydrology so that the TomCo mining project may be developed in a manner that protects groundwater and surface water resources. The conceptual site model is characterized by the following key aspects:

 Sedimentary rocks within the Mahogany Zone are made up of primarily shales, siltstones, and marlstones that have very low permeabilities. For the most part, these rocks are incapable of storing and transmitting significant amounts of groundwater. The groundwater quality from these zones is anticipated to also be poor due to the fact that the rock matrices contain hydrocarbons.

- Sandstones, while being a minor part of the entire Mahogany Zone section, may
  have the ability to transmit more significant amounts groundwater. However, the
  sandstones at the TomCo site have limited permeability due to poor sorting or the
  presence of tar or oil; i.e., tar sands.
- The Douglas Creek Member was deposited at a time when deltas were prograding out into the Green River Basin. In some cases, this resulted in fluvial systems that were larger and more numerous than those present during the period of deposition, when sediments from the Parachute Creek Member were deposited. Douglas Creek sandstones resulting from these fluvial processes have the potential to be better sorted, resulting in better porosity and permeability. Thus, the Douglas Creek Member is recognized as an aquifer that must be protected.
- A significant impermeable section beneath the Parachute Creek Member exists and is expected to result in hydraulic separation between the Parachute Creek Member and the Douglas Creek Member.

### Discussion

Three monitoring wells (MW-01, MW-02, and MW-03) were drilled into the Parachute Creek Member. These wells were installed at corehole locations HB-003, HB-008, and HB-009, where there were previous shows of groundwater during coring. One monitoring well, MW-04, was installed in the northeast corner, and cross-gradient of the project area (**Figure 9-1**). This well was drilled to 1,100 feet bgs into the Douglas Creek Member. Packer production tests were performed on all wells. In addition, groundwater samples were also collected to assess water quality. The overall hydraulic gradient for groundwater in the Parachute Creek was 0.032 feet to the north or northwest. The gradient for the Douglas Creek Member could not be measured; however, regionally, the gradient for the Douglas Creek Aquifer is towards the White River, to the north (Holmes and Kimball 1987).

During packer testing, sparse amounts of groundwater were produced from the intermediate monitoring wells. Ten packer tests were performed in the intermediate wells: three in MW-01, four in MW-02, and three in MW-03. In general, insufficient water was produced from any of the tests to indicate that any of the zones had sustainable production. The results of the tests are presented in **Table 9-3**. The specific advantage of packer testing is that a specific interval, in this case a 20-foot interval, can be tested. For instance, a sandstone within the Mahogany Zone beneath the B Groove can be targeted. The packers are inflatable, and they are filled with nitrogen to a pressure that exceeds the hydrostatic head in the borehole. Water is then produced out of the zone, and a specific sustainable production rate will be determined. In particular, this made sense for the tests conducted in the Green River Formation in the project area because a number of sand lenses were observed within the Mahogany Zone and immediately below the B Groove. Specifically, the tests would determine if the sandstone lenses are productive and could be a valuable groundwater resource.

Of the 10 packer tests, five were depth-specific tests, and five were open bore hole. The results of all the tests are summarized below:

- MW-01: No groundwater was produced in either of the two depth-specific packer tests on MW-01. A production rate of 0.48 gpm was obtained in the open hole test. Drawdown was continuous, and the test was terminated at a drawdown of 36.2 feet.
- MW-02: This well was by far the most successful set of packer tests conducted in the intermediate wells, even though both tests appeared unsustainable. One depth-specific test at 175.5 to 191.3 feet bgs (nearly at the total depth of the well) produced water at a rate of 1.33 gpm. The recovery of the zone was very slow, producing an average recharge rate of 0.18 feet per minute. An open well production test was performed in MW-02 about 0.5 hours after the completion of the packer test. The production rate from the open hole test was 0.95 gpm, which is significantly below the production rate for the specific packer test from this well. Drawdown from the open hole production test on MW 02 was extreme, 83.5

feet, suggesting that the productivity zone of the entire well was rapidly decreasing.

• MW-03: Three tests, one packer and two open hole production, were performed on MW-03. The packer test was conducted in sandstone at 165 to 185 feet bgs. It produced water at a rate of 0.51 gpm, with a drawdown of 39.5 feet bgs. Two open borehole tests were then performed approximately two weeks apart. The first test produced at a rate of 0.53 gpm; however, there was absolutely no recovery in the borehole, indicating that the storage of groundwater in the rock formation was very low. In the second test, the rate was actually increased to 0.87 gpm. The drawdown of 77.8 feet was severe.

In summary, the results of these hydraulic tests indicate that the occurrence of groundwater in the Parachute Creek Member is remote and is not sufficiently productive to be classified as an aquifer. This conclusion is strongly supported by the fact that of the nine coreholes drilled across the site in 2010, only three had shows of groundwater. In other words, the corehole work indicated that two-thirds of the coreholes did not contain any groundwater in the Parachute Creek Member. Of the three coreholes that did show groundwater, the subsequent productivity test results were very poor. While the productive zones seem to suggest that there is some permeability to transmit groundwater in the Parachute Creek Member, the rate of production and the excessive drawdown of all the tests indicate that that there is very little groundwater storage in any of these zones. The cores of the Parachute Creek Member do show some fine to medium grained sandstones; however, they are either very poorly sorted (i.e., the rock matrix is sand supported by mud), or they have been impregnated with tar and have become impermeable as a result.

In contrast to the Parachute Creek Member, the Douglas Creek Member provides a groundwater resource that can be classified as an aquifer, as the packer tests indicate. Six tests were attempted on the Douglas Creek Member. Tests that produced significant amounts of groundwater included one open borehole test that was run in the form of a step drawdown test and one packer production test. Four other packer production tests were attempted; all failed to produce groundwater. The step drawdown test was performed over a period of 2 hours on the open

borehole, and the well was pumped near the total depth of the well at progressively increasing production rates of 2, 3, 5, 10, and 20 gpm over the test period (**Table 9-2**). In each step, the static water level stabilized or nearly stabilized. The duration of the last step at 20 gpm was 0.5 hours. The total drawdown of the entire step drawdown test, including the last step, was 30.85 feet. It is likely that this last step would have also stabilized, as the rate of drawdown decreased to 1 foot per 5 minutes before the test was terminated.

A second packer production test was performed in sandstone between 906 and 927 feet bgs. This zone was also productive, yielding groundwater at a rate of up to 10 gpm. The test was conducted for 1 hour. Four other tests were attempted in sandstones with strong Gamma Ray and Spontaneous Potential signatures and density porosities of at least 15 percent. Three of these tests were in shallower zones uphole from the successful test at 906 feet bgs. The tests were conducted at 936 to 957 feet bgs, 846 to 867 feet bgs, 818 to 839 feet bgs, and 776 to 797 feet bgs. Surprisingly, no groundwater was produced in any of these tests. These results are especially unexpected considering that all of these zones looked like they should be at least as productive as the successful test based on the log analysis that was performed using the borehole geophysical log. The likely explanation for this phenomenon is that the non-productive sandstones are actually tar sands and all pore spaces are actually filled with tar. This is a common phenomenon in the upper portion of the Douglas Creek (Vanden Berg 2014). Subjective support for this conclusion is provided by observations made by the driller, who asserted that more significant water production began between 900 and 1,100 bgs, suggesting that the Douglas Creek sandstones were not productive at shallower depths.

The static water level of the Douglas Creek Formation in MW-04 was measured at 720 bgs during the borehole geophysical survey. It is likely that the Douglas Creek Formation is confined or semi-confined in the site area, for two reasons. First, the primary productive zones for the Douglas Creek Formation are below 900 feet. However, water is present at 720 feet, suggesting that the water level rose to that elevation while drilling through the section in the lower part of the borehole. Second, there are substantial shale and marlstone sections in the lower portion of the Parachute Creek Member and upper Douglas Creek Member. These intervals are present at 338 to 400 feet bgs, 420 to 508 feet bgs, 522 to 568 feet bgs, and 602 to 662 feet bgs. This results in 256 feet of impermeable strata between the Mahogany Zone and the top of the Douglas Creek

Member. Based on the results of the packer testing, there is likely another 300 feet of low permeability strata at the top of the Douglas Creek Member prior to the productive sands being encountered below 900 feet. In conclusion, a great length of low permeability section exists between the Douglas Creek Member and the Mahogany Zone. This length of section isolates the Douglas Creek Aquifer from any occurrences of groundwater in the Mahogany Zone. They are two separate hydrological systems.

**Table 9-3** Packer Test Summary

|          |                  | i icst Suiii | inter j |                    |             |                       |                       |                                                |
|----------|------------------|--------------|---------|--------------------|-------------|-----------------------|-----------------------|------------------------------------------------|
| Location | Test No.         | Date         | Time    | Depth<br>to GW     | Test Depth  | Rate                  | Feet<br>Draw-<br>down | Comments                                       |
| MW-01    | PT-01            | 9/20/2013    | 15:30   | 158.5              | 67.5–82.5   | No water produced     |                       |                                                |
| MW-01    | PT-02            | 9/21/2013    | 10:40   | 157.2              | 172.5–188.5 | No water produced     |                       |                                                |
| MW-01    | Open<br>borehole | 10/5/2013    | 12:34   | 162.5              | 199.2ª      | 0.48 gpm <sup>b</sup> | 36.2                  | No measurable recharge                         |
| MW-02    | PT-04            | 9/23/2013    | 11:30   | 93.8               | 175.5-191.3 | 0.72 gpm <sup>b</sup> | 68.0                  |                                                |
| MW-02    | Open<br>borehole | 9/23/2013    | 14:01   | 106.1              | 161.8ª      | 0.27 gpm <sup>b</sup> | 4.0                   | Unstable<br>recharge<br>observed post-<br>test |
| MW-02    | PT-11            | 10/7/2013    | 8:40    | 77.3               | 165–186     | 1.33 gpm              |                       | Recharge 0.18<br>ft/min                        |
| MW-02    | Open<br>borehole | 10/7/2013    | 12:58   | 114.3              | 195°        | 0.95 gpm              | 83.5                  | Recharge 0.69<br>ft/min                        |
| MW-03    | PT-03            | 9/21/2013    | 16:25   | 123.0              | 175.5-191.3 | 0.51 gpm <sup>b</sup> | 39.5                  |                                                |
| MW-03    | Open<br>borehole | 9/22/2013    | 8:50    | 147.7              | 162.5ª      | 0.53 gpm <sup>b</sup> | 14.1                  | No measurable recharge.                        |
| MW-03    | Open<br>borehole | 10/6/2013    | 10:40   | 121.2              | 194.2ª      | 0.87 gpm <sup>b</sup> | 77.8                  | Recharge<br>0.0625 ft/min                      |
| MW-04    | Open<br>borehole | 10/2/2013    | 10:49   | 741.4 <sup>c</sup> | 1090ª       | 2.0 gpm               | 1.85                  | Stepdown test                                  |
| MW-04    | Open<br>borehole | 10/2/2013    | 11:25   | 747.1              | 1090ª       | 3.0 gpm               | 7.9                   | Stepdown test                                  |
| MW-04    | Open<br>borehole | 10/2/2013    | 11:58   | 757.6              | 1090ª       | 5.26 gpm              | 5.3                   | Stepdown test                                  |
| MW-04    | Open<br>borehole | 10/2/2013    | 12:33   | 769.0<br>5         | 1090ª       | 9.52 gpm              | 10.05                 | Stepdown test                                  |
| MW-04    | Open<br>borehole | 10/2/2013    | 13:16   | 793.3              | 1090ª       | 20 gpm                | 30.85                 |                                                |
| MW-04    | PT-05            | 10/2/2013    | 15:25   | 748.5              | 906–927     | 10 gpm                |                       |                                                |

Table 9-3 Packer Test Summary

| Location | Test No. | Date      | Time  | Depth<br>to GW | Test Depth | Rate              | Feet<br>Draw-<br>down | Comments |
|----------|----------|-----------|-------|----------------|------------|-------------------|-----------------------|----------|
| MW-04    | PT-06    | 10/3/2013 | 8:28  | 714.9          | 818–839    | No water produced |                       |          |
| MW-04    | PT-07    | 10/3/2013 | 9:57  | 723.3          | 846–867    | No water produced |                       |          |
| MW-04    | PT-08    | 10/3/2013 | 11:24 | 723.3          | 776–797    | No water produced |                       |          |
| MW-04    | PT-09    | 10/3/2013 | 13:00 | 724.4          | 936–957    | No water produced |                       |          |

#### Notes:

- For open borehole production tests the test depth is the depth to the inlet point on the submersible pump.
- b The rate never stabilized as a sustainable yield was not produced. Rate shown is an average pumping rate for the duration of the test.
- c Reflects initial static water level after pumping rate stabilized. Pre-test static water level was 712 feet bgs.

#### Key:

bgs below ground surface ft/min feet per minute gpm gallons per minute GW groundwater

# 9.3.2.2 2014 Intermediate Depth Wells Stress Tests

To further characterize well drawdown and recharge in the proposed mining horizon, TomCo conducted three single well aquifer stress tests. These tests were conducted as simple pump and recovery tests on the three intermediate monitoring wells (200 feet bgs) installed in October 2013, with the objective to collect estimates of:

- 1. Total volume pumped (volume)
- 2. Well drawdown (length, feet)
- 3. Sustainable pump rate(s) (volume/time)
- 4. Rate of recovery (residual drawdown vs. time)

The workplan for these tests was predicated upon the ability of each well to sustain a constant pump rate at a quasi-stable value of drawdown. In practice however, identification of sustainable pump rates was complicated by the depth to water and the ability of the equipment to sustain constant rates at such depths. Therefore, each well was pumped at whatever rate the pump could

sustain for as long as measurable drawdown was available or until the pump could not overcome the pressure differential at some increased value of drawdown.

Water level measurements obtained 12 days after initial well development in 2013 are presented in **Table 9-4** and compared to measurements made during October 2014, approximately one year later. As shown in **Table 9-4Error! Reference source not found.**, each well registered some amount of water level change after October 2013, probably reflecting the process of the well coming into equilibrium with the ambient head of the screened interval. The October 2014 water levels are therefore considered the best available representation of ambient conditions for the water-bearing zone in contact with the screen in each well.

Table 9-4 Water Level Measurements, 2013 versus 2014

| Monitoring Well | Depth to water, October 2013 (ft bgs) <sup>a</sup> | Depth to water,<br>October 2014<br>(ft bgs) | Water Level Change<br>(feet) |
|-----------------|----------------------------------------------------|---------------------------------------------|------------------------------|
| <u>MW-01</u>    | <u>175.3</u>                                       | <u>173.69</u>                               | <u>+1.61</u>                 |
| <u>MW-02</u>    | <u>180.3</u>                                       | <u>181.85</u>                               | <u>-1.55</u>                 |
| MW-03           | 180.7                                              | <u>190.03</u>                               | <u>-9.33</u>                 |

Notes:

a. Water levels measured on 10/22/2103, 12 days after initial development was completed in each well.

Key:

ft bgs feet below ground surface

Each well was instrumented and tested over a two-day period, which included pump and transducer installation, overnight trend measurement, and pumping followed by at least a week of recovery. **Table 9-5** summarizes pertinent dates, times, durations and selected data associated with each test.

<u>Table 9-5</u> <u>Summary of Instrumentation Times, Test durations, Drawdown, and Recovery</u>

| WELL ID      | Pump<br>Installed   | Test Start           | Duration of Pumping (minutes) | Maximum<br>Drawdown<br>(feet) | Volume<br>Pumped<br>(gallons) | Recovery Duration (days) | Residual<br>Drawdown<br>(feet) |
|--------------|---------------------|----------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------|--------------------------------|
| <u>MW-01</u> | 1100 on<br>11/6/14  | 1105 on<br>11/7/2014 | 33.0                          | <u>10.7</u>                   | <u>5.76</u>                   | <u>7.9</u>               | 0.82                           |
| MW-02        | 1400 on<br>10/22/14 | 0930 on<br>10/23/14  | <u>78.24</u>                  | 11.42                         | 6.8                           | <u>8.1</u>               | 9.24                           |
| <u>MW-03</u> | 1530 on<br>10/22/14 | 12:52 on<br>10/23/14 | <u>8.1</u>                    | <u>7.41</u>                   | <u>3.14</u>                   | <u>8</u>                 | <u>1.16</u>                    |

Three 1.75-inch diameter Geotech GeoSub<sup>TM</sup> stainless steel submersible pumps were specified for the testing in the monitoring wells. The transducer selected for testing was an In-Situ Troll 700TM, with a 30-pouns per square inch (psi) (69-foot) rating, which records pressure in psi, temperature in Celsius, and either depth below water level, or depth to water from a measurement point. In all cases, the transducer was set up to record depth to water below the top of the 2-inch PVC casing. The target depth for the bottom of the Geotech GeoSubTM stainless steel submersible pump was approximately equal to the bottom of the screen.

Depth to water was determined manually upon arriving at the site using an In-Situ Rugged 200TM electronic water level tape, referenced to the top of the 2-inch PVC well casing. Once depth to water was determined, the height of the static water column was calculated by subtracting the depth to water below ground surface (bgs) from the total depth of the well bgs.

After the instrumentation was installed in each well, the displaced volume of water was calculated. The corresponding increase in water level in the well was determined by dividing the displacement volume by the volume per foot for 2-inch casing (0.163 gallons per foot).

At the time the pump initialization phase was completed and the pumping began, the transducer log was started simultaneously with a stopwatch to record splits for discharge measurements. Discharge was calculated between time splits measured for 1 gallon of water captured in a graduated bucket. This resulted in average discharge values for the time split rather than instantaneous discharge measurements, which could have only been achieved through the use of

a high precision low-flow meter, which was not available. Because it was known from observation that discharge decreased over time, discharge estimates were made and added to the log to augment the average discharge measurements during the data reduction to better fit the analytical models used in curve-fitting procedure.

Pumping periods for each well were analyzed by the method of Moench (1997) as implemented by the Aqtesolv<sup>TM</sup> well hydraulics analytical software program (Duffield 2007). Recovery periods were analyzed by the residual drawdown method derived from the Theis (1935) non-equilibrium equation as presented by Driscoll (1986). Analytical methods are described in greater detail in **Appendix K**, as are detailed pumping descriptions for each well.

### **MW-01 Test Summary**

Two tests were attempted in MW-01 on November 7 2014. The first test was aborted due to poor pump performance (the pump failed to bring groundwater to the surface). The second test was completed successfully. A summary of settings and average discharge measurements made per gallon pumped is presented in **Table 9-6**. As noted in the table, water being pumped from the well was discolored, contained suspended fines, and had a hydrocarbon odor.

Table 9-6 MW-01 Pump Setting and Discharge Measurements

| Time After Pumping Began (minutes) | Pumping<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge Measurement Start (mm:ss) | Duration<br>(minutes) | Calculated Average Discharge (gpm) <sup>a</sup> | Comment                                                                          |
|------------------------------------|--------------------|----------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------------|
| <u>0</u>                           | <u>225</u>         | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>             | <u>NA</u>                                       | Pump started.                                                                    |
| <u>1</u>                           | <u>240</u>         | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>             | <u>NA</u>                                       | Power increase successful.                                                       |
| 1.33                               | 240                | 1:20                                         | <u>5:30</u>                         | 4.17                  | 0.24                                            | Water flowing at top of casing light grey with suspended fines. 1 gallon pumped. |
| <u>5.5</u>                         | <u>240</u>         | <u>5:30</u>                                  | <u>10:00</u>                        | <u>4.5</u>            | 0.22                                            | Total 2 gallons pumped.                                                          |
| <u>10.33</u>                       | <u>240</u>         | <u>10:20</u>                                 | <u>17:31</u>                        | <u>7.18</u>           | 0.14                                            | Total 3 gallons pumped.                                                          |
| <u>17.52</u>                       | <u>240</u>         | <u>17:31</u>                                 | <u>27:00</u>                        | 9.48                  | <u>0.11</u>                                     | Total 4 gallons pumped.                                                          |
| <u>25:33</u>                       | <u>247</u>         | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>             | <u>NA</u>                                       | Power increase successful.                                                       |

Table 9-6 MW-01 Pump Setting and Discharge Measurements

| Time After Pumping Began (minutes) | Pumping<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge Measurement Start (mm:ss) | <u>Duration</u><br>(minutes) | Calculated Average Discharge (gpm) <sup>a</sup> | Comment                                                                            |
|------------------------------------|--------------------|----------------------------------------------|-------------------------------------|------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|
| <u>27</u>                          | <u>247</u>         | 27:00                                        | 31:00                               | <u>4</u>                     | 0.19                                            | 0.75 gallons produced in this time interval. Cumulative total 4.75 gallons pumped. |
| <u>31</u>                          | <u>247</u>         | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>                    | <u>NA</u>                                       | Water stopped flowing.                                                             |
| <u>31.5</u>                        | <u>255</u>         | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>                    | <u>NA</u>                                       | Power increase successful. No flow.                                                |
| <u>33.4</u>                        | <u>0</u>           | <u>NA</u>                                    | <u>NA</u>                           | <u>NA</u>                    | <u>NA</u>                                       | Pump shut down.                                                                    |

**Notes** 

a. Average rate for the entire time of pumping 0.19 gpm calculated from time pumping started to when water stopped flowing, and considering the volume of the discharge tubing (1.01 gallons).

Key:

 ft botc
 feet below top of casing

 gpm
 gallons per minute

 mm:ss
 minutes:seconds

NA not applicable

The recovery period was observed for approximately one hour before securing the well with the down-hole equipment intact and the transducer continuing to log the recovering water level. The MW-01 site was revisited after 7.9 days and the logging terminated, followed by removal of the test equipment.

The results from the testing conducted in MW-01 are presented in **Table 9-7**, **Figure 9-7**, and **Figure 9-8**. The average pumping rate for the total pumping time was 0.19 gpm.

**Table 9-7 Summary of Results from MW-01** 

|   | <u>Analysis</u> | Discharge<br>Rate<br>(gpm) <sup>a</sup> | Volume<br>Pumped<br>(gallons) | Duration of<br>Test Period <sup>b</sup> | Maximum Drawdown or Recovery (feet) | Estimated<br>Transmissivity<br>(ft²/day) | Estimated Hydraulic Conductivity (ft/day) |
|---|-----------------|-----------------------------------------|-------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------------|
| l | <u>Moench</u>   | <u>Variable</u>                         | <u>5.76</u>                   | 31 minutes                              | <u>10.7</u>                         | <u>6E-03</u>                             | <u>2E-04</u>                              |
| l | Theis Recovery  | 0.19                                    | =                             | 7.9 days                                | 9.88                                | <u>37</u>                                | <u>1.5</u>                                |

Notes:

a. Average rate for the entire time of pumping is 0.19 gpm calculated from time pumping started to when water stopped flowing, and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.01 gallons)

b. Pump was shut off after 33 minutes, but water stopped flowing at 31 minutes.

Key:

ft/day feet per day ft²/day square feet per day gpm gallons per minute

A chart of drawdown in MW-01 computed for the period of record starting from when pumping began until the transducer was removed from the well is presented in **Figure 9-7**. Of note, despite being allowed to recharge for almost eight days, observed water levels did not fully recover and failed to reach pre-test levels.

Figure 9-8 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery in MW-01. Note that water level increased by 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing. Figure 9-8 shows a standard water level response indicative of water contributed from the water bearing zone with a minimal amount of influence from casing storage. A flexure is apparent at about 60 minutes (about 25 minutes after pumping began), which reflects the increase in pump rate when the power setting was increased to 247.

The groundwater temperature response in MW-01 was somewhat different than the other wells. In the case of MW-01, the temperature displayed a relatively significant decrease in temperature as groundwater at ambient temperatures was initially drawn into the well screen. Only when drawdown decreased the amount of water in the well and the decrease in pumping rate slowed the intake of groundwater into the screen did the temperature begin to increase. After the

cessation of pumping, the temperature spiked, reflecting the heat transferred to the relatively static column of water left in the well.

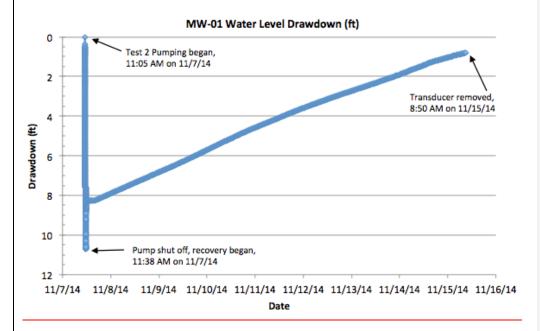



Figure 9-7 MW-01 Drawdown Computed for Pumping and Recovery Period of Record

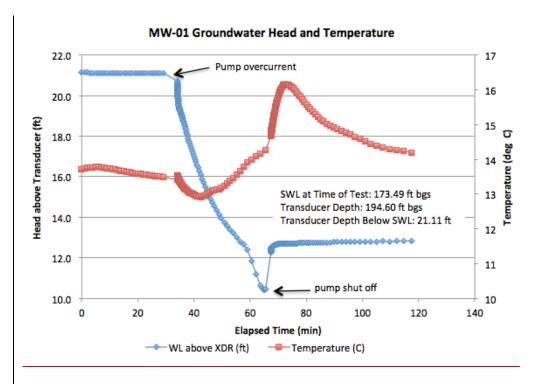



Figure 9-8 MW-01 Drawdown and Initial Recovery with Groundwater Temperature

# **MW-02 Test Summary**

The aquifer test for MW-02 occurred on October 23, 2014. A summary of pump settings and average discharge measurements made per gallon pumped is presented in **Table 9-8**. As noted in the table, water being pumped from the well was grey, silty, and had a hydrocarbon odor. The water cleared somewhat as the pumping test progressed.

Table 9-8 MW-02 Pump Setting and Discharge Measurements

| Time Since Pumping Began (minutes) | Pump<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated Average discharge (gpm) | <u>Comment</u>                 |
|------------------------------------|-----------------|----------------------------------------------|--------------------------------------------|-----------------------|------------------------------------|--------------------------------|
| <u>0</u>                           | <u>100</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water.                      |
| <u>10</u>                          | <u>125</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| <u>20</u>                          | <u>150</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| <u>25</u>                          | <u>175</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| <u>30</u>                          | 200             | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| <u>35</u>                          | <u>225</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| <u>40.16</u>                       | <u>255</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | No water, pump rate increase.  |
| 40.8                               | <u>255</u>      | <u>40:58</u>                                 | 44:13                                      | <u>3.25</u>           | <u>0.31</u>                        | Grey, silty; hydrocarbon odor. |
| <u>44.1</u>                        | <u>255</u>      | <u>44:13</u>                                 | <u>48:19</u>                               | <u>4.1</u>            | <u>0.25</u>                        | <u>Same</u>                    |
| 48.2                               | <u>255</u>      | 48.19                                        | <u>53:25</u>                               | <u>5.1</u>            | 0.2                                | <u>Same</u>                    |
| 60.23                              | <u>255</u>      | <u>60:23</u>                                 | <u>70:19</u>                               | <u>9.93</u>           | <u>0.1</u>                         | Water clearing.                |
| <u>75.24</u>                       | <u>255</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | Down-hole water level up.      |
| <u>77.23</u>                       | <u>255</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>NA</u>                          | Air in tubing. No flow.        |
| <u>78.24</u>                       | <u>0</u>        | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>             | <u>0</u>                           | Pump shut down.                |

#### Notes:

a. Average rate for the entire time of pumping 0.09 gpm considering the total volume pumped over the entire duration from pump start to absence of flow (77.5). This includes the volume of the discharge tubing, which filled to top if casing in the first minute of pumping (1.05 gallons). If the duration of pumping is assumed to be equal to when the pumping setting was set to the maximum value to when flow stopped (37.1 minutes), average discharge is 0.18 gpm.

b. A small amount of water may have been drawn into the tubing while pump failed to flow water.

Key:

gpm gallons per minute

mm:ss minutes:seconds
NA not applicable

The recovery period for MW-02 began 78.23 minutes after pumping initially began. Similar to what was observed in the other wells, the water level increased by about 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing. The recovery period was observed for approximately one hour before securing the well with the down-hole equipment intact and the transducer continuing to log the recovering water level. The

MW-02 site was revisited after eight days and the logging terminated followed by removal of the test equipment.

The results from the testing conducted in MW-02 are summarized in **Table 9-9, Figure 9-9,** and **Figure 9-10**. Two values for average rate were calculated. One was based on the total volume pumped from the well divided by the total time of pumping until no flow, yielding an average rate of 0.09 gpm for the pumping period. The second value was calculated assuming a total pumping duration represented by the time at which the pump setting was set to the maximum value of 255 to when water stopped flowing at top of casing (37 minutes), yielding an average rate of 0.18 gpm.

Table 9-9 Summary of Results from MW-02

|   | Analysis       | Discharge<br>Rate<br>(gpm) | Volume<br>Pumped<br>(gallons) | Duration of<br>Test Period | Maximum<br>Drawdown<br>or Recovery<br>(feet) | Estimated<br>Transmissivity<br>(ft²/day) | Estimated Hydraulic Conductivity (ft/day) |
|---|----------------|----------------------------|-------------------------------|----------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|
|   | <u>Moench</u>  | <u>Variable</u>            | <u>6.8</u>                    | 77.2 minutes               | <u>11.59</u>                                 | <u>1E-01</u>                             | <u>7E-04</u>                              |
| ١ | Theis Recovery | 0.09                       | Н                             | <u>8.1 days</u>            | <u>2.35</u>                                  | <u>1.2</u>                               | <u>7E-02</u>                              |
|   | Theis Recovery | 0.18                       | Н                             | <u>8.1 days</u>            | <u>2.35</u>                                  | <u>2.6</u>                               | <u>2E-01</u>                              |

Notes:

a. Average discharge rate of 0.09 gpm is calculated by assuming the duration is represented by the time pumping initially started to when water stopped flowing at top of casing (77.5 minutes), and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.05 gallons).

b. Average discharge rate 0.18 gpm is calculated by assuming the duration is represented by the time at which the pump setting was set to the to the maximum value of 255 to when water stopped flowing at top of casing (37 minutes), and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.05 gallons).

Key:

ft/day feet per day ft²/day square feet per day

gpm gallons per minute

The values of transmissivity obtained from the Theis recovery analysis are several orders of magnitude higher than the Moench analysis conducted in Aqtesolv<sup>TM</sup>. It is also clear that the values are affected by the average discharge rate selected for input into the recovery analysis equation, with larger values of average discharge yielding higher values of transmissivity. Because of the subjectivity involved in selecting the appropriate portion of the curve to analyze, and the range in average discharge values, the transmissivity estimate obtained from the recovery

analysis should receive much less weight. The value of 1.2 square feet per day (ft²/day) (**Table** 9-9) should be regarded as the absolute upper end for transmissivity, and the estimate obtained from Agtesolv<sup>TM</sup> as a more appropriate value.

A chart of drawdown in MW-02 computed for the period of record starting from when pumping began until the transducer was removed from the well is presented in **Figure 9-9**. Of note and as seen in the other two wells tested, MW-02 exhibited poor recovery over the test period, and water levels failed to reach those measured before testing began.

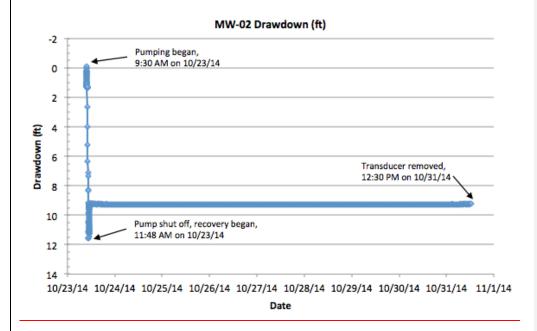



Figure 9-9 MW-02 Drawdown Computed for Pumping and Recovery Period of Record

Figure 9-10 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery. This figure shows the water level response to the 40-minute period of insufficient pump rates and the corresponding rise in water level temperature as the operation of the pump heated the stagnant water column. After flow is achieved at approximately 40.8 minutes, the water level begins to drop at a rate of about 0.6 feet per minute.

The down-hole water temperature then decreases as groundwater at ambient temperatures is drawn into the well screen. As the pump nears its capacity to lift, the water temperature begins to increase again as less water is drawn into the well.

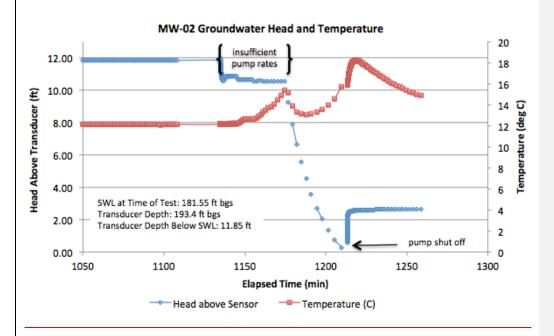



Figure 9-10 MW-02 Drawdown and Initial Recovery with Groundwater Temperature

### **MW-03 Test Summary**

The aquifer test for MW-03 occurred on October 23, 2014. A summary of pump settings and average discharge measurements made per gallon pumped is presented in **Table 9-10.** As noted in the table, water being pumped from the well was discolored, silty, and had a hydrocarbon odor. As the pumping test progressed, water discharging from the well alternated between clear and dark.

Table 9-10 MW-03 Pump Setting and Discharge Measurements

| Time Since Pumping Began (minutes) | Pump<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | <u>Duration</u><br>(minutes) | Calculated Average Discharge (gpm)a | Comment                           |
|------------------------------------|-----------------|----------------------------------------------|--------------------------------------------|------------------------------|-------------------------------------|-----------------------------------|
| <u>-4</u>                          | <u>255</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>                    | <u>NA</u>                           | Overcurrent shutdown <sup>b</sup> |
| <u>-2</u>                          | <u>235</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>                    | <u>NA</u>                           | Overcurrent shutdown <sup>b</sup> |
| <u>0</u>                           | <u>225</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>                    | <u>NA</u>                           | Pump started                      |
| 1.02                               | <u>225</u>      | <u>1:01</u>                                  | <u>4:04</u>                                | <u>3.05</u>                  | 0.33                                | Grey, silty hydrocarbon<br>odor   |
| <u>4.07</u>                        | <u>225</u>      | <u>4:04</u>                                  | <u>7:02</u>                                | <u>2.97</u>                  | <u>0.34</u>                         | Alternating clear and dark        |
| <u>7.56</u>                        | <u>225</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>                    | <u>NA</u>                           | <u>0.091 psi</u>                  |
| <u>8.1</u>                         | <u>255</u>      | <u>NA</u>                                    | <u>NA</u>                                  | <u>NA</u>                    | <u>NA</u>                           | Pump off                          |

#### Notes:

a. Average rate for the entire time of pumping 0.39 gpm considering the total volume pumped, including the volume of the discharge tubing, which filled to top if casing in the first minute of pumping (1.1 gallons).

b. A small amount of water may have been drawn into the tubing and subsequently released each time the pump was started and stopped due to current overload.

Key:

gpm gallons per minute mm:ss minutes:seconds NA not applicable Psi pounds per square inch

The recovery period for MW-03 began 8.1 minutes after pumping began. Similar to what was observed in the other wells, the water level increased by about 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing. The recovery period was observed for approximately one hour before securing the wellhead with the downhole equipment intact and the transducer continuing to log the recovering water level. The MW-03 site was revisited after eight days and the logging terminated followed by removal of the test equipment.

The results from the testing conducted in MW-03 are summarized in **Table 9-11**, **Figure 9-11**, and **Figure 9-12**. The average pumping rate for the total pumping time was 0.39 gpm.

**Table 1-11 Summary of Results from MW-03** 

| <u>Analysis</u> | Discharge<br>Rate<br>(gpm)a | Volume Pumped (gallons) | Duration of<br>Test Period | Maximum Drawdown or Recovery (feet) | Estimated<br>Transmissivity<br>(ft²/day) | Estimated Hydraulic Conductivity (ft/day) |
|-----------------|-----------------------------|-------------------------|----------------------------|-------------------------------------|------------------------------------------|-------------------------------------------|
| <u>Moench</u>   | 0.39                        | <u>3.14</u>             | 8.1 minutes                | <u>7.41</u>                         | <u>6E-02</u>                             | <u>7E-03</u>                              |
| Theis Recovery  | 0.39                        | ==                      | 8 days                     | <u>6.25</u>                         | 4.3                                      | <u>0.52</u>                               |

Notes:

a. Average rate for the entire time of pumping is 0.39 gpm calculated from time pumping started to when water stopped flowing, and considering the calculated volume of the discharge tubing that filled with water before water appeared at land surface (1.1 gallons).

Key:

ft/day feet per day ft²/day square feet per day gpm gallons per minute

A chart of drawdown in MW-03 computed for the period of record starting from when pumping began until the transducer was removed from the well is presented in **Figure 9-11**. While MW-03 exhibited an increased rate of recovery compared to MW-01 and MW-02, recovery was poor overall, failing to reach pretest water levels even after eight days of recharge.

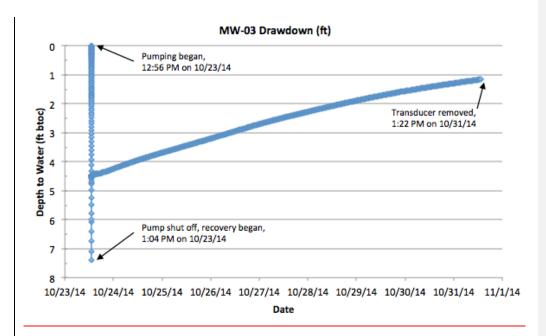



Figure 9-11 MW-03 Drawdown Computed for Pumping and Recovery Period of Record

Figure 9-12 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery in MW-03. This figure shows a steady drop in water level in response to a fairly constant pump rate over a short period of time. A small temperature increase is noted, likely due to the initial attempts at pumping that resulted in overcurrent condition. After flow is achieved, the temperature drops slightly as groundwater at ambient temperatures is drawn into the well screen.

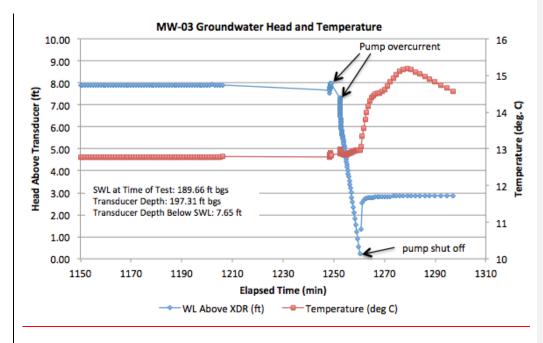



Figure 9-12 MW-03 Drawdown and Initial Recovery with Groundwater Temperature

# **Discussion**

As noted in the summaries above, water pumped from the wells was discolored and silty (**Figure 9-13**). Water pumped from the wells also had a hydrocarbon odor. These same conditions were noted when the wells were initially developed in 2013.



<u>Figure 9-13 View into Graduated Bucket Containing Black Discharge Water from MW-03</u>

Measured depths to water obtained in October 2013 and a year later in October 2014, maximum water level drawdown during pumping, cumulative gallons pumped and best engineering estimates of hydraulic properties are presented in **Table 9-12**. Despite each well being allowed to recharge for more than a week, none of the three wells recovered fully; all three had water levels at the end of the observation period that were lower than pretest levels. Likewise, the lack of significant head in each well suggests that substantial water bearing zones are not present beneath the TomCo site. This conclusion is also supported by the diminished capacity of each well to transmit appreciable amounts of groundwater when pumped at low rates (generally 0.1 to 0.34 gpm). Specific capacities ranged from a low of 0.02 gallons per minute per foot to a high of 0.05 gallons per minute per foot, which reflects the efficiency of the well and suggests that the well screens are in contact with material of low permeability, or are affected by well skin (clogged pores in the rock wall of the well).

Table 9-12 Summary of TomCo Monitoring Well Test Observations

| WELL | <u>ID</u> | October 2013 DTW (ft bgs) | October 2014 DTW (ft bgs) | Water Level Decrease (foot) | Maximum<br>Drawdown<br>(foot) | Volume<br>Pumped<br>(gallons) | BEE Specific Capacity (gpm/ft) | BEE T<br>(ft²/day) | BEE K<br>(ft/day) |
|------|-----------|---------------------------|---------------------------|-----------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------|-------------------|
| MW-  | 01        | <u>175.3</u>              | <u>173.69</u>             | <u>+1.61</u>                | <u>10.7</u>                   | <u>5.76</u>                   | 0.02                           | <u>6E-03</u>       | 2E-04             |
| MW-  | <u>02</u> | <u>180.3</u>              | <u>181.85</u>             | <u>-1.55</u>                | <u>11.42</u>                  | <u>6.85</u>                   | 0.02                           | <u>1E-02</u>       | <u>7E-04</u>      |
| MW-  | <u>03</u> | <u>180.7</u>              | <u>190.03</u>             | <u>-9.33</u>                | <u>7.41</u>                   | <u>3.14</u>                   | 0.05                           | <u>6E-02</u>       | <u>7E-03</u>      |

Notes:

a. In all cases, value obtained from the Moench (1997) analysis.

Key:

BEE best engineering estimate

DTW depth to water

ft bgs feet below ground surface

ft/day feet per day

ft<sup>2</sup>/day square feet per day

gpm/ft gallons per minute per foot

K Hydraulic Conductivity

Transmissivity

An evaluation of the data included the use of analytic models to estimate values for transmissivity, for which best estimates ranged from 6x10<sup>-3</sup> ft<sup>2</sup>/day to 6x10<sup>-2</sup> ft<sup>2</sup>/day, assuming unconfined conditions under the Moench (1997) model. Estimates of transmissivity obtained using the Theis (1935) residual recovery method as described by Driscoll (1986) were up to several orders of magnitude larger, underscoring the limitations of that method under non-confined conditions, casing storage effects, and boundary influences resulting in non-infinite acting aquifer conditions, and non-radial flow.

By the assumption that the wetted screen length represented the thickness of the zone thought to have potential to bear water, estimates of hydraulic conductivities ranged from a low of  $2x10^{-4}$  feet per day to a high of  $7x10^{-3}$  feet per day. These values are consistent with published values representative of silt, clayey sand, or silty sand (Halford and Kuniansky 2002; Fetter 1994).

The testing and analysis presented herein indicates that while minor water-bearing zones may be present in the sub-surface in the vicinity of the TomCo project site, these by definition cannot be

classified as aquifers due to the low yield, and apparent limited lateral and vertical extent of the water-bearing zones in contact with the screened intervals of TomCo MW-01, 02, and 03.

# 9.3.2.3. Water Quality

Water samples were collected from monitoring wells approximately one week after their completion. Collected samples were analyzed for bulk parameters, major cations and anions, metals, and selected organic constituents. Samples were maintained under chain-of-custody delivery to TestAmerica. The laboratory analytical reports are provided in **Appendix E**. In addition, samples from MW-04 were collected for analyses of stable and radioisotopes of carbon in order to estimate the age of water from the Douglas Creek Aquifer at TomCo's project area.

Monitoring well water quality for wells screened in the Parachute Creek Member (MW-01, MW-02, and MW-03) was poor compared to MW-04, the deeper well screened in the Douglas Creek Aquifer. A comparison of parameter concentrations between the shallower wells and the deep well shows a number of distinct differences and supports geologic studies indicating that there is no hydrologic communication between these two zones. Groundwater from the shallower monitoring wells had foul odors of sulfur and petroleum and exceeded a number of Utah Groundwater Quality standards (**Table 9-13**). Conversely, MW-04 had relatively low total dissolved solids, and there were no parameters exceeding Utah Groundwater Quality Standards. Additionally, there were a number of parameters sampled for which there are no Utah Standards, but that in some cases differed by an order of magnitude between the deep and shallower wells (e.g., cobalt, nickel, benzene, and others). Based on analyses of monitor well samples from this study, groundwater from the Parachute Creek Member at the TomCo project area would be classified as Limited Use (Class III), while groundwater from the Douglas Creek Aquifer would be classified as Drinking Water Quality (Class II).

Deleted: ¶
¶
Deleted: 2

Deleted: 4

Table 9-13. Utah Groundwater Quality Standards and Analytical Results from TomCo Monitor Wells

| Monitor Well     | s                                         |                   |                    | -                  |                   |
|------------------|-------------------------------------------|-------------------|--------------------|--------------------|-------------------|
| Parameter        | DWQ<br>Groundwater<br>Quality<br>Standard | MW-01             | MW-02              | MW-03              | MW-04             |
| Metals (dissolv  | ed; μg/L)                                 |                   |                    | •                  | •                 |
| Antimony         | 6                                         | 14                | 8.1                | 4.6                | 5                 |
| Arsenic          | 50                                        | 87                | 19                 | 26                 | 11                |
| Barium           | 2,000                                     | 150               | 120                | 220                | 12                |
| Beryllium        | 4                                         | 0.1ª              | 0.08 <sup>b</sup>  | 0.08 <sup>b</sup>  | 0.08 <sup>b</sup> |
| Cadmium          | 5                                         | 0.21 <sup>a</sup> | 0.1 <sup>b</sup>   | 0.1 <sup>b</sup>   | 0.1 <sup>b</sup>  |
| Chromium         | NA                                        | 0.59 <sup>a</sup> | 0.5 <sup>b</sup>   | 9.7                | 0.5 <sup>b</sup>  |
| Cobalt           | NA                                        | 0.91 <sup>a</sup> | 3.1                | 1                  | 0.05 <sup>b</sup> |
| Copper           | 1,300                                     | 0.56 <sup>b</sup> | 14                 | 0.56 <sup>b</sup>  | 0.56 <sup>b</sup> |
| Lead             | 15                                        | 0.18 <sup>b</sup> | 0.18 <sup>b</sup>  | 0.18 <sup>b</sup>  | 0.18 <sup>b</sup> |
| Manganese        | NA                                        | 200               | 36                 | 290                | 7.9               |
| Nickel           | NA                                        | 11                | 59                 | 16                 | 0.51              |
| Selenium         | 50                                        | 0.81 <sup>a</sup> | 5.8                | 3.3ª               | 0.7 <sup>b</sup>  |
| Silver           | 1,000                                     | 0.092°            | 0.033ª             | 0.033 <sup>a</sup> | 0.033ª            |
| Thallium         | 2                                         | 0.14 <sup>a</sup> | 0.057 <sup>a</sup> | 0.05 <sup>b</sup>  | 0.05 <sup>b</sup> |
| Vanadium         | NA                                        | 5                 | 5.9                | 4.1 <sup>a</sup>   | 0.5 <sup>b</sup>  |
| Zinc             | 5,000                                     | 6.9ª              | 17                 | 2.5ª               | 4.5ª              |
| Metals (total; μ | ıg/L)                                     | •                 |                    | _                  |                   |
| Antimony         | NA                                        | 14                | 5.1 <sup>a</sup>   | 4.5 <sup>a</sup>   | 5.7 <sup>a</sup>  |
| Arsenic          | NA                                        | 93                | 73                 | 37                 | 15                |
| Barium           | NA                                        | 790               | 740                | 480                | 14                |
| Beryllium        | NA                                        | 2.7               | 3.8                | 0.91 <sup>a</sup>  | 0.08 <sup>b</sup> |
| Cadmium          | NA                                        | 1.4               | 0.77 <sup>a</sup>  | 0.34 <sup>a</sup>  | 0.1 <sup>b</sup>  |
| Chromium         | 100                                       | 230               | 38                 | 140                | 0.66 <sup>b</sup> |
| Cobalt           | NA                                        | 23                | 32                 | 14                 | 0.23 <sup>a</sup> |
| Copper           | NA                                        | 65                | 93                 | 22                 | 2.4 <sup>b</sup>  |
| Lead             | NA                                        | 47                | 38                 | 15                 | 0.89 <sup>b</sup> |
| Manganese        | NA                                        | 1300              | 1600               | 740                | 17                |
| Nickel           | NA                                        | 180               | 100                | 100                | 2.2 <sup>b</sup>  |
| Selenium         | NA                                        | 1.9ª              | 6.5                | 4.2 <sup>a</sup>   | 0.7 <sup>b</sup>  |

Deleted: ¶

Deleted: 4

Table 9-13. Utah Groundwater Quality Standards and Analytical Results from TomCo Deleted: 4 **Monitor Wells** 

| Parameter                 | DWQ<br>Groundwater<br>Quality<br>Standard | MW-01             | MW-02             | MW-03             | MW-04              |  |
|---------------------------|-------------------------------------------|-------------------|-------------------|-------------------|--------------------|--|
| Silver                    | NA                                        | 0.69ª             | 0.18 <sup>a</sup> | 0.23 <sup>a</sup> | 0.033 <sup>b</sup> |  |
| Thallium                  | NA                                        | 0.68ª             | 0.49°             | 0.27 <sup>b</sup> | 0.09 <sup>b</sup>  |  |
| Vanadium                  | NA                                        | 88                | 110               | 54                | 0.89 <sup>a</sup>  |  |
| Zinc                      | NA                                        | 290               | 350               | 110               | 12°                |  |
| Anions (mg/L)             |                                           |                   |                   | •                 |                    |  |
| Chloride                  | NA                                        | 530               | 21                | 180               | 66                 |  |
| Fluoride                  | 4.0                                       | 28                | 8.2               | 40                | 3.2ª               |  |
| Sulfate                   | NA                                        | 110               | 180               | 340               | 250                |  |
| Nitrate as N              | 10.0                                      | 0.21 <sup>b</sup> | 0.53°             | 0.21 <sup>a</sup> | 0.042 <sup>b</sup> |  |
| Nitrite as N              | 1.0                                       | 0.25 <sup>b</sup> | 0.59 <sup>a</sup> | 0.25 <sup>b</sup> | 0.049 <sup>b</sup> |  |
| Cations (μg/L /L)         |                                           |                   |                   |                   |                    |  |
| Calcium                   | NA                                        | 100,000           | 140,000           | 65,000            | 2,000              |  |
| Magnesium                 | NA                                        | 49,000            | 58,000            | 54,000            | 1,600              |  |
| Potassium                 | NA                                        | 17,000            | 6,100             | 9,200             | 1,400              |  |
| Silica                    | NA                                        | 100,000           | 74,000            | 64,000            | 16,000             |  |
| Sodium                    | NA                                        | 1,800,000         | 350,000           | 1,200,000         | 500,000            |  |
| BTEX+ (μg/)               |                                           |                   |                   | •                 |                    |  |
| Benzene                   | 5                                         | 0.16 <sup>b</sup> | 0.16 <sup>b</sup> | 0.23 <sup>a</sup> | 3                  |  |
| Toluene                   | 1,000                                     | 0.91 <sup>b</sup> | 0.99 <sup>b</sup> | 3.9ª              | 5.1°               |  |
| Ethyl Benzene             | 700                                       | 0.16 <sup>b</sup> | 0.16 <sup>b</sup> | 0.28 <sup>a</sup> | 1.1                |  |
| m&P Xylene                | NA                                        | 0.34 <sup>b</sup> | 0.34 <sup>b</sup> | 0.34 <sup>b</sup> | 0.34 <sup>b</sup>  |  |
| O – Xylene                | NA                                        | 0.19 <sup>b</sup> | 0.19 <sup>b</sup> | 0.19 <sup>b</sup> | 0.19 <sup>b</sup>  |  |
| Total Xylenes             | 10,000                                    | 0.19 <sup>b</sup> | 0.19 <sup>b</sup> | 0.19 <sup>b</sup> | 0.22 <sup>a</sup>  |  |
| Naphthalene               | NA                                        | 0.22 <sup>b</sup> | 0.22 <sup>b</sup> | 0.22 <sup>b</sup> | 0.22 <sup>b</sup>  |  |
| Extractable organ         | nics                                      |                   |                   |                   |                    |  |
| HEM (mg/L)                | NA                                        | 8                 | 19                | 5                 | 1.3ª               |  |
| DRO (mg/L)                | NA                                        | 5.1               | 19 <sup>a</sup>   | 4.1               | 0.41               |  |
| GRO (μg/L)                | NA                                        | 21 <sup>a</sup>   | 10 <sup>b</sup>   | 59                | 38                 |  |
| Miscellaneous             |                                           |                   |                   |                   |                    |  |
| pH (measured<br>in field) | NA                                        | 9.34              | 8.54              | 8.47              | 10.62              |  |

Deleted: 4

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitor Wells |                                                                                                                                         |                    |                    |                    |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| mg/L)         Image: Carbonate (CaCO3; mg/L)         NA         2,800         710         2,100         400           Carbonate (CaCO3; mg/L)         NA         620         1.1b         1.1b         390           Mercury (total; µg/L)         NA         0.082         0.2         0.027b         0.027b           Mercury (dissolved; µg/L)         2         0.027b         0.027b         0.027b         0.027b           TDS (mg/L)         Class I°: < 500mg/L Class II: >500 mg/L & <3,000 mg/L & <3,000 mg/L & <10,000 mg/L Class III: >3,000 mg/L Class | Parameter     | Groundwater<br>Quality                                                                                                                  | MW-01              | MW-02              | MW-03              | MW-04              |
| (CaCO3; mg/L)         NA         620         1.1b         1.1b         390           Mercury (total; μg/L)         NA         0.082         0.2         0.027b         0.027b           Mercury (dissolved; μg/L)         2         0.027b         0.027b         0.027b         0.027b           TDS (mg/L)         Class I <sup>c</sup> :<br>< 500mg/L<br>Class II: >500 mg/L & <3,000 mg/L & <3,000 mg/L & <10,000 mg/L<br>Class IV: >10,000 mg/L         1,100         3,900         1,400           TOC (mg/L)         NA         130         37         410         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | NA                                                                                                                                      | 3,500              | 710                | 2,100              | 790                |
| (CaCO3;mg/L)         NA         0.082         0.2         0.027 <sup>b</sup> 0.027 <sup>b</sup> Mercury (dissolved; μg/L)         2         0.027 <sup>b</sup> 0.027 <sup>b</sup> 0.027 <sup>b</sup> 0.027 <sup>b</sup> TDS (mg/L)         Class I <sup>c</sup> :<br><500mg/L<br>Class II: >500<br>mg/L & <3,000<br>mg/L<br>Class IV: >10,000<br>mg/L         1,100         3,900         1,400           TOC (mg/L)         NA         130         37         410         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | NA                                                                                                                                      | 2,800              | 710                | 2,100              | 400                |
| µg/L)         0.027 <sup>b</sup> 1,400         1,400         0.027 <sup>b</sup> 0.027 <sup>b</sup> 1,400         1,400         0.027 <sup>b</sup> 0.027 <sup>b</sup> 1,400         1,400         0.027 <sup>b</sup> 1,400<                                                                                                                                                                                                                                                                                                                                       |               | NA                                                                                                                                      | 620                | 1.1 <sup>b</sup>   | 1.1 <sup>b</sup>   | 390                |
| (dissolved; μg/L)         L         L         1,100         3,900         1,400           TDS (mg/L)         Class I°:<br><500mg/L<br>Class II: >500<br>mg/L & <3,000<br>mg/L<br>Class III: >3,000<br>mg/L<br>Class IV: >10,000<br>mg/L         1,100         3,900         1,400           TOC (mg/L)         NA         130         37         410         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | NA                                                                                                                                      | 0.082              | 0.2                | 0.027 <sup>b</sup> | 0.027 <sup>b</sup> |
| <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (dissolved;   | 2                                                                                                                                       | 0.027 <sup>b</sup> | 0.027 <sup>b</sup> | 0.027 <sup>b</sup> | 0.027 <sup>b</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TDS (mg/L)    | <pre>&lt;500mg/L Class II: &gt;500 mg/L &amp; &lt;3,000 mg/L Class III: &gt;3,000 mg/L &amp; &lt;10,000 mg/L Class IV: &gt;10,000</pre> | 5,700              | 1,100              | 3,900              | 1,400              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOC (mg/L)    | NA                                                                                                                                      | 130                | 37                 | 410                | 25                 |

Notes:

Gray shaded table cells indicate groundwater quality standards exceedances.

Key:

μg/L micrograms per liter

DWQ Utah Division of Water Quality

mg/L milligrams per liter
NA Not Analyzed
TOC Total Organic Carbon

#### 9.3.2.4 Aquifer Age Dating

In addition to water quality parameters, MW-04 water samples were analyzed for isotopes of

**Deleted:** to Table

Deleted: 9-4:

a Result estimated

b Not detected at or above method detection limit

c Class 1 is divided into 1A, 1B and 1C subclasses; the limit for Class 1A is<500mg/L and the remaining subclass limits are narrative

carbon to assess the age of the water. Isotopes are atoms of the same chemical element having the same number of protons but differing in numbers of neutrons and mass. Carbon has three naturally occurring isotopes, two of which are stable isotopes (12C and 13C), with the third (14C) being a radioisotope.

Radioisotopes are useful for age dating, and 14C is widely used to date groundwater. 14C is produced continuously in the earth's atmosphere, and 14C atoms oxidize to form 14CO2 molecules, which become mixed with inactive atmospheric carbon dioxide (CO2). The CO2 mixes with oceans and meteoric waters through CO2 exchange and with living biomass both directly and indirectly through photosynthesis. Once this water becomes isolated from the atmosphere by entering the zone of saturation and becoming recharge, 14CO2 will diminish at a rate of half of the radiocarbon every 5,730 years. Thus, the level of 14C atoms can be used to estimate the age of groundwater.

14C ages are expressed in terms of years before present with the 14C concentrations expressed as percent modern carbon (pMC). The groundwater age or residence time represents the length of elapsed time between the recharge water entering into an aquifer and the time at which a groundwater sample is collected.

Based on the measured pMC of 15.9, the groundwater collected from MW-04 is estimated to have entered the groundwater system approximately 7,600 years before present, with a potential range of 7,600 to 15,200 years before present (**Appendix G**). This is consistent with data from Mayo et al. (2003), which show that water from the southern Book Cliffs from 300 to 700 meters was aged and determined to be up to from 500 years to 20,000 years old. Stable isotopes measured from MW-04 were within ranges of the values observed by Mayo et al. (2003) as well.

#### 9.3.2.5 Seep and Spring Inventory

TomCo conducted desktop research to identify the most likely conditions and locations for seeps and springs to occur. Specifically, this study:

 Reviewed state and USGS records to determine whether there were known seeps and springs in and around the project area;

- Reviewed aerial photography and topographic maps to locate high potential seep and spring sites; and
- Reviewed seep and spring reports from other projects in the area to determine whether, and under what conditions, other known seeps and springs near the project area are known to occur.

On October 2 and October 3, 2013, field surveys were conducted by two staff via off-road vehicle and on foot. The survey area included TomCo's project area and a 0.5-mile buffer. Field personnel used maps, binoculars, and global positioning system (GPS) units to help identify survey areas and document the presence of seeps and springs. At each seep or spring location, field teams recorded their observations in field books, took a number of photographs, and marked each location with a Trimble GPS unit. At each site, the following data were collected to document seep and spring locations:

- Topographic, landscape, and geologic features;
- Wetland and aquatic vegetation;
- Erosional features indicative of seep flow;
- Evidence of repeated and prolonged wetting, such as moss and calcium deposits from evaporation; and
- Where possible, pH, conductivity, temperature, dissolved oxygen, and total dissolved solids.

Preliminary desktop studies revealed only one known spring in the study area. This spring is identified on USGS maps and is located on the eastern side of the study area, outside of TomCo's project area, but within the study's 0.5-mile buffer.

A total of two springs (including the previously identified spring discussed above) and 12 seeps were identified during the field surveys (**Table 9-14**; **Figure 9-1**). The two springs were outside the project area but within the 0.5-mile buffer area. Both springs exhibited some flow, and moss and other vegetation found at these two features suggest that the areas are at least moist year-round. Seeps were damp to wet and, in some cases, exhibited flows that were diminutive and too

low to be accurately measured. Almost all of the seeps and springs appeared to originate in or near drainage channels and at points where substrate incisions exposed impervious to semi-impervious shale layers, stopping the vertical percolation of rainfall.

Springs S1 and S3 are shown on **Figure 9-1 and** are indicated in **Figure 5-3** to the east of the word "spring," adjacent to the east boundary of the project area. These springs are located upgradient of, and approximately 80 feet higher than, the highest mine excavation planned at TomCo. The springs' recharge area is the slopes upgradient and northeast of the springs. This area is further away from proposed mining and processing areas. As with the seeps identified, these springs are located within a drainage channel where an impervious layer outcrops. Because of these characteristics it is unlikely that either of these small springs would be affected by mining or processing activities.

Most of the seeps identified during this survey appeared to be ephemeral, with occurrences closely linked to recent rainfalls. During this survey, field personnel routinely encountered wet soils beneath a thin layer (less than an inch) of drier soil in the drainage channels. The weather preceding the field surveys had been relatively wet. Depending on when surveys occur, it is possible that additional or fewer seeps could be discovered. While the surrounding areas of a few of the seeps and springs supported mesic vegetation, there was no change in vegetation at most of the seeps, also suggesting an intermittent occurrence of most of the seeps at this site.

Deleted: ¶

Deleted: features

Deleted: 5

|            | Table 9-14 Seep and Spring Locations and Water Quality Characteristics |                   |                    |                                  |                            |                |                  |      |                         |                         |                    |                              |  |
|------------|------------------------------------------------------------------------|-------------------|--------------------|----------------------------------|----------------------------|----------------|------------------|------|-------------------------|-------------------------|--------------------|------------------------------|--|
| ID         | Seep/<br>Spring                                                        | Latitude          | Longitude          | Elevation<br>(feet) <sup>a</sup> | Flow<br>(gpm) <sup>c</sup> | Flow<br>Method | Temperature (ºC) | рН   | Dissolved Oxygen (mg/L) | Conductivity<br>(mS/cm) | Turbidity<br>(NTU) | Total Dissolved Solids (g/L) |  |
| S1         | Spring                                                                 | 39° 46′ 38.971″ N | 109° 9' 56.067" W  | 6,253                            | 3.3                        | measured       | 10.97            | 8.7  | 12.2                    | 1.18                    | 0.0                | 0.752                        |  |
| S2         | Seep                                                                   | 39° 46′ 36.666″ N | 109° 9' 59.345" W  | 6,243                            | NA                         |                | 10.95            | 8.9  | 12.9                    | 2.51                    | 45.7               | 1.610                        |  |
| S3         | Spring                                                                 | 39° 46′ 36.156″ N | 109° 10' 0.300" W  | 6,283                            | 0.5                        | estimate       | 13.20            | 8.9  | 13.1                    | 1.17                    | 3.4                | 0.750                        |  |
| S4         | Seep                                                                   | see note b        | see note b         |                                  | NA                         |                | -                | -    | -                       | -                       | -                  |                              |  |
| <b>S</b> 5 | Seep                                                                   | 39° 46' 20.398" N | 109° 9' 57.450" W  | 6,305                            | NA                         |                | -                | -    | -                       | -                       | ı                  | -                            |  |
| S6         | Seep                                                                   | 39° 46' 21.080" N | 109° 9' 57.407" W  | 6,308                            | NA                         |                | 11.00            | 10.0 | 17.9                    | 2.34                    | 173                | 1.500                        |  |
| <b>S7</b>  | Seep                                                                   | 39° 45' 39.739" N | 109° 9' 27.591" W  | 6,419                            | NA                         |                | -                | -    | -                       | -                       | ı                  | -                            |  |
| S8         | Seep                                                                   | 39° 46' 23.604" N | 109° 10' 51.887" W | 6,227                            | NA                         |                | 8.68             | 9.5  | 17.1                    | 2.80                    | 405.0              | 1.790                        |  |
| <b>S</b> 9 | Seep                                                                   | 39° 46' 10.927" N | 109° 11' 39.105" W | 6,198                            | NA                         |                | -                | -    | -                       | -                       | ı                  | -                            |  |
| S10        | Seep                                                                   | 39° 46' 37.020" N | 109° 11' 34.649" W | 6,179                            | NA                         |                | 13.14            | 9.4  | 9.9                     | 2.56                    | 3.8                | 1.640                        |  |
| S11        | Seep                                                                   | 39° 46' 38.157" N | 109° 11' 38.247" W | 6,181                            | NA                         |                | 16.16            | 9.6  | 15.8                    | 2.58                    | 14.2               | 1.650                        |  |
| S12        | Seep                                                                   | 39° 46' 37.749" N | 109° 11' 48.371" W | 6,148                            | NA                         |                | -                | -    | -                       | -                       | -                  | -                            |  |
| S13        | Seep                                                                   | 39° 47' 11.688" N | 109° 11' 44.628" W | 6,093                            | NA                         |                | 17.28            | 9.6  | 13.5                    | 2.30                    | 35.3               | 1.470                        |  |
| S14        | Seep                                                                   | 39° 45' 46.080" N | 109° 11' 55.680" W | 6,260                            | NA                         |                | -                | -    | -                       | -                       | -                  | -                            |  |

#### S14 Notes:

#### Key:

g/L grams per liter gpm gallons per minute

GPS global positioning system

identifier ID

milligrams per liter mg/L

mS/cm micro-siemens per centimeter

NA Not applicable

NTU Nephelometric Turbidity Units

٥С degrees Celsius

a Elevations were taken by GPS and are not survey grade

b GPS coordinates and elevations at S4 could not be acquired; S4 is approximately 5 to 10 meters downgradient of S3.

c By definition, seeps do not exhibit flow; however at some seeps, water could be seen moving downgradient but at rates too slow to accurately estimate (i.e., <0.05 gpm).

<sup>-</sup> There was not enough moisture at seeps S4, S5, S7, S9, S12, and S14 to measure water quality parameters.

#### 10 CONSTRUCTION QUALITY CONTROL PLAN

#### 10.1 Bentonite Amended Soil Quality Control

#### 10.1.1 General

The quality of BAS placement, compaction, and projected performance will be determined using field moisture density monitoring correlating to a suite of data developed from more rigorously evaluated test fill performance. The following sections present the approach for test fill preparation, performance monitoring, and correlation development as the basis for this quality control approach for the EPS. The acceptability of materials used, testing outcomes, and other determinations required will be evaluated and accepted as determined by a qualified Utah professional engineer selected by TomCo. The hydraulic conductivity of the floor, walls, and final cover will be  $\leq 1 \times 10^{-7}$  cm/sec, or functionally equivalent.

#### 10.1.2 Test Fill Development and Materials for Construction

A minimum of two test fills will be constructed using similar size and type of equipment proposed for capsule bottom liner and cap and BAS sidewalls. Each test fill will be constructed using BAS manufactured on site with processed screened shale meeting the target design gradation, blended with a 10 percent Sure Seal 80 (80 percent passing #200 mesh sieve) bentonite clay product to be provided by Western Clay, or comparable product/vendor. High-activity clay products that are comparable or better may be substituted for Sure Seal 80. The blended mixture will be moisture conditioned to achieve a water content between optimum and +2 to 4 percent and transported to the test fill site via truck. The size of each test fill will be approximately 20 by 40 feet.

Alternative BAS mixtures may be developed (e.g., though modification of the -3/8-base BAS material, substitution of the bentonite product, or their combination, including its percentage) to produce a modified or alternative BAS manufactured material. In the event that TomCo's professional engineer determines that a change is needed for the BAS mixture, an additional confirmatory sealed double ring infiltrometer (SDRI) test fill will be performed on site-specific material at the TomCo project site.

Deleted: Shale

#### 10.2 Bottom Liner Test Fill

BAS fill will be placed on a prepared cleared surface and bladed to a maximum loose lift thickness of 18 inches, as proposed for liner construction, and compacted with successive passes of a compactor equal in size and type to that proposed for actual cell construction. Successive lifts will be similarly placed on the BAS to achieve full test fill depth. A minimum of two to four passes will be applied uniformly over the fill, depending on initial loose lift thickness. At the end of the last initial pass, a series of nuclear density measurements at various depths will be performed and recorded. Two additional passes of the compactor will then be performed, and an additional nuclear density test will be performed if required to achieve compaction. Two subsequent passes and additional density test series will be performed as required to facilitate evaluation of the appropriate number of passes needed to achieve the minimum 95 percent compaction.

Compacted materials within the fill will be ripped and recompacted if it is determined that less than the maximum number of passes is required to achieve required compaction. If the full maximum number of passes used during compaction evaluation is required, the fill will not be ripped, but instead protected with a temporary 6-inch lift of BAS or heavy plastic cover until infiltration testing equipment is ready to be installed. Any delay in installation of SDRI testing equipment will require that the test fill be appropriately protected from moisture loss or surface disturbance.

#### 10.3 Side Liner Test Fill

BAS fill will be placed on a cleared, prepared surface to a maximum loose lift thickness of 12 inches, as proposed for side liner construction, and compacted with successive passes of a compactor of size and type equal to that proposed for actual cell construction. A minimum of two to four passes will be applied uniformly over the fill, depending on initial loose lift thickness. At the end of the last initial pass, a series of nuclear density measurements will be performed and recorded. Two additional passes of the compactor will then be performed if required, and an additional nuclear density test will be performed. A series of subsequent passes and density tests will be performed to evaluate the number of passes needed to achieve the required 95 percent compaction for the 12-inch lift thickness, if required.

Compacted materials within the fill will be ripped and recompacted if it is determined that less than maximum number of passes used in test fill construction is needed to achieve required compaction. If the maximum number of passes is required, no ripping will be performed. The fill in either case will be protected from moisture loss with either a temporary 6-inch lift of BAS or heavy plastic tarp or cover until infiltration testing equipment is ready to be installed.

#### 10.4 Test Fill Evaluation

The hydraulic conductivity of each test fill will be evaluated in situ using an SDRI. Testing will be performed in general accordance with American Society for Testing and Materials (ASTM) D5093-02 (2008)<sup>1</sup> methods. Additionally, at the conclusion of the test, relatively undisturbed 2.5-inch-minimum diameter tube samples of the test fill will be obtained for laboratory analysis. This analysis will determine hydraulic conductivity as a means of comparing the test fill performance and projected future performance under the compression that will occur from ultimate cell construction and loading with up to 100 feet of oil shale. Laboratory testing will be performed in accordance with ASTM D-5084-10.<sup>2</sup> A minimum of four test specimens will be obtained from the fill within the innermost ring. A complete complement of index tests, including Atterberg limits, grain-size and moisture, and density will be performed on the tube specimens that undergo laboratory hydraulic conductivity evaluations.

Field density measurements will also be obtained from within the inner ring area to assess any potential density loss that may have occurred as a result of swelling.

Deleted: ¶

<sup>&</sup>lt;sup>1</sup> ASTM D5093 - 02(2008) Standard Test Method for Field Measurement of Infiltration Rate Using Double-Ring Infiltrometer with Sealed-Inner Ring, Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

<sup>&</sup>lt;sup>2</sup> Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter

The results of the testing program protocols outlined above will form the basis for quality control testing during actual liner construction and side wall construction.

#### 10.5 Proposed BAS Testing Frequency

During actual BAS construction, the following frequency and types of test are proposed to confirm acceptance of the means and methods.

#### 10.6 Bottom and Top

For the bottom and top of the BAS, Field Moisture and Density measurement (ASTM D-6938 – 10) will be performed at the rate of one test per 400 cubic yards of liner, or approximately every 10,000 square feet of lift.

#### 10.7 Side Walls

For the side walls of the BAS, Field Moisture and Density measurement (ASTM D-6938 - 10) will be performed at the rate of one test per 50 cubic yards of liner, or approximately every 270 feet of wall/lift.

#### 11 GROUNDWATER DISCHARGE CONTROL PLAN

The zero-discharge design of the capsule is described in detail in **Section 5**, and the plan for ensuring the design specifications for the BAS installation is described in Section 10. Both mining operations and the capsule itself are designed to be zero-discharge.

After review of TomCo's first GWDPA in February 2014, the DWQ requested that TomCo conduct SPLP tests on spent shale from TomCo's project area to determine if leachable contaminants are present in spent oil shale. Results of these tests can be used to determine potential for contaminant release from spent shale waste and to assess possible impacts on groundwater quality. TomCo conducted a review and analysis of published geological data to determine if geologic site conditions at the nearby Red Leaf site are sufficiently similar to TomCo for SPLP results from RLR's SPLP tests to serve as surrogate data set for waste rock

**Deleted:** The DWQ has requested that RLR analyze samples of spent shale for leachable constituents.

characteristics Results of this study are summarized in Section 11.1. The results of RLR's SPLP analyses, which are directly applicable to TomCo's project, are described in Section 11.2. This work was reviewed by Mike Vanden Berg of Utah States Geological Survey and revised based upon his input (Vanden Berg 2014.)

Deleted: these

Deleted: below

#### 11.1 Geologic Comparison Between Red Leaf and TomCo

Digital data obtained from USGS (Johnson et al. 2010) and the Utah Geological Survey (Vanden Berg 2008) from over 630 wells drilled in the study region were reviewed. Data were supplemented with well data obtained directly from the DOGM Online Oil and Gas Information System available from these sources and included collar elevations, formation tops, Fischer assay results, and various geophysical logs. These data were parsed for appropriate location, focusing on the Red Leaf and TomCo sites and the intervening area between the sites.

Review of each of the datasets yielded a series of numerical comparisons of bedding and assay values (Table 11-1), which illustrate the following:

- 1. A-Groove bedding thickness and Fischer assay results are consistent between the two sites, varying in thickness between about 16 feet at the Red Leaf site to about 9.5 feet at the TomCo site. Fischer assays ranged from about 2.5 to about 3.6 gallons of oil per ton.
- Mahogany Zone bedding thickness and Fischer assay results are fairly consistent between
  the two sites, varying in thickness between about 95 feet at the Red Leaf site to about 65
  feet at the TomCo site. Fischer assays ranged from about 17 to about 21 gallons of oil per
  ton oil.
- 3. B-Groove bedding thickness and Fischer assay results are consistent between the two sites, varying in thickness from about 7 feet at the Red Leaf site to about 11 feet at the TomCo site. Fischer assays ranged from about 17 to about 21 gallons of oil per ton.
- 4. Bed R6 bedding thickness and Fischer assay results are fairly consistent between the two sites, varying in thickness from about 235 feet at the Red Leaf site to about 193 feet at the TomCo site. Fischer assays ranged from about 2.7 to about 5.2 gallons of oil per ton.

Table 11-1 Representative Values of Compared Bed Thicknesses and Assay Values

Retween TomCo and Pad Logf Sites

| Compared<br>Bed       | TomCo Site Representative Bed Thickness (feet) | Red Leaf Site Representative Bed Thickness (feet) |  | TomCo Site Representative Assay (GPT Oil) | Red Leaf Site Representative Assay (GPT Oil) |  |  |  |  |
|-----------------------|------------------------------------------------|---------------------------------------------------|--|-------------------------------------------|----------------------------------------------|--|--|--|--|
| <u>A-Groove</u>       | <u>9.5</u>                                     | <u>16</u>                                         |  | <u>3.6</u>                                | <u>2.5</u>                                   |  |  |  |  |
| Mahogany<br>Zone      | <u>65</u>                                      | <u>95</u>                                         |  | <u>21</u>                                 | <u>17</u>                                    |  |  |  |  |
| B-Groove              | <u>11</u>                                      | <u>7</u>                                          |  | <u>21</u>                                 | <u>17</u>                                    |  |  |  |  |
| Bed R6                | <u>235</u>                                     | <u>193</u>                                        |  | <u>5.2</u>                                | <u>2.7</u>                                   |  |  |  |  |
| Key:<br>GPT gallons p | Key:                                           |                                                   |  |                                           |                                              |  |  |  |  |

The analysis demonstrated that the stratigraphy between the sites is similar and contiguous and that the Fischer analyses obtained for the Mahogany Zone were similar throughout the region studied. The similarity of the Fischer analyses suggest that these data can be extrapolated to the waste ore characteristics based on the hypothesis that spent waste rock of similar lithology, containing similar amounts of hydrocarbon, sharing a common geologic origin, and demonstrated to be contiguous throughout the region studied, should yield similar SPLP results. TomCo believes that completed SPLP testing, and upcoming Meteoric Water Mobility Procedure tests, performed at Red Leaf adequately represent spent ore characteristics that would occur in the TomCo EPS capsule. Additional testing of spent shale will occur after processing in the EPS capsule is completed at Red Leaf and TomCo.

#### 11.2 Spent Shale Leachate Evaluation

Although the EPS capsule is designed to prevent contact of meteoric water with capsule-contained spent shale, RLR conducted leachability testing using the EPA's SPLP methodology on samples of spent shale from the Red Leaf project area. Samples were collected from spent shale derived from bench-scale testing and stored in sealed containers at RLR's contract testing laboratory. Samples were collected from the sealed containers in appropriate laboratory-supplied sample containers and in accordance with appropriate collecting methods. Samples were

transported chilled and under chain-of-custody to American West Analytical Laboratories (AWAL) for SPLP testing.

The SPLP test is an EPA SW-846 analytical method (Method 1312) that can be used to determine the concentration of contaminants that will leach from soil and similar materials due to contact with, and subsequent leaching by, precipitation (EPA 1998). Method 1312 specifies three distinct extraction fluids, depending on the relative location of the sample area in the United States (east or west of the Mississippi River) and the compounds to be analyzed in the leachate. Extraction Fluid #1 is deionized water very weakly acidified to a pH of 4.2 and is used for samples collected east of the Mississippi. Extraction Fluid #2, for samples collected west of the Mississippi, is acidified to a pH of 5.0. Extraction Fluid #3 is filtered deionized water and is used for extraction of volatile organic compounds (VOCs) regardless of sample location. For the RLR spent shale samples, leachate derived from leaching with Reagent #2 was analyzed for all parameters except VOCs, for which Reagent #3 was used.

Three samples of the spent shale, designated R11-122 210#1, #2, and #3, were collected for analysis. The samples are duplicates and were collected to ensure representativeness in the event that the stored samples were inhomogeneous. Samples were leached with appropriate leaching solution, and the leachates were analyzed for the following parameters:

- General chemistry: pH total dissolved solids, major ions (Ca, Cl-, F-, K, Mg, Na, SO4); alkalinity; nitrate/nitrite (as N); oil and grease; Sr; and total organic carbon;
- Organic compounds: VOCs and semi-volatile organic compounds (SVOCs); and
- Trace metals and metalloids: Ag, As, B, Ba, Be, Cd, Cr, Fe, Hg, Li, Pb, Mn, Mo, Ni, Sb, Se, Sn, Tl, V, and Zn.

Both the VOC and SVOC leachates were analyzed for an extensive list of compounds determined by the laboratory, based on its experience.

The entire laboratory report provided by AWAL is attached as **Appendix G**. The results for the general chemistry analyses are summarized in **Table 11-2**.

Deleted: will be

Table 11-2. Spent Shales SPLP – General Chemistry From Red Leaf Resources

**Water Quality** Standard for Ground-Sample Number Lab R11-122 210 White River and water Quality **Its Tributaries** Standard Report-4-Day Average ing **Parameter** #1 #2 #3 1-hour Average Limit pH (pH units) 1.00 9.92 9.99 10.2 6.5-8.5 6.5 - 9.0TDS (mg/L) 20.0 172 220 220 ≥500 mg/L N/S Calcium (mg/L) 1.0 3.44 3.64 3.48 N/S N/S Fluoride (mg/L) 0.100 1.56 1.64 1.84 4.0 N/S Potassium (mg/L) 4.23 <1.00 N/S N/S 1.00 4.28 N/S N/S Magnesium (mg/L) 1.00 1.14 1.25 <1.00 Sodium (mg/L) 1.00 36.9 33.5 37.4 N/S N/S Sulfate (mg/L) 5.00 17.4 N/S N/S 18.5 19.8 Alkalinity (mg/L) 40.0 68.9 82.0 78.7 N/S N/S nitrate/nitrite (as N) (mg/L) 0.0100 0.0106 0.0251 0.0142 10.0 N/S N/S N/S oil and grease (mg/L) 1.00 9.92 <3.0 <3.00

Key:

mg/L milligrams per liter
N/S no standard has been set
TDS total dissolved solids

The results of the metals analyses are shown in **Table 11-3**. VOCs in **Table 11-4** and SVOCs in **Table 11-5**. Note that only parameters with detectable quantities are shown in the tables. Complete analytical results are shown in **Appendix G**.

Deleted: 2

Deleted: 1

Deleted: 3

**Table 11-3 Spent Shale SPLP – Detected Metals** 

| Sample Number     | Lab                  |         | R11-122 21 | 0       | Ground-<br>water<br>Quality | Water Quality Standard for the White River and Its Tributaries |
|-------------------|----------------------|---------|------------|---------|-----------------------------|----------------------------------------------------------------|
| Parameter         | Report-<br>ing Limit | #1      | #2         | #3      | Standard                    | 4-Day<br>Average<br>1-hour<br>Average                          |
| Antimony (mg/L)   | 0.00500              | 0.00923 | 0.00761    | 0.00929 | 0.006                       | N/S                                                            |
| Arsenic (mg/L)    | 0.00300              | 0.0367  | 0.0371     | 0.0391  | 0.05                        | 0.150<br>0.340                                                 |
| Barium (mg/L)     | 0.00200              | 0.0483  | 0.0479     | 0.0410  | 2.0                         | N/S                                                            |
| Boron (mg/L)      | 0.500                | 0.840   | 0.832      | 0.878   | N/S                         | N/S                                                            |
| Molybdenum (mg/L) | 0.0200               | 0.129   | <0.0200    | 0.159   | N/S                         | N/S                                                            |
| Selenium (mg/L)   | 0.00400              | 0.00786 | 0.00753    | 0.00725 | 0.05                        | 0.0046<br>0.0184                                               |
| Strontium (mg/L)  | 0.0040               | 0.0686  | 0.0707     | 0.0640  | N/S                         | N/S                                                            |
| Vanadium (mg/L)   | 0.0500               | 0.0638  | 0.0640     | 0.0666  | N/S                         | N/S                                                            |

Key:

mg/L milligrams per liter
N/S no standard has been set

SPLP synthetic precipitation leaching procedure bold these figures exceeded groundwater standards

Table 11-4 Spent Shale SPLP – Detected VOCs.

| Sample Number        | Lab                | R11-122 210 |        | 10     |                                 |
|----------------------|--------------------|-------------|--------|--------|---------------------------------|
| Parameter            | Reporting<br>Limit | #1          | #2 #3  |        | Groundwater Quality<br>Standard |
| Acetone (μg/L)       | 0.0100             | 0.0195      | 0.0178 | 0.0152 | N/S                             |
| Acrylonitrile (μg/L) | 0.00500            | 0.0171      | 0.0134 | 0.0118 | N/S                             |

Key:

 $\begin{array}{ll} \mu g/L & \text{micrograms per liter} \\ N/S & \text{no standard has been set} \end{array}$ 

SPLP synthetic precipitation leaching procedure

VOC volatile organic compound

Deleted: 2

Table 11-5 Spent Shale SPLP – Detected SVOCs.

| Sample Number | Lab             | R11-122 210 |        |        | Groundwater Quality Standard |  |  |
|---------------|-----------------|-------------|--------|--------|------------------------------|--|--|
| Parameter     | Reporting Limit | #1          | #2     | #3     | Groundwater Quality Standard |  |  |
| Benzoic acid  | 0.0200          | 0.0326      | 0.0354 | 0.0259 | N/S                          |  |  |

Key:

N/S no standard has been set

SPLP synthetic precipitation leaching procedure

VOC volatile organic compound

**Tables 11-3, 11-4, and 11-5,** compare the detectable concentrations of ions and compounds identified in the spent shale by the laboratory analysis described above to both Utah Ground Water Quality Standards and established Water Quality Standards for the Asphalt Wash watershed, a tributary to the White River. The following excerpt from UAC R317-2.6, Standards of Quality for Waters of the State, Use Designations, indicates the applicable uses designated for the White River and its tributaries, including Asphalt Wash:

Class 2B – Protected for infrequent primary contact recreation. Also protected for secondary contact recreation where there is a low likelihood of ingestion of water or a low degree of bodily contact with the water. Examples include, but are not limited to, wading, hunting, and fishing.

Class 3B – Protected for warm water species of game fish and other warm water aquatic life, including the necessary aquatic organisms in their food chain.

Class 4 – Protected for agricultural uses including irrigation of crops and stock watering.

The water quality standards shown in **Tables 4-3**, **4-4**, and **4-5** are those established by the UAC for Class 3B waters, which apply to the White River and its tributaries.

The analytical results for the three samples are consistent for almost all parameters analyzed, indicating that the spent shale is homogenous and that the samples analyzed are representative of the spent shale from the bench tests. The results of the analyses found only two parameters that exceeded groundwater quality standards: pH and antimony. Two parameters, pH and selenium,

Deleted: 4

Deleted: 2

Deleted: 3

Deleted: 4

Deleted: 2

Deleted: 3

exceed the water quality standards established for Class 3B-designated streams. The antimony and selenium results are less than twice the laboratory reporting limit, which makes the accuracy of the results questionable.

The VOCs acetone and acrylonitrile are not constituents of oil shale, shale oil, or spent shale. Their identification in the AWAL report is due to either laboratory contamination or a false positive from the detector. False positives occur when the mass detector detects an ion designated as "characteristic" of a compound. This problem occurs when a given ion may not be exclusive to that compound and hence is misidentified. Standardized tests have not advanced to a point where these cases of misidentification are detected. Individual research is required to determine which of the two is required. Water quality standards have not been established for either compound.

Benzoic acid was the only SVOC detected. This constituent, has no established water quality standard.

The exceedingly low concentrations of the few detected ions and compounds would, even if unconfined by the clay-enclosed capsules, not reach either groundwater or surface water in detectable concentrations.

#### 12 RECLAMATION AND CLOSURE EVALUATION

The post-reclamation configuration of the capsules was evaluated to assess both erosion of the surface and infiltration of precipitation-derived water through reclamation cover, including the BAS.

#### 12.1 Infiltration Modeling

Potential for infiltration of precipitation was analyzed using the Hydrologic Evaluation of Landfill Performance (HELP), which was developed by the EPA for evaluation of landfill designs. **Appendix H** contains the report describing the model setup, inputs, and results.

 $\textbf{Deleted:} \ The \ single \ SVOC \ detected, \ b$ 

#### Deleted:

**Deleted:** Both acetone and benzoic acid were detected at levels less than twice the lab reporting limit, which suggests that the reported concentrations are questionable.

The modeling results demonstrated that the designed capsule cap and evapotranspiration cover provides adequate control on infiltration into the capsules for the vegetated cover case using the design parameters.

#### 12.1 Time for Spent Shale to Reach Field Capacity

The DWQ requested that <u>TomCo</u> provide an estimate of the time that would elapse before infiltration through the upper BAS layer would cause the capsule to reach field capacity. In order to provide this same information, TomCo used the approach outlined by RLR in **Appendix L** of its GWDPA and used the same assumptions, key of which are:

- The field capacity for spent shale is 8.3 percent. The spent shale is a graded mixture with
  particle sizes ranging from coarse sand to cobbles. Published field capacity values for
  coarse grained materials could not be located, and RLR based the field capacity on
  published values for a sandy material with 1 inch of water holding capacity per foot of
  material.
- The absorptive capacity for soil is 10.2 percent. This value is based on the reported laboratory value in the RLR GWDPA of 11.3% reduced by 10% to be conservative.

In addition, after settlement, capsule thickness of the rectangular portion will be  $\underline{90.0}$  feet (**Figure 5-5**).

To calculate the time to reach field for a representative, homogeneous column of spent shale, the following equation was used:

Water retention capacity (feet) = (spent shale absorption capacity + spent shale field capacity) x spent shale thickness (feet)

 $X = (10.2\% + 8.3\%) \times 90 \text{ feet} = 16.65 \text{ feet}$ 

With a HELP model predicted average annual infiltration rate of 0.070 inches per year (0.0058 feet per year) and 16.64 feet of retention capacity, the spent shale column could potentially reach field capacity in approximately 2,800 years (16.65 feet / 0.0058 feet per year = 2,871  $_{\text{years}}$ 

**Deleted:** The results are especially conservative given the absorptive capacity of the spent shale. Raw (un-retorted) shale and spent shale were tested under ASTM protocol ASTM C 127, Specific Gravity and Absorption, Coarse Aggregate. Raw shale had an absorptive capacity (by weight) of 2.7 percent, while spent shale had an absorptive capacity of 11.3 percent, a four-fold increase. HELP modeling conservatively predicted annual infiltration through the upper BAS layer of 0.07 inches per year. The gravel layer between the BAS and crushed fines, in conjunction with the sloped design of the EPS, helped drain water away from the capsule and decreased the amount of infiltration that would have occurred otherwise. The HELP model did not consider the fate of infiltrating precipitation that penetrated the upper BAS layer. However, this absorptive capacity will have a significant impact upon the potential for migration of fluids through the spent shale to the bottom of the capsule and the 3-foot BAS under-liner.

Deleted: RLR

Deleted: 83.5

Deleted: necessary

**Deleted:** capacity for the lower part of the capsule only, the following equation was used:¶ Water retention capacity (feet) = (soil absorption capacity + field capacity) x capsule thickness (feet)¶

.  $X = (10.2\% + 8.3\%) \times 83.5$  feet = 15.45 feet¶ With a HELP model predicted infiltration rate of 0.07 inches per year (0.006 feet/year) and 11.84 feet of retention capacity, 2,575 years are estimated as the time necessary for the lower part of the EPS to reach field capacity (15.45 feet / 0.006 feet/year = 2,575 year).

#### 13 COMPLIANCE MONITORING PLAN

The monitoring plan for the EPS capsule is described in **Section 5.5**. EPS capsule monitoring will occur during and after operations, through the cooling period and beyond to evaluate capsule performance. The capsule is intended to be protective of groundwater. The cover, capsule, and liner system all serve to prevent discharge and protect groundwater. The liner system includes from top to bottom:

- Vegetative cover;
- Layers of fill above the BAS liner;
- The BAS liner itself; <sup>3</sup>
- The gravel layer that serves as a capillary barrier;
- The capsule's significant central volume made up of spent shale;
- An additional gravel layer;
- An underlying collection pan that can practically serve as a collection lysimeter following the production phase;
- Underlying layers of road base; and
- The final BAS liner.

Due to the anticipated settling of the cover during production, the BAS will be evaluated on a weekly basis to identify settlement. Restoration and repair will be performed if necessary. Information gained from operation of the EPS capsule will be applied to the final commercial design, construction, and operation of the capsules during the operational stage of production.

107

<sup>&</sup>lt;sup>3</sup> The functional equivalent design calls for a geosynthetic membrane, as shown on Figure 5-7.

As described in **Section 5.5**, monitoring will focus on discharges from the EcoShale<sup>TM</sup> capsule, and the proposed compliance monitoring plan is designed to detect an occurrence of pollutant discharge nearest the source. The proposed monitoring points include sampling from the EcoShale<sup>TM</sup> capsules' product collection pan and sampling from two pipe systems underlying the EcoShale<sup>TM</sup> capsules which constitute three separate monitoring systems.

Among other features, capsules are designed with an underlying collection pan to collect oil during the capsule's production phase. The EcoShale<sup>TM</sup> capsules' product collection pan is constructed within the lower portion of the capsule, beneath the heating/retort zone. During the production phase, the EcoShale<sup>TM</sup> capsule product collection pan is used to collect oil and water.

Following the production phase, the collection pan remains and acts as a large restrictive barrier beneath the entire capsule. This pan collection system will be monitored for the presence of liquid from a downgradient monitoring location on the north side of the capsule structure. Monitoring and sampling the capsule collection pan will provide an early indication of any liquid percolation through the capsule. This pan and monitoring system also provides a system of liquid removal, should that become necessary after production is completed. This monitoring approach is expected to provide the best indication of potential discharge to groundwater from the capsule. Due to the design of the capsule, which minimizes and prevents percolation through the capsule layers and into the capsule, significant volumes of liquid percolation through the capsule are not expected.

Two additional sample collection and monitoring areas will be located underneath the collection pan and within the constructed capsule. The associated piping network for these two collection areas will pass through the bulkhead and exit the external MSE wall that forms the north end of the capsule to provide a readily accessible monitoring and sampling location. The first collection area will be a pipe system located on the down-gradient, north end of the capsule on top of the lower BAS layer. The second will be between the bedrock foundation of the capsule and the outside edge of the BAS containment layer on the east, west, and north sides of the capsule. Analyses of liquid samples collected from this network of pipes will also provide an indication of possible discharge of chemical constituents from the capsule.

#### 14 CERTIFICATION/SIGNATURE

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

PAUL RANKINE, CEO 801-833-0412

NAME & OFFICIAL TITLE (type or print) PHONE NO. (area code & no.

December 5, 2014

SIGNATURE
DATE SIGNED

**Deleted:** EPS capsule monitoring will occur during and after operations, through the cooling period and beyond to evaluate capsule performance. The capsule is intended to be protective of groundwater. The cover, capsule, and liner system all serve to prevent discharge and protect groundwater. The liner system includes: ¶

- <#>Vegetative cover; ¶
- <#>Layers of fill above the BAS liner; ¶
- <#>The BAS liner itself; ¶
- <#>The gravel layer that serves as a capillary barrier; ¶
- <#>The capsule's significant central volume made up of spent shale; ¶
- <#>An additional gravel layer;¶
- <#>An underlying collection pan that can practically serve as a collection lysimeter following the production phase; ¶
- <#>Underlying layers of road base; and¶
- <#>The final BAS liner. ¶

Due to settling of the cover during production, the BAS will be evaluated following settlement. Restoration and repair will be performed if necessary. Information gained from operation of the EPS capsule will be applied to modifications in design, construction, and operation of the capsules during the full operational stage of production. The design of, and reclamation plan for, RLR's EcoShale<sup>TM</sup> capsules promote high evapotranspiration while ensuring that remaining water reports primarily as runoff with minimal infiltration. Nevertheless, baseline water quality and quantity data will be collected in the event that monitoring may be appropriate in the future. ¶ Monitoring will focus on discharges from the

Monitoring will focus on discharges from the EcoShale<sup>™</sup> capsule, and the proposed compliance monitoring plan is designed to detect an occurrence of pollutant discharge nearest the source. The proposed monitoring points include sampling from the EcoShale<sup>™</sup> capsules' product collection pan and sampling from trenches underlying the EcoShale<sup>™</sup> capsules.¶

Among other features, capsules are designed with an underlying collection pan to collect oil during the capsule's production phase. The EcoShale<sup>TM</sup> capsules' product collection pan is constructed within the lower portion of the capsule, beneath the heating/retort zone. During the production phase, the EcoShale<sup>TM</sup> capsule product collection plan is used to collect oil and water. ¶

collect oil and water. ¶
Following the production phase, the collection
pan remains and acts as a large collection
lysimeter beneath the entire capsule. This pan
collection system will be monitored for the
presence of water. Monitoring and sampling
the capsule collection pan will provide an early
indication of any water percolation throu ... [1]

Deleted: 14

#### 15 REFERENCES

- Birgenheier, Lauren, Michael Vanden Berg, Morgan Rosenberg, and Jeah Toms. 2013. Sedimentology and Stratigraphy of the Green River Formation, Uinta Basin, A Field Trip for GRF Project Sponsor, Total, April 30 May 3, 2013.
- BLM (Bureau of Land Management). 2008. Proposed Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Final Programmatic Environmental Impact Statement. FES 08-32. September 2008
- Cashion, W.B. 1992 Oil-Shale Resources of the Uintah and Ouray Indian Reservation, Uinta Basin, Utah, *in* Hydrocarbon and Mineral Resources of the Uinta Basin, Utah and Colorado, Utah Geological Association Guidebook 20, Thomas D. Fouch, Nuccio, V.F., Chidsey, T.C., Jr., eds.
- <u>DWQ</u> (Division of Water Quality). 2014. Statement of Basis, Red Leaf Resources Southwest #1 Oil Shale Mine, Ground Water Discharge Permit No UGW470002.
- <u>Driscoll, F.G., 1986.</u> Groundwater and Wells (2nd ed.), Johnson Filtration Systems, Inc., St. <u>Paul, Minnesota, pp. 252-257.</u>
- <u>Duffield, G.M., 2007. AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA.</u>
- Epic Engineering. 2013. Waters of the United States Jurisdictional Assessment, TomCo Inc.
- Fetter, C.W., 1994. Applied Hydrogeology (3<sup>rd</sup> Edition), Prentice-Hall, Inc., Upper Saddle River, New Jersey, pg 98.
- Freethey, Geoffrey W. and Gail E. Cordy. 1991. Geohydrology of Mesozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin. U.S. Geological Survey Professional Paper 1411-C.

- Halford, K.J. and Kuniansky, E.L., 2002. Documentation of Spreadsheets for the Analysis of
   Aquifer-Test and Slug-Test Data, U.S. Geological Survey Open-File Report, 02-197, 51
   p.
- Holmes, Walter F. 1980. Results of Test Drilling for Ground Water in the Southeastern Uinta Basin in Utah and Colorado. U.S. Geological Survey, Water-Resources Investigations 80-951.
- Holmes, Walter F. and Briant A. Kimball. 1987. Ground Water in the Southeastern Uinta Basin, Utah and Colorado. U.S. Geological Survey Water-Supply Paper 2248.
- Glover, Kent C., David L. Natz, and Lawrence J. Martin. 1998. Geohydrology of Tertiary Rocks in the Upper Colorado River Basin in Colorado, Utah, and Wyoming, Excluding the San Juan Basin Regional Aquifer System Analysis. Water-Resources Investigations Report 96-4105. U.S Geological Survey.
- Keighin, C. William. 1977. Preliminary Geologic Map of the Cooper Canyon Quadrangle, Uintah County, Utah. U.S. Geological Survey.
- Lowham Walsh, 2013, Groundwater Monitoring Plan, Proposed TomCo Mine Site, Uintah County, Utah, Prepared for The Oil Mining Company, Inc.
- Mayo A.L., Morris T.H., Peltier S., Petersen E.C., Payne K., Holman L.S., Tingey D., Fogel T., Black B.J., Gibbs T.D. 2003. Active and Inactive Groundwater Flow Systems: Evidence from a Stratified, Mountainous Terrain. GSA Bulletin. 115(12): 1456—1472.
- Moench, A.F., 1997. Flow to a well of finite diameter in a homogeneous, anisotropic water-table aguifer, Water Resources Research, vol. 33, no. 6, pp. 1397-1407.
- Norwest Corp. 2011. Operations and Reclamation Drainage Plan, Red Leaf Resources.
- Pipiringos, George N. 1978. Preliminary Geologic Map of the Bates Knolls Quadrangle, Uintah County, Utah. U.S. Geological Survey.

- Price, Don and Louise L. Miller. 1975. Hydrologic Reconnaissance of the Southern Uinta Basin, Utah and Colorado. State of Utah Department of Natural Resources Technical Publication No. 49. Prepared by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights.
- RLR (Red Leaf Resources, Inc.). 2010. Pre-Design Conference, August 4, 2010. PowerPoint presentation for the conference.
- . 2011. Notice of Intention To Commence Large Mining Operations, Red Leaf Resources, Inc., Seep Ridge Block: Southwest #1 Mine. April 28, 2011.
- Sprinkel, Douglas A. 2009. Interim Geologic Map of the Seep Ridge 30' X 60' Quadrangle, Uintah, Duchesne, and Carbon counties, Utah, and Rio Blanco and Garfield Counties, Colorado. Utah Geological Survey Open-File Report 549DM.
- Stokes, W.L. 1986. Geology of Utah. Utah Museum of Natural History and Utah Geological and Minerals Survey.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.
- USGS (United States Geological Survey). 2010. Geographic information system (GIS) shapefile titled SGID93\_WATER\_SpringsNHDHighRes, obtained from the Utah Automated Geographic Reference Center downloaded from <a href="http://gis.utah.gov/agrc">http://gis.utah.gov/agrc</a>. Data source is the USGS, USEPA, and the US Forest Service.
- \_\_\_\_\_. 2011. National Water Information System (NWIS) accessed online March 25, 2011 at <a href="http://waterdata.usgs.gov/nwis/nwisman/">http://waterdata.usgs.gov/nwis/nwisman/</a>
- Vanden Berg, Michael. 2008. Basin-Wide Evaluation of the Uppermost Green River Formation's Oil-Shale Resource Uinta Basin Utah and Colorado, Special Study 128, Utah Geological Survey.
- \_\_\_\_\_. January 21, 2014. Personal Communication. Geologist, Utah Geological Survey. Meeting with Tom Ferraro, Ecology and Environment, Inc., Salt Lake City, Utah.

December 2, 2014. Personal Communication. Utah Geological Survey. Review of Geological report prepared by Jon Kaminsky, P.G. for Lowham Walsh, Salt Lake City. Utah.

Wallace, Janea. 2012. Baseline Water Quality and Estimated Quantity for Selected Sites in the Southeastern Uinta Basin, Utah. Open File Report 595, Utah Geological Survey, Utah Department of Natural Resources, 2012, 66 p.

Woods et al. 2011. Ecoregions of Utah (color poster with map, descriptive text summary table, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1, 175,000).

# APPENDIX A OPERATIONS AND RECLAMATION DRAINAGE DESIGN PLAN



# APPENDIX A THE OIL MINING COMPANY, INC. EARLY PRODUCTION SYSTEM STORM WATER DRAINAGE PLAN



# TABLE OF CONTENTS

| CERTIFICATE OF ENGINEER                                                          |
|----------------------------------------------------------------------------------|
| EARLY PRODUCTION SYSTEM STORM WATER DRAINAGE PLAN                                |
| TOMCO OIL SHALE PROJECT LOCATED IN UINTAH COUNTY, UTAH                           |
| PROJECT LOCATION                                                                 |
| REPORT OBJECTIVE                                                                 |
| SITE SOIL AND VEGETATIVE COVER CONDITIONS                                        |
| RAINFALL DATA                                                                    |
| EPS STORM WATER MANAGEMENT PLAN                                                  |
| CLEAN WATER DIVERSION DITCHES                                                    |
| SEDIMENT-LADEN WATER COLLECTION DITCHES                                          |
| SETTLING PONDS                                                                   |
| SUMMARY                                                                          |
| REFERENCES                                                                       |
| Tables                                                                           |
| TABLE 1: EPS WATER MANAGEMENT PLAN CLEAN WATER DIVERSION DITCH SUMMARY           |
| TABLE 2: EPS WATER MANAGEMENT PLAN SEDIMENT-LADEN WATER COLLECTION DITCH SUMMARY |
| TABLE 3: EPS WATER MANAGEMENT PLAN POND SUMMARY                                  |
| Figures                                                                          |
| FIGURE A: EPS SITE DRAINAGE PLAN                                                 |
| FIGURE B: TYPICAL DITCH DETAILS10                                                |
| FIGURE C. TVPICAL SETTLING POND DETAIL.                                          |



# **Certificate of Engineer**

I, Paul Kos, certify that all the information presented in the following report and figures are true and correct to the best of my knowledge and information.

| Item       | Date of Preparation | Title                         |  |
|------------|---------------------|-------------------------------|--|
| Appendix A | November 17, 2014   | EPS Storm Water Draiange Plan |  |
| Figure A   | November 17, 2014   | EPS Site Drainage Plan        |  |
| Figure B   | November 17, 2014   | Typical Ditch Details         |  |
| Figure C   | November 17, 2014   | Typical Settling Pond Detail  |  |



Paul J. Kos, P.E. - Utah P.E. No. 8548614-2202



# Early Production System Storm Water Drainage Plan TomCo Oil Shale Project Located in Uintah County, Utah

## **Project Location**

The Oil Mining Company, Inc. (TomCo) holds an oil shale mineral lease on roughly 1,200 acres of School and Institutional Trust Land Administration (SITLA) lands in the Uinta Basin in an area called the "Holliday Block," for which TomCo has SITLA Mineral Lease ML-49571. TomCo proposes to develop oil shale mining and processing operations in this area, referred to in this report as "the project." The project site is located in Section 13 and portions of Sections 11, 12, and 14 of Township 12 South, Range 24 East of the Salt Lake Principal Meridian in Uintah County, Utah. The approximate elevation of the project site ranges between 6,060 and 6,500 feet above mean sea level (EPIC 2013).

## **Report Objective**

The goal of this report is to provide a plan for effective surface water runoff control from TomCo's proposed Early Production System (EPS) project. The EPS project will test the Eco-Shale capsule technology, a patented process used to extract oil from kerogen-rich oil shale ore. The process involves placing ore in sealed capsules, heating the encapsulated ore, and extracting liquid hydrocarbons via a pipe and tank storage system. The capsule is designed to prevent impacts to groundwater and the surrounding ecosystem by utilizing an impermeable liner of bentonite amended soil (BAS). To conduct the test, a capsule that is approximately ¾ the size of proposed standard production capsules will be constructed. During construction, heating, and cooling periods, observations will be made to measure and assess design concepts and components such as insulation effectiveness, fluid recovery, and capsule containment. Data obtained during EPS operation will be applied to the final design of commercial scale capsules. This report addresses the following topics to meet the requirements of the EPS permits:

(1) EPS water management plan



- (2) Clean and sediment-laden water ditch design
- (3) Pond design, including earthen embankment dams

Clean water diversion ditches will be installed prior to any development to divert upland runoff around the project site. These ditches will be designed to carry flows from the 100-year, 24-hour event.

Water intercepted by EPS capsule-related disturbance will be managed by storing water on site, using berms and sumps to provide source control and to limit the migration of any hydrocarbons around the site. If high flows occur, water will be directed to engineered ditches and ponds where water will be stored until it evaporates. These ditches have been designed to carry runoff flows resulting from the 10-year, 24-hour event. Topsoil will be salvaged and placed in a dedicated stockpile shown in Figure A prior to commencement of excavation and testing, and reused during the reclamation phase. The proposed mining process consists of simultaneously mining the oil shale and constructing heating capsules where the oil shale will be heated to extract oil and gas in a controlled environment. During the EPS test, a single capsule will be constructed to evaluate the design. The capsule will be lined with an impermeable liner to prevent impacts to ground water. A series of ditches and ponds will be used to manage rainfall runoff on site.

The capsule will be reclaimed once the oil and gas are extracted from the shale, as explained in Section 12 of the GWDPA.

# Site Soil and Vegetative Cover Conditions

The project site is located in an arid climate and is primarily a high plains desert. As described in a survey report for the area conducted by Cardno-ENTRIX (2013): "The vegetative cover type for the site is characterized by three communities: a "Pinyon-Juniper Woodland/ Shrubland," dominated by Utah juniper and pinyon pine; a "Mixed Sagebrush/Greasewood Shrubland" community, dominated by sagebrush, rabbitbrush, greasewood, and shadscale; and a "Mixed



Bedrock Canyon and Tableland Community" of pinyon and juniper and scattered cool season grasses."

The primary soil type on site to the south of the East Seep Draw is classified as the Gompers-Bigpack Association. This soil type consists of approximately 60 percent Gompers, 25 percent Bigpack, and 15 percent minor components. The Natural Resources Conservation Service (NRCS) classifies this soil as type D hydrologic soil group. The secondary soil group to the north of the natural drainage channel is the Walknolls-Bullpen-Walknolls Association, which also belongs to a type D hydrologic soil group (NRCS 2003).

The project site predominantly has type D Hydrologic Soil Group and a vegetative cover of scattered pinyon-juniper and sagebrush plants, which yields a range of Curve Numbers between 84 and 88. A Curve Number of 88 was chosen for the storm water drainage design to be conservative.

There are two areas of the site where the Curve Number will be greater: (1) the active disturbance areas where vegetation and the topsoil will be removed, and (2) the northern portions of the lease that have been affected by recent wildfire. A Curve Number of 94 was used for both of these areas for the following reasons:

- (1) Newly graded areas with no vegetation and cultivated agricultural lands with bare soil (type D) both have a Curve Number of 94 (Warner et al. 2004).
- (2) To estimate a post-fire Curve Number, a simple rule of adding 5 to 15 units to the undisturbed, pre-fire Curve Number has been suggested by Higgonson and Jarnecke (2007).

Using these guidelines, a Curve Number of 94 was used to estimate runoff from disturbed areas as well as burned areas affected by wildfire.

Curve numbers for watersheds with multiple soil types or cover types are calculated using a weighted average of each watershed area and the corresponding curve number.



#### Rainfall Data

The Bonanza, UT rain gauge is located approximately 30 miles north-northeast of the project site in Bonanza, Utah. Three rainfall events were used in the design of the storm water drainage plan: the 10-year, 24-hour; the 25-year, 24-hour; and the 100-year, 24-hour storm events. The corresponding amounts of rainfall for these three events are 1.60 inches, 1.93 inches, and 2.46 inches, respectively (Bonin 2006). The Type II Rainfall Distribution, which consists of short, high-intensity storms that cause flash flooding, was used for modeling of rainfall runoff.

## **EPS Storm Water Management Plan**

The Early Production System (EPS) storm water management plan uses clean water diversion ditches to divert clean water around disturbed areas, sediment-laden water collection ditches to collect impacted water from disturbed areas, and settling ponds to remove sediment from sediment-laden water. Clean water diversion ditches will collect clean water entering the site from adjacent areas and overland flow, and route it around the active mining areas back into one of the natural drainages that are outside the mine lease. Sediment-laden water collection ditches will collect runoff water inside the active disturbance areas and route it to one of the settling ponds. Sediment that is in suspension will be allowed time to settle after it is collected into one of the settling ponds. Treated water will be stored until it evaporates, if feasible.

#### Clean Water Diversion Ditches

Clean water diversion ditches will provide protection to workers and the active disturbance areas. They are excavated into native ground and designed to divert clean water around disturbance areas to natural drainages. Clean water diversion ditches will typically be functional during operations and reclamation; thus, they have been designed to route peak runoff flows resulting from the 100-year, 24-hour storm event with one foot of freeboard.

Clean water diversion ditch CWDD-1 collects runoff from watersheds upgradient and south of the mine pit. CWDD-3 and CWDD-4 collect runoff from watersheds located upstream and



divert it around the EPS and other associated structures. CWDD-5 collects runoff from watersheds north of the Facilities area and diverts it around Pond 1 (Figure A). Clean water diversion ditches were designed to be trapezoidally shaped with bottom widths that maintain peak velocities below the erosive limit of 5.5 feet/second (Figure B). Clean water drainages have steep grades near their outlets where water discharges back into natural drainages. In order to protect against erosion, these areas will need to be armored with riprap (Figure B). CWDD-4 and CWDD-5 are armored with riprap to protect against erosion. In addition, these ditches will need check dams installed approximately every 50' where slopes are steep (approximately 16%) to reduce peak runoff velocity. Table 1 shows a summary of the clean water diversion ditches. Figure B shows typical cross sectional configurations of earthen and riprap armored ditches.

**Table 1: EPS Water Management Plan Clean Water Diversion Ditch Summary** 

|         |                                       |                             | •                       | 100-year Storm Event (2.46 inches) |              | _                         | oidal Ditch<br>ometry |
|---------|---------------------------------------|-----------------------------|-------------------------|------------------------------------|--------------|---------------------------|-----------------------|
| Ditch # | Location                              | Drainage<br>Area<br>(acres) | Peak<br>Runoff<br>(cfs) | Peak<br>Velocity<br>(ft/sec)       | Slope<br>(%) | Bottom<br>Width<br>(feet) | Total Depth (feet)    |
| CWDD-1  | SE corner of mine pit                 | 4.1                         | 3.89                    | 3.26                               | 4.0          | 5                         | 1.21                  |
| CWDD-3  | SW corner of EPS pad                  | 124.0                       | 83.46                   | 4.20                               | 1.0          | 20                        | 1.88                  |
| CWDD-4  | SE corner of EPS pad (riprap armored) | 233.2                       | 211.20                  | NA-15"<br>Riprap                   | 16.0         | 20                        | 1.75                  |
| CWDD-5  | Facilities area                       | 21.2                        | 17.06                   | NA-6"<br>Riprap                    | 19.0         | 12                        | 1.12                  |

Key:

cfs cubic feet per second ft/sec feet per second

#### Sediment-Laden Water Collection Ditches

Sediment-laden water collection ditches will be used to collect runoff from disturbed areas and convey it to settling ponds. These ditches have been designed to carry runoff flows resulting from the 10-year, 24-hour storm event with one foot of freeboard. Sediment-laden water will be kept separate from clean water until after it is treated. Sediment-laden ditches will have a trapezoidal cross-section with side slopes of 3:1, and the bottom widths will vary to keep the peak flow velocity below 5.5 feet per second to minimize erosion as shown on Table 2.



Sediment-laden water collection ditches will have a non-erosive velocity that is less than that of clean water diversion ditches that are constructed in bedrock.

Sediment-laden water collection ditches, CD-1A/B, CD-4, and CD-8A/B, shown on the EPS Site Drainage Plan (Figure A) are designed to collect sediment-laden runoff from disturbed areas and route it to one of the settling ponds.

Table 2: EPS Water Management Plan Sediment-Laden Water Collection Ditch Summary

|         |                                   |                             | _                       | 10-year Storm Event<br>(1.60 inches) |           | _                         | oidal Ditch<br>ometry |
|---------|-----------------------------------|-----------------------------|-------------------------|--------------------------------------|-----------|---------------------------|-----------------------|
| Ditch # | Location                          | Drainage<br>Area<br>(acres) | Peak<br>Runoff<br>(cfs) | Peak<br>Velocity<br>(ft/sec)         | Slope (%) | Bottom<br>Width<br>(feet) | Total Depth (feet)    |
| CD-1A   | Facilities North (riprap armored) | 14.3                        | 10.33                   | 4.36                                 | 9.8       | 15                        | 1.15                  |
| CD-1B   | Facilities South                  | 5.0                         | 5.10                    | 5.04                                 | 20.4      | 12                        | 1.08                  |
| CD-4    | W end of mine lease               | 18.4                        | 16.17                   | 3.69                                 | 1.0       | 5                         | 1.64                  |
| CD-8A   | E half of EPS Pad                 | 55.0                        | 35.49                   | 3.24                                 | 0.5       | 3                         | 2.47                  |
| CD-8B   | W half of EPS Pad                 | 112.5                       | 70.57                   | 3.87                                 | 0.5       | 3                         | 3.01                  |

Key:

cfs cubic feet per second ft/sec feet per second

## **Settling Ponds**

The settling ponds have been designed to fully contain runoff from the 10-year, 24-hour storm event and approximately three years of sediment storage. The design details typical for all the settling ponds are included as Figure C. The trapezoidal emergency spillways with 3H:1V side slopes will safely handle flows from the 25-year 24-hour event with at least 0.3 feet of freeboard, when flowing at peak design capacity. Spillway channels may be armored with rip-rap, if required to ensure non-erosive velocities. The sizes of the settling ponds associated with the EPS project are summarized in Table 3. The settling ponds are designed to hold sediment-laden water. Below-grade settling ponds or sumps are located at low spots within open pits, and this water must be pumped out, allowed to infiltrate into the ground, or be evaporated over time. Water in



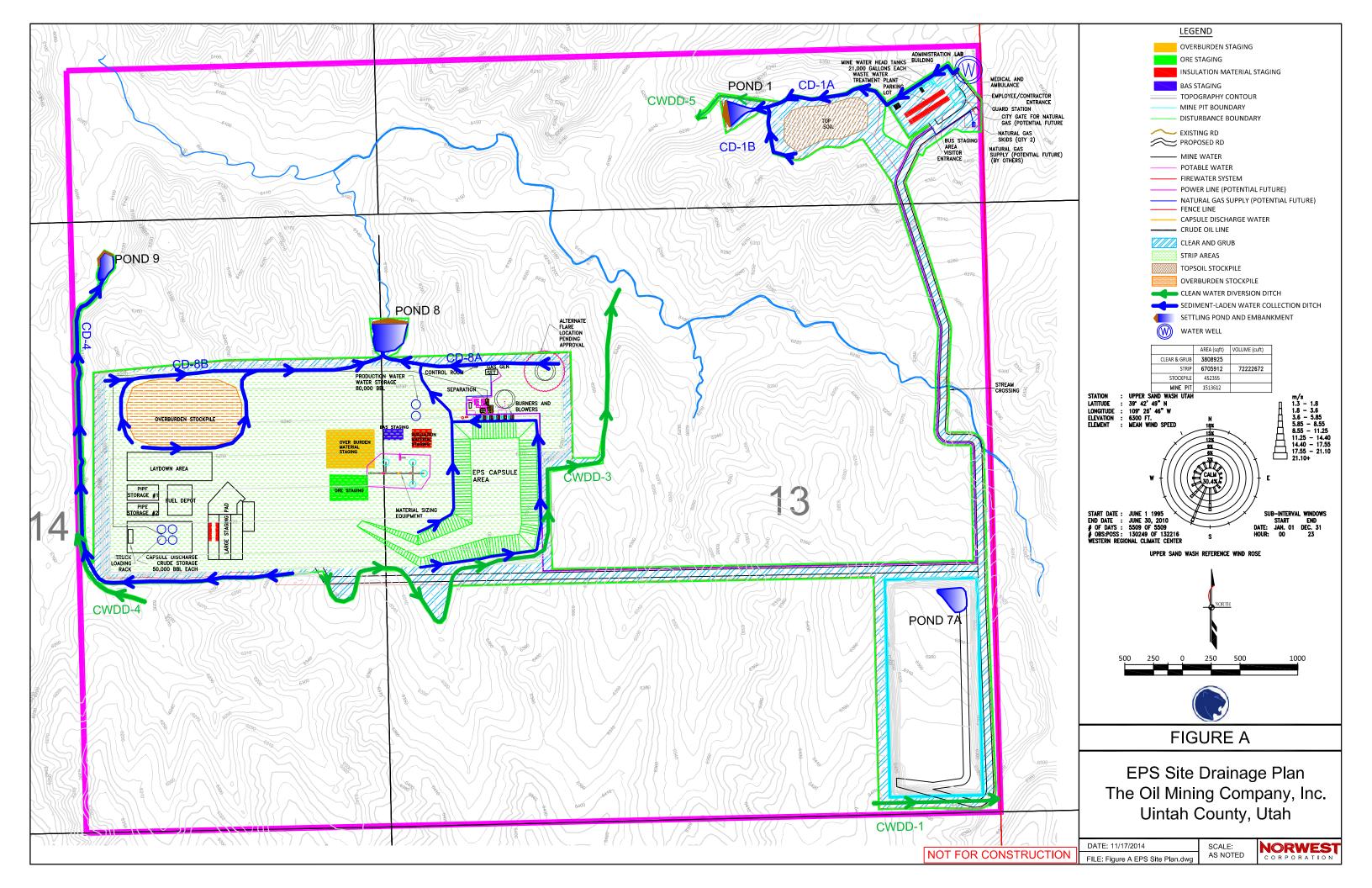
below-grade settling ponds cannot be returned to natural drainages by gravity alone as the sumps are located below the natural drainage grade.

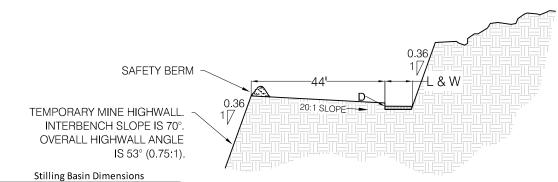
The settling ponds have been designed to have earthen embankment dams on the downstream side. Each earthen embankment dam has been designed with the following specifications in order to meet the requirements for Small, Low Hazard Dams established by the Utah Department of Natural Resources (UDNR Division of Water Rights, 2003):

- (1) A 10-foot (or less) dam height, including 3 feet of freeboard
- (2) Dam crest width of 12 feet
- (3) Total above-grade storage capacity of less than 20 acre-feet (AC-FT)
- (4) Embankment side slopes of 3:1

**Table 3: EPS Water Management Plan Pond Summary** 

| Pond # | Location                           | Description     | Curve<br>Number | Watershed<br>Area<br>(acres) | Total Runoff (acre-feet)  10-year Storm Event (1.60 inches) |
|--------|------------------------------------|-----------------|-----------------|------------------------------|-------------------------------------------------------------|
| 1      | Down gradient from facilities area | On channel pond | 92.7            | 24.8                         | 1.72                                                        |
| 7A     | Inside YR 1 Mine Pit               | In pit sump     | 94              | 39.1                         | 2.67                                                        |
| 8      | North of EPS Pad                   | On channel pond | 93.7            | 174.9                        | 11.87                                                       |
| 9      | Near western edge of mine lease    | On channel pond | 89.6            | 37.8                         | 2.35                                                        |

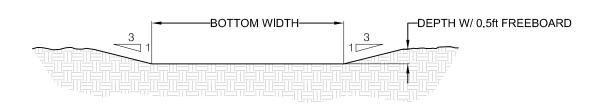

# **Summary**


Drainage control at the EPS site will consist of the diversion of upgradient flows around disturbed areas, and establishment of collection ditches within the disturbed facility areas which will flow to settling ponds. Other stormwater BMP strategies may be used to minimize runoff into the settling ponds.



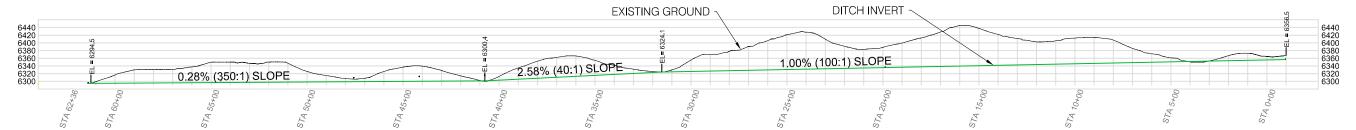
# References

- Bonin, G.M., et.al. 2004 revised 2006. NOAA Atlas 14 Precipitation-Frequency Atlas of the United States Volume 1 Version 5: Semiarid Southwest (Arizona, Southeast California, Nevada, New Mexico, Utah). NOAA, National Weather Service, Silver Spring, Maryland. <a href="http://hdsc.nws.noaa.gov/hdsc/pfds/pfds">http://hdsc.nws.noaa.gov/hdsc/pfds/pfds</a> map cont.html?bkmrk=ut, Accessed 12/16/13.
- Cardno-ENTRIX. 2013. Vegetation Survey and Protected Biological Resources Survey for The Oil Mining Company Inc. Parcel, Uintah County, Utah. June 2013.
- EPIC Engineering. 2013, Waters of the United States Jurisdictional Assessment, Report No. 001, Uintah County, Utah. Prepared by EPIC Engineering for TomCo Energy PLC, July 11, 2013, 168 p.
- Higginson, Brad; Jarnecke, Jeremy. 2007. Salt Creek BAER-2007 Burned Area Emergency Response. Provo, Utah: Uinta National Forest; Hydrology Specialist Report. 11p
- Natural Resource Conservation Service (NRCS), 2003, United States Department of Agriculture, Soil Survey of Uintah Area, Utah Parts of Daggett, Grand, and Uintah Counties. http://soildatamart.nrcs.usda.gov/Manuscripts/UT047/0/UT047.pdf Accessed 12/16/13
- Utah Department of Natural Resources Division of Water Rights. 2003. Dam Safety Guidelines for Small, Low Hazard Dams, 12 p. <a href="http://www.waterrights.utah.gov/daminfo/forms.asp">http://www.waterrights.utah.gov/daminfo/forms.asp</a> Accessed 12/16/13
- Warner C. R., Schwab, J. P., & Marshall, J. D. (2004), SEDCAD 4 Design Manual and User's Guide.

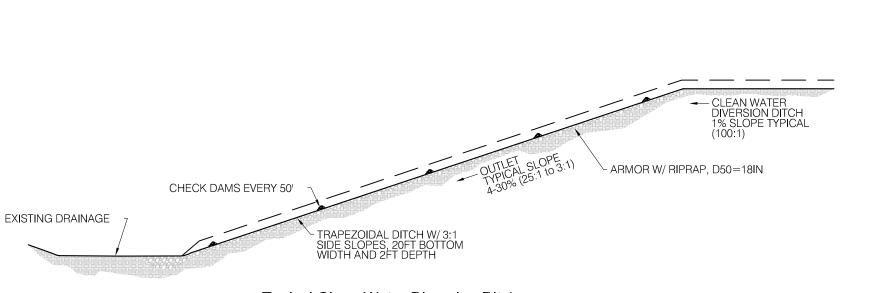




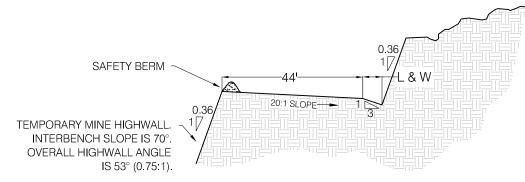

4- Length &


| 100-Yr 24- |                      | Length & |       |
|------------|----------------------|----------|-------|
| Hr Flow    |                      | Width    | Depth |
| (cfs)      | D <sub>50</sub> (ft) | (ft)     | (ft)  |
| 20         | 0.5                  | 13       | 3     |
| 10         | 0.5                  | 7        | 1.5   |
| 105        | 1                    | 16       | 4     |
| 230        | 1                    | 33       | 8     |
| 271        | 1                    | 40       | 9.6   |

Typical Highwall Clean Water Diversion
Ditch Stilling Basin Cross Section




Clean Water Diversion Ditch
Typical Cross Section


(SEE DITCH TABLE 1 FOR BOTTOM WIDTH AND DEPTH)



SW Clean Water Diversion Ditch Profile
(x2 VERTICAL EXAGGERATION)



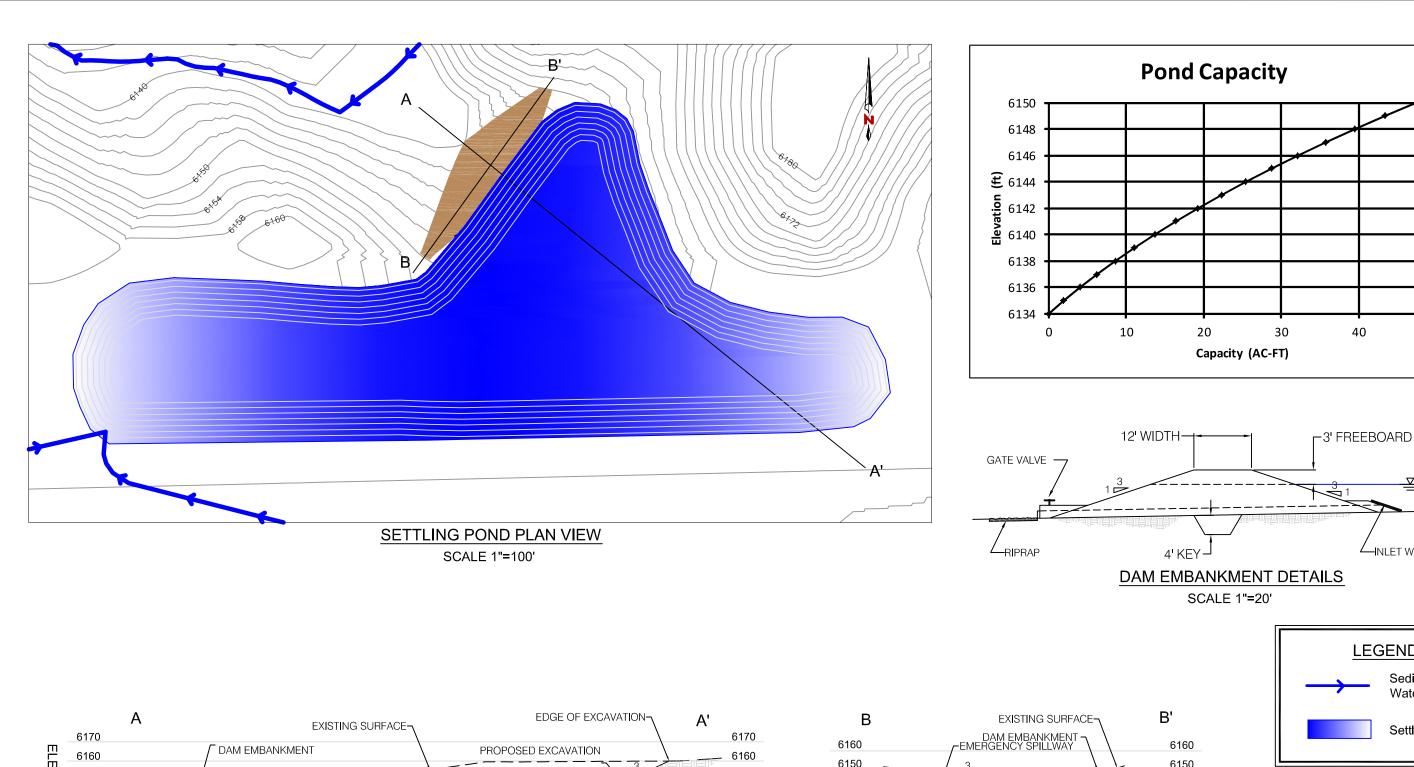
Typical Clean Water Diversion Ditch
Outlet Profile

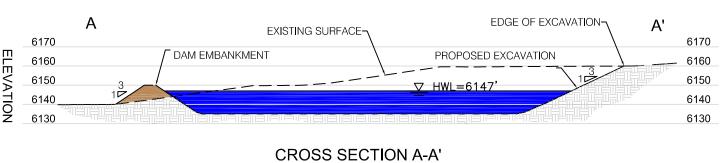


Typical Highwall Clean Water Diversion
Ditch Cross Section

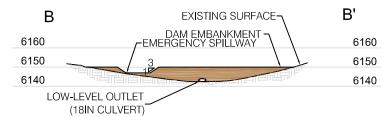


## FIGURE B

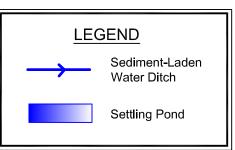

# **Typical Ditch Details**


The Oil Mining Company, Inc.
Uintah County, UT

NOT FOR CONSTRUCTION


ION DATE:

SCALE: NORWEST






**VERTICAL EXAGGERATION X2** 



**CROSS SECTION B-B' VERTICAL EXAGGERATION X2** 



INLET W/ SCREEN

50



# FIGURE C

**Typical Settling** Pond Detail The Oil Mining Company, Inc. Uintah County, UT

NOT FOR CONSTRUCTION

DATE: 11/17/2014 SCALE: FILE: FIG C POND4.DWG

NORWEST CORPORATION

## **APPENDIX B**

## STEEL SPECIFICATIONS: COLLECTION PLAN AND

**CAPSULE PIPING** 

#### ACR Steel Sales, LLC

PO Box 150, Valley Park, MO, 63088 • (636) 517-1420

#### **HOT ROLL BLACK STEEL**

#### Grade

<u>Commercial Quality</u>: Steel of this quality is produced for uses that involve simple bending or moderate forming. The steel can be bent flat on itself in any direction at room temperature. Designation CS Type B

#### **Chemical Composition**

| С | Mn         | Р | S | Al | Si | Cu         | Ni         | Cr | Мо | ٧ | Cb          | Ti | N |
|---|------------|---|---|----|----|------------|------------|----|----|---|-------------|----|---|
| 1 | .60<br>max |   |   |    |    | .20<br>max | .20<br>max |    |    |   | .008<br>max |    |   |

#### **Mechanical Property Requirements**

Yield Strength min. ksi: 30 to 50 Tensile Strength min. ksi: none Elongation in 2in.: 25% and over

#### **Recommended Processes**

1. Pickled dry: removes surface scale

2. Temper roll: reduced the tendency of the steel to coil break.

## ACR Steel Sales, LLC

PO Box 150, Valley Park, MO, 63088 • (636) 517-1420

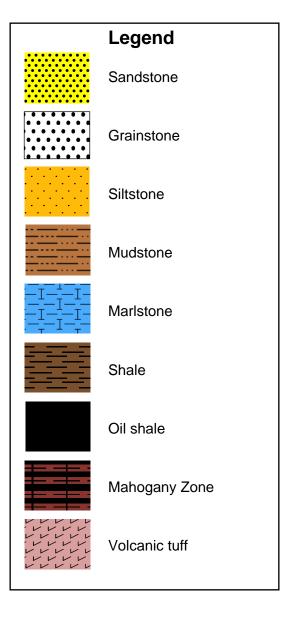
Specifications for material supplied to Red Leaf Resources. Delivered to Tinhorns Are Us, Tuttle, OK 11/03/2011

Hot Roll Black Steel .058 x 27.250" x coil

Weight: 9,360 lbs (2 coils)

CS Type B Pickled Dry Temper Rolled

Heat Number: 41125790 Chemical Properties


| С   | Mn  | Р   | S    | Al   | Si   | Cu   | Ni | Cr   | Мо | <b>V</b> | Cb | Ti | N |
|-----|-----|-----|------|------|------|------|----|------|----|----------|----|----|---|
| .06 | .32 | .01 | .005 | .026 | .030 | .090 |    | .060 |    | .001     |    |    |   |

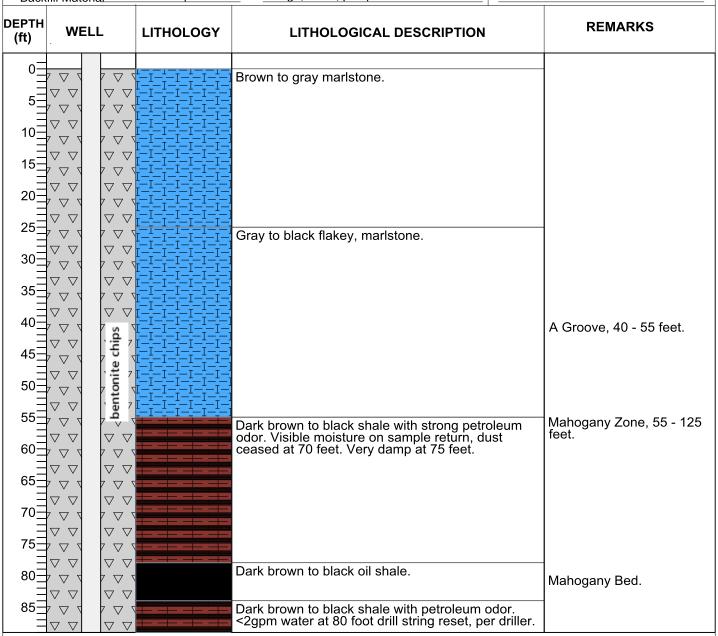
# APPENDIX C PROJECT MONITORING WELLS AND COREHOLES

# Appendix C Lithological Logs

MW-01, MW-02, MW-03, MW-04
Installed September 19th to October 9th, 2013

# The Oil Mining Company, Inc. Uintah County, Utah




Client The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-01

| Drilling Contractor Himes Drilling  □ Drilled by Sam Homedew  □ Logged By J.J. Brown  □ Drill Rig Truck-mounted Portadrill TKT  □ Drilling Method Rotary                                                    | Completion Date 10/09/2013  Drilling Fluid Air and foam  Borehole Depth 200'  Borehole Dia. (in) 6.25"                                                                                                                                                                     | Northing 4405433.9 Easting 654547.7 Surface Elev. (ft) 6092.0 TOC Elev. (ft) 6094.5 Stick-up/down 2.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 148' - 198' Backfill Material Bentonite chips | Backfill Interval 0' - 134.1'  Filter Material 6-9 Colorado Silica Sand  Filter Interval 140.4' - 200'  Seal Material Bentonite pellets  Seal Interval 134.'1 - 140.4'  Surface Seal Cement pad  Development Surge, air lift on 10/9/13  Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 150.5 10/1/2013 * DTW measured after well development  Notes:                          |



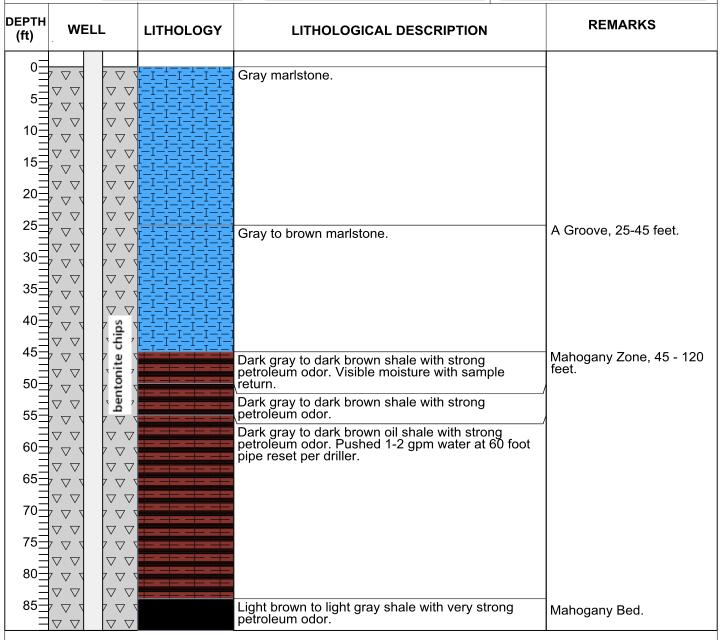
Client The Oil Mining Company

210-

**Project Holliday Block Groundwater Study** 



Well ID MW-01 Project No. LO-000080-0003-10TTO DEPTH **REMARKS** WELL **LITHOLOGY** LITHOLOGICAL DESCRIPTION (ft) Dark brown to black shale with petroleum odor. <2gpm water at 80 foot drill string reset, per driller. 90  $\nabla$  $\nabla$ Dark brown to black shale with occasional light brown to light gray claystone, medium petroleum 100 bentonite chips 105 110 Brown shale to marlstone with medium petroleum odor.  $\nabla$ 120 Brown to gray shale to marlstone with reducing petroleum odor and very fine chips. Possible Curly Tuff.  $\nabla$ 125 B Groove, 125 - 135 feet. Gray to brown marlstone, very fine chips. 130 Gray to light brown marlstone with dark brown to black fine sandstone. 150 155 Gray to brown marlstone. 160 Gray shale to marlstone with thin flaky chips Gray to black marlstone with gray sandstone. Mild petroleum odor. 170 Black to gray very fine sandstone. 175 180 Coarse gray marlstone with occasional fine sand. 185 190 Gray marlstone to shale. 200 205

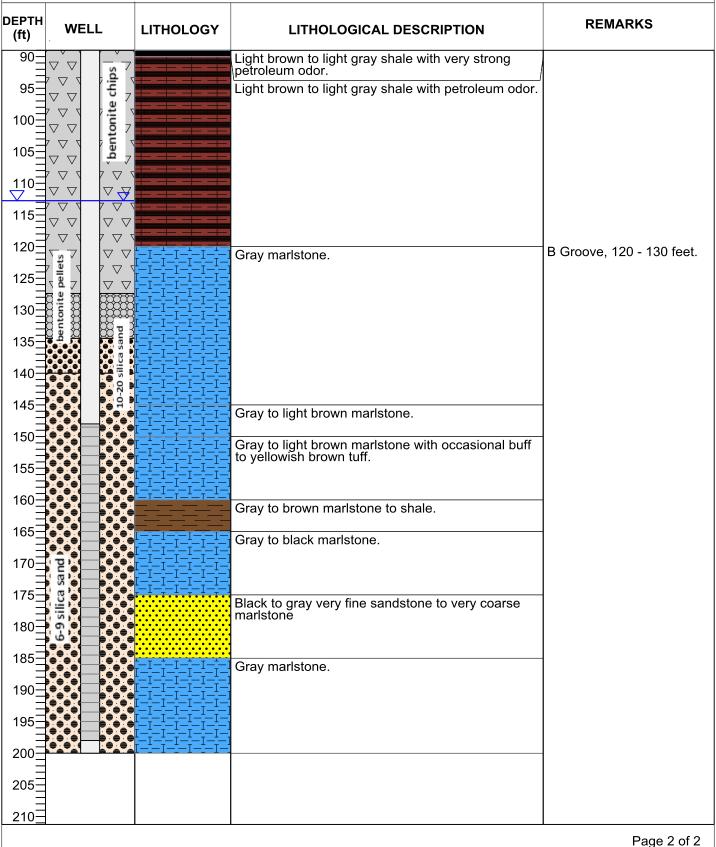

Client The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-02

| Drilling Contractor_ Himes Drilling  ☐ Drilled by Sam Homedew  ☐ Logged By J.J. Brown  ☐ Drill RigTruck-mounted Portadrill TKT  ☐ Drilling MethodRotary                                                       | Completion Date 10/08/2013  Drilling Fluid Air and foam  Borehole Depth 200'  Borehole Dia. (in) 6.25"                                                                                                                                                              | Northing 4403964.9 Easting 654602.0 Surface Elev. (ft) 6232.0 TOC Elev. (ft) 6234.5 Stick-up/down 2.5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  □ Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 148' - 198' Backfill Material Bentonite chips | Backfill Interval 0' - 127.4' Filter Material 6-9 Colorado Silica Sand Filter Interval 134.5' - 200' Seal Material Bentonite pellets Seal Interval 127.4' - 134.5' Surface Seal Cement pad Development Surge, air lift on 10/9/13 Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 115.3 10/1/2013 * DTW measured after well development  Notes:                          |



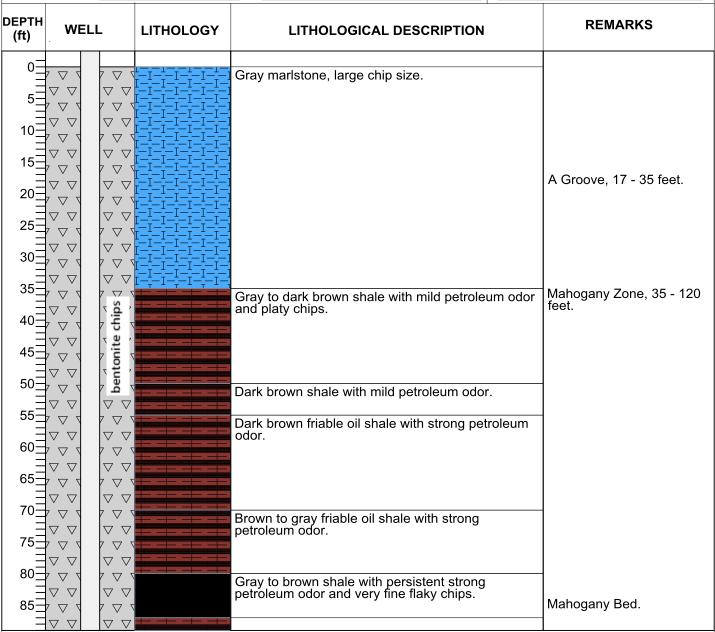

Client The Oil Mining Company

**Project Holliday Block Groundwater Study** 



Well ID MW-02 Project No. LO-000080-0003-10TTO




Client The Oil Mining Company

**Project Holliday Block Groundwater Study** 



Well ID MW-03

| Drilling Contractor Himes Drilling Drilled by Sam Homedew Logged By J.J. Brown Drill Rig Truck-mounted Portadrill TKT Drilling Method Rotary                                                                      | Completion Date 10/09/2013` Drilling Fluid Air and foam Borehole Depth 200' Borehole Dia. (in) 6,25"                                                                                                                                                                         | Northing 4405418.3 Easting 655179.6 Surface Elev. (ft) 6132.4 TOC Elev. (ft) 6134.9 Stick-up/down 2.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  ■ Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 117.3' - 197.3' Backfill Material Bentonite chips | Backfill Interval 0' - 110.8'  Filter Material 6-9 Colorado Silica Sand  Filter Interval 117.3' - 199.3'  Seal Material Bentonite pellets  Seal Interval 102.6' - 110.8'  Surface Seal Cement pad  Development Surge, air lift on 10/9/13  Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 129.4 10/1/2013 * DTW measured after well development  Notes:                          |



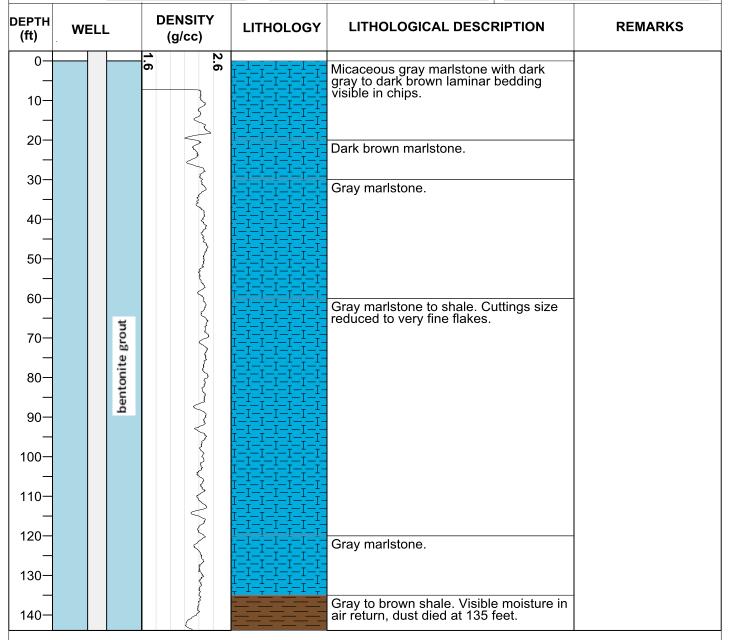
Client The Oil Mining Company

210-

**Project Holliday Block Groundwater Study** 



Well ID MW-03 Project No. LO-000080-0003-10TTO DEPTH **REMARKS** WELL **LITHOLOGY** LITHOLOGICAL DESCRIPTION (ft) Light gray to dark brown marlstone and shale with odor and chips as above. 90  $\nabla$ Gray to dark brown marlstone and shale with odor and chips as above. 100 Gray to dark brown shale with odor and chips as 105 Gray to dark brown marlstone and shale with odor and chips as above. 110 Gray to dark brown shale with odor as above. 115 120 Wavy Tuff, 120 - 123 feet. Buff colored tuff. Dark gray coarse marlstone, very fine chips, poor <del>12</del>5 B Groove, 123 - 133 feet. strength. 130 Dark gray weak coarse marlstone with trace very fine sandstone. Tangy odor. Coarse silt and very fine pulverized sand in cuttings with low plasticity. 135 140 145 150-155 160-Gray to brown marlstone and shale. 165 170 175 180 Dark gray to brown shale. 185 190 Light gray shale with light gray to white marlstone with low competency. 195 Gray marlstone. 200 205


Client The Oil Mining Company

**Project** Holliday Block Groundwater Study



Well ID MW-04

| Drilling Contractor Himes Drilling Drilled by Sam Homedew Logged By J.J. Brown Drill Rig Truck-mounted Portadrill TKT Drilling Method Rotary                                                                        | Completion Date 10/08/2013  Drilling Fluid Air and foam  Borehole Depth 1,100'  Borehole Dia. (in) 8.75"                                                                                                                                                | Northing 4405549.0 Easting 656647.8 Surface Elev. (ft) 6437.6 TOC Elev. (ft) 6440.1 Stick-up/down 2.5 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 1,100' Casing Type Carbon Steel Casing Joints Threaded / Flush Casing Dia. (in) 4"  □ Screen Type Carbon Steel  Slot Size (in) 0.0 Screen Interval 1058' - 1100' Backfill Material Bentonite grout | Backfill Interval 0' - 786' Filter Material 6-9 Colorado Silica Sand Filter Interval 798' - 1100' Seal Material Bentonite pellets Seal Interval 786' - 791' Surface Seal Cement pad Development Surge, air lift on 10/9/13 Surge, airl lift on 10/10/13 | DTW (ft. btoc) 699.5 9/25/2013 * DTW measured after well development  Notes:                          |



The Oil Mining Company Client

Holliday Block Groundwater Study Project \_





| DEPTH (ft) | WELL            | DENSITY<br>(g/cc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LITHOLOGY   | LITHOLOGICAL DESCRIPTION                                                                                                                       | REMARKS                           |
|------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 150-       |                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | Gray to brown shale. Visible moisture in air return, dust died at 135 feet.                                                                    |                                   |
|            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> | Gray marlstone.                                                                                                                                |                                   |
| 160-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray to brown marlstone.                                                                                                                       |                                   |
|            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray to brown shale.                                                                                                                           |                                   |
| 170-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to gray shale with mild petroleum odor.                                                                                             |                                   |
| 180-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray marlstone. Petroleum odor noticeable during drilling.                                                                                     |                                   |
|            |                 | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Dark brown to gray shale with mild petroleum odor.                                                                                             |                                   |
| 190-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray marlstone to shale.                                                                                                                       |                                   |
| 200-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to gray oil shale, micaceous.                                                                                                       | Wavy Tuff, 198 - 200              |
| 200        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =           | Dark brown to black oil shale.                                                                                                                 | feet.<br>A Groove, 200 - 213      |
| 210-       |                 | , comment of the comm |             | Dark brown to black friable oil shale with pulverized cuttings.                                                                                | feet.                             |
| 220-       | out             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to gray oil shale. Petroleum odor noticeable during drilling.                                                                       | Mahogany Zone, 213 -<br>300 feet. |
| 230-       | bentonite grout | \[ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Gray shale to marlstone.                                                                                                                       |                                   |
| 4          | tol             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                |                                   |
| 240-       | pen             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                |                                   |
| 250-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to gray oil shale. Possible<br>Mahogany Bed.                                                                                        |                                   |
|            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to black oil shale.                                                                                                                 | Mahogany Red                      |
| 260-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to black oil shale.                                                                                                                 | Mahogany Bed,<br>258-264 feet.    |
| 270-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Dark brown to black oil shale.                                                                                                                 |                                   |
| 280-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray to light gray shale.                                                                                                                      |                                   |
| -          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray to light gray shale to marlstone.                                                                                                         |                                   |
| 290-       |                 | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                                                                                                                                                |                                   |
| 300-       |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Gray shale to marlstone.                                                                                                                       | Curly Tuff., 300 - 303            |
| 310-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Gray marlstone with occasional very fine-grained, friable (crumbles under pressure) dark brown sandstone, strong petroleum odor when crumbled. | Feet. B Groove, 303 - 313 feet.   |
| 320-       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Light gray to gray shale to marlstone with occasional pink to orange marlstone to claystone.                                                   |                                   |
|            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                                                                                                                                | Page 2 of 6                       |

Client \_ The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-04

| OEPTH<br>(ft)     | WELL |                 | DENSITY<br>(g/cc) | LITHOLOGY | LITHOLOGICAL DESCRIPTION                                                                                 | REMARKS |
|-------------------|------|-----------------|-------------------|-----------|----------------------------------------------------------------------------------------------------------|---------|
| 250               |      |                 | 2.6               |           | Light gray to gray shale to marlstone with occasional pink to orange marlstone to claystone.             |         |
| 350-              |      |                 |                   |           | Gray coarse marlstone to very fine sandstone with occasional very fine-grained, friable black sandstone. |         |
| 370-              |      |                 |                   |           | Gray very fine mudstone with occasional very fine-grained, friable black sandstone.                      |         |
| 380-              |      |                 |                   |           | Gray micaceous mudstone and marlstone. Homogenous grain size.                                            |         |
| 390-              |      |                 |                   |           |                                                                                                          |         |
| 410-              |      |                 |                   |           | Gray coarse marlstone to very fine sandstone with occasional very fine-grained, friable black sandstone. |         |
| 420-              |      | bentonite grout |                   |           | Gray coarse marlstone to very fine sandstone.                                                            |         |
| 440-              |      | bento           |                   |           |                                                                                                          |         |
| 450—<br>—<br>460— |      |                 |                   |           | Gray coarse, micaceous mudstone with occasional white marlstone to claystone.                            |         |
| 470—<br>480—      |      |                 |                   |           |                                                                                                          |         |
| 490-              |      |                 |                   |           | Gray coarse, micaceous mudstone with occasional white siltstone to claystone, poorly lithified.          |         |
| 500               |      |                 |                   |           | Gray coarse, micaceous mudstone with occasional white siltstone to claystone.                            |         |
| 510—<br>—<br>520— |      |                 |                   |           | White to gray siltstone with laminated beds, cemented but friable. Medium chip size.                     |         |
| 530-              |      |                 |                   |           | Gray fine to medium sandstone.                                                                           |         |

Client \_ The Oil Mining Company

Project Holliday Block Groundwater Study





| DEPTH (ft) | WELL            | DENSITY<br>(g/cc)                       | LITHOLOGY | LITHOLOGICAL DESCRIPTION                                                      | REMARKS     |
|------------|-----------------|-----------------------------------------|-----------|-------------------------------------------------------------------------------|-------------|
| 540-       |                 | 2.6                                     |           | Gray fine to medium sandstone.                                                |             |
|            |                 | 7000                                    |           | Gray coarse siltstone.                                                        |             |
| 550        |                 | }                                       |           | Gray coarse, micaceous mudstone with occasional white siltstone to claystone. |             |
| 560-       |                 |                                         |           | occasional wine cheterio to chapeterior                                       |             |
| F70        |                 | *                                       |           |                                                                               |             |
| 570        |                 |                                         |           |                                                                               |             |
| 580-       |                 |                                         |           |                                                                               |             |
| 590        |                 | ***                                     |           |                                                                               |             |
|            |                 | }                                       |           | Coarse siltstone, large chip size.                                            |             |
| 600-       |                 | }                                       |           |                                                                               |             |
| 610-       |                 |                                         |           | Gray coarse siltstone to very fine sandstone.                                 |             |
|            | ort             |                                         |           | Gray siltstone.                                                               |             |
| 620        | te gr           | }                                       |           | <b>,</b>                                                                      |             |
| 630-       | bentonite grout | <b>\</b>                                |           |                                                                               |             |
|            | þe              | -AAA A                                  |           |                                                                               |             |
| 640        |                 | £ 2                                     |           |                                                                               |             |
| 650-       |                 | }                                       |           |                                                                               |             |
| 660        |                 |                                         |           |                                                                               |             |
|            |                 | Zes S                                   |           | White to buff grainstone in thin interbeds with dark brown to gray            |             |
| 670-       |                 |                                         |           | interbeds with dark brown to gray siltstone.                                  |             |
| 680        |                 |                                         |           | Gray Shale with occasional white grainstone.                                  |             |
|            |                 | 44                                      |           | grainstone.                                                                   |             |
| 690        |                 | \ \frac{1}{2}                           |           |                                                                               |             |
| 700-       |                 | \$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |           |                                                                               |             |
|            |                 |                                         |           |                                                                               |             |
| 710-       |                 |                                         |           |                                                                               |             |
| 720-       |                 |                                         |           | Interbedded coarse gray siltstone and                                         |             |
|            |                 | 3                                       |           | Interbedded coarse gray siltstone and very fine-grained gray sandstone.       |             |
|            |                 |                                         |           |                                                                               | Page 4 of 6 |

The Oil Mining Company Client



| DEPTH<br>(ft) | WELL          | DENSITY<br>(g/cc) | LITHOLOGY                             | LITHOLOGICAL DESCRIPTION                                                                                 | REMARKS |
|---------------|---------------|-------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|---------|
| _             |               | 2.6               |                                       | Interbedded coarse gray siltstone and very fine-grained gray sandstone.                                  |         |
| 740—          | grout         |                   |                                       | White grainstone.                                                                                        |         |
| 750—<br>760—  | bentonite     |                   |                                       | Gray coarse, micaceous mudstone with occasional white grainstone.                                        |         |
| 770—          | pellets       |                   |                                       |                                                                                                          |         |
| 780—          | ntonite       |                   |                                       | Poorly-cemented buff to white fine grainstone                                                            |         |
| 790-          | ber<br>Basand |                   |                                       | Gray coarse, micaceous mudstone with occasional white grainstone.                                        |         |
| 800-          | 20 silica     |                   |                                       | Gray coarse, micaceous mudstone and very fine gray to black sandstone, with occasional white grainstone. |         |
| 810-          | 10-           |                   |                                       | occasional write grainstone.                                                                             |         |
| 820-          |               |                   |                                       | White grainstone with visual oil remnant in interstitial spaces between                                  |         |
| 830-          |               |                   |                                       | spherical nodules.  Gray coarse, micaceous mudstone.                                                     |         |
| 840-          |               | <b>\</b>          |                                       |                                                                                                          |         |
| 850—          |               |                   |                                       | Gray siltstone and fine-grained gray sandstone. Increase in water production per driller.                |         |
| 860-          |               |                   | · · · · · · · · · · · · · · · · · · · | Gray coarse, micaceous mudstone with occasional white grainstone. Drill water                            |         |
| 870-          | ga san        |                   |                                       | estimated at 3-5 gpm per driller.                                                                        |         |
| 880—          | ilis 6-6      |                   |                                       |                                                                                                          |         |
| 890—          |               |                   |                                       | Gray coarse siltstone interbedded with grainstone.                                                       |         |
| 900-          |               |                   |                                       |                                                                                                          |         |
| 910-          |               |                   |                                       |                                                                                                          |         |
| 920—          |               |                   |                                       | Gray siltstone with fine grained                                                                         |         |

Client \_ The Oil Mining Company

Project Holliday Block Groundwater Study





| EPTH<br>(ft) | WELL   | DENSITY<br>(g/cc) | LITHOLOGY                                         | LITHOLOGICAL DESCRIPTION                                                        | REMARKS     |
|--------------|--------|-------------------|---------------------------------------------------|---------------------------------------------------------------------------------|-------------|
| 930-         |        | 2.6               |                                                   | Gray siltstone with fine grained sandstone and grainstone.                      |             |
| 940          |        |                   |                                                   | Gray siltstone.                                                                 |             |
| 940          |        |                   |                                                   | Gray siltstone with thin interheds of                                           |             |
| 950          |        |                   |                                                   | Gray siltstone with thin interbeds of coarse black siltstone.                   |             |
| 960—         |        |                   |                                                   | Gray shale. Increase in water production per driller.                           |             |
| -            |        |                   |                                                   |                                                                                 |             |
| 970—<br>—    |        |                   |                                                   |                                                                                 |             |
| 980-         |        |                   |                                                   | Gray siltstone interbedded with very                                            |             |
| 990<br>990   |        |                   |                                                   | Gray siltstone interbedded with very fine-grained gray sandstone.               |             |
| _            |        |                   |                                                   |                                                                                 |             |
| 000          | pu     |                   |                                                   |                                                                                 |             |
| _<br>_010_   | Ca sa  |                   |                                                   | Gray micaceous shale with very fine-grained sandstone in poorly-defined lenses. |             |
| -            | lis 6- |                   |                                                   | poorly-defined lenses.                                                          |             |
| 020 <u> </u> | 9      |                   |                                                   |                                                                                 |             |
| 030-         |        |                   |                                                   |                                                                                 |             |
| 040—         |        |                   |                                                   | Very fine-grained sandstone with lens of buff lime mudstone.                    |             |
| -            |        |                   |                                                   |                                                                                 |             |
| 050          |        |                   |                                                   | Gray siltstone and fine-grained gray sandstone.                                 |             |
| 060          |        |                   |                                                   |                                                                                 |             |
| 070          |        | <b>*</b>          |                                                   |                                                                                 |             |
| 070—<br>—    |        |                   |                                                   | Beige to tan dolomite.                                                          |             |
| 080          |        |                   | · <del>· · · · · · · · · · · · · · · · · · </del> | Gray very fine sandstone.                                                       |             |
| 090          |        |                   |                                                   |                                                                                 |             |
| -            |        |                   |                                                   |                                                                                 |             |
| 100          |        |                   |                                                   |                                                                                 |             |
| 110-         |        |                   |                                                   |                                                                                 |             |
| 120          |        |                   |                                                   |                                                                                 |             |
| 120—         |        |                   |                                                   |                                                                                 | Page 6 of 6 |



| Borehole ID | From (ft) | <b>To (ft)</b> | Diameter | Casing |
|-------------|-----------|----------------|----------|--------|
| HB-007      |           |                | HQ       | cement |
| HB-007      | 10<br>20  | 20<br>29       | HQ       | N      |
| HB-007      | 29        | 35             | HQ       | N<br>N |
| HB-007      | 35        | 45             | HQ<br>HQ | N<br>N |
| HB-007      | 45        | 51             | HQ       | N      |
| HB-007      | 51        | 55             | HQ       | N      |
| HB-007      | 55        | 65             | HQ       | N      |
| HB-007      | 65        | 75             | HQ       | N      |
| HB-007      | 75        | 85             | HQ       | N      |
| HB-007      | 85        | 95             | HQ       | N      |
| HB-007      | 95        | 105            | HQ       | N      |
| HB-007      | 105       | 115            | HQ       | N      |
| HB-007      | 115       | 125            | HQ       | N      |
| HB-007      | 125       | 135            | HQ       | N      |
| HB-007      | 135       | 145            | HQ       | N      |
| HB-007      | 145       | 155            | HQ       | N      |
| HB-007      | 155       | 165            | HQ       | N      |
| HB-007      | 164.60    | 174.60         | HQ       | N      |
| HB-007      | 174.60    | 184.60         | HQ       | N      |
| HB-007      | 184.60    | 194.60         | HQ       | N      |
| HB-007      | 194.60    | 204.60         | HQ       | N      |
| HB-007      | 204.60    | 214.60         | HQ       | N      |
| HB-007      | 214.60    | 224.60         | HQ       | N      |
| HB-007      | 224.60    | 234.60         | HQ       | N      |
| HB-007      | 234.60    | 244.60         | HQ       | N      |
| HB-007      | 244.60    | 254.60         | HQ       | N      |
| HB-007      | 254.60    | 264.60         | HQ       | N      |
| HB-007      | 264.60    | 274.60         | HQ       | N      |
| HB-007      | 274.60    | 284.60         | HQ       | N      |
| HB-007      | 284.60    | 294.60         | HQ       | N      |
| HB-007      | 294.60    | 304.60         | HQ       | N      |
| HB-007      | ЕОН       |                |          | N      |
|             |           |                |          |        |
| HB-001      | 0.00      | 10.00          | <u> </u> | V      |
| HB-001      | 10.00     | 14.60          | HQ<br>HQ | Y<br>N |
| HB-001      | 14.60     | 24.60          | HQ       | N<br>N |
| HB-001      | 24.60     | 34.60          | HQ       | N      |
| HB-001      | 34.60     | 44.60          | HQ       | N      |
| HB-001      | 44.60     | 54.60          | HQ       | N      |
| HB-001      | 54.60     | 64.60          | HQ       | N      |
| HB-001      | 64.60     | 74.60          | HQ       | N      |
| HB-001      | 74.60     | 84.60          | HQ       | N      |
| HB-001      | 84.60     | 94.60          | HQ       | N      |
| HB-001      | 94.60     | 114.60         | HQ       | N      |
| HB-001      | 114.60    | 124.60         | HQ       | N      |
| HB-001      | 124.60    | 134.60         | HQ       | N      |

| Borehole ID      | From (ft)            | To (ft)        | Diameter | Casing |
|------------------|----------------------|----------------|----------|--------|
| HB-001           | 134.60               | 144.60         | HQ       | N      |
|                  |                      |                |          |        |
| HB-001           | 144.60               | 154.60         | HQ       | N      |
| HB-001           | 154.60               | 164.60         | HQ       | N      |
| HB-001           | ЕОН                  |                |          |        |
|                  |                      |                |          | N      |
|                  | 0.00                 | 0.00           |          | N      |
| HB-005           | 0.00                 | 3.20           | HQ       | У      |
| HB-005           | 3.20                 | 13.20          | HQ       | N      |
| HB-005           | 13.20                | 23.00          | HQ       | N      |
| HB-005           | 23.00                | 25.00          | HQ       | N      |
| HB-005           | 25.00                | 35.00          | HQ       | N      |
| HB-005           | 35.00                | 45.00          | HQ       | N      |
| HB-005           | 45.00                | 55.00          | HQ       | N      |
| HB-005           | 55.00                | 65.00          | HQ       | N      |
| HB-005           | 65.00                | 75.00          | HQ       | N      |
| HB-005           | 75.00                | 85.00          | HQ       | N      |
| HB-005           | 85.00                | 95.00          | HQ       | N      |
| HB-005           | 95.00                | 105.00         | HQ       | N      |
| HB-005           | 105.00               | 115.00         | HQ       | N      |
| HB-005           | 115.00               | 125.00         | HQ       | N      |
| HB-005           | 125.00               | 135.00         | HQ       | N      |
| HB-005           | 135.00               | 145.00         | HQ       | N      |
| HB-005           | 145.00               | 155.00         | HQ       | N      |
| HB-005           | 155.00               | 165.00         | HQ<br>HQ | N<br>N |
| HB-005<br>HB-005 | 165.00<br><b>EOH</b> | 175.00         | пц       | N      |
| ПБ-003           | EOH                  |                |          | IN     |
|                  |                      |                |          |        |
| HB-008           | 0.00                 | 16.90          | HQ       | Y      |
| HB-008           | 16.90                | 25.00          | HQ       | N      |
| HB-008           | 25.00                | 30.00          | HQ       | N      |
| HB-008           | 30.00                | 40.00          | HQ       | N      |
| HB-008           | 40.00                | 45.00          | HQ       | N      |
| HB-008           | 45.00                | 55.00          | HQ       | N      |
| HB-008           | 55.00                | 65.00          | HQ       | N      |
| HB-008           | 65.00                | 75.00          | HQ       | N      |
| HB-008           | 75.00                | 85.00          | HQ       | N      |
| HB-008           | 85.00                | 95.00          | HQ       | N      |
| HB-008           | 95.00                | 105.00         | HQ       | N      |
| HB-008           | 105.00               | 115.00         | HQ       | N      |
| HB-008           | 115.00               | 125.00         | HQ       | N      |
| HB-008           | 125.00               | 130.00         | HQ       | N      |
| HB-008           | 130.00               | 135.00         | HQ       | N      |
| HB-008           | 135.00               | 145.00         | HQ       | N      |
| HB-008           | 145.00               | 155.00         | HQ       | N      |
|                  | EOH                  |                |          |        |
|                  |                      |                |          |        |
|                  |                      |                |          |        |
|                  |                      |                |          |        |
| LID 000          | 0.00                 | 20.00          | шО       | V      |
| HB-009<br>HB-009 | 0.00                 | 20.00          | HQ<br>HQ | Y<br>N |
| HB-009           | 20.00<br>30.00       | 30.00<br>40.00 | HQ       | N N    |
| HD-009           | 30.00                | 40.00          | пα       | IN     |

| Borehole ID      | From (ft)        | To (ft)          | Diameter | Casing |
|------------------|------------------|------------------|----------|--------|
|                  |                  |                  |          |        |
| UP 000           | 40.00            | 45.00            | ШО       | NI     |
| HB-009           | 40.00            | 45.00            | HQ<br>HQ | N<br>N |
| HB-009<br>HB-009 | 45.00<br>50.00   | 50.00            | HQ       | N<br>N |
| HB-009           | 60.00            | 60.00<br>70.00   | HQ       | N<br>N |
| HB-009           | 70.00            | 80.00            | HQ       | N      |
| HB-009           | 80.00            | 90.00            | HQ       | N      |
| HB-009           | 90.00            | 100.00           | HQ       | N      |
| HB-009           | 100.00           | 110.00           | HQ       | N      |
| HB-009           | 110.00           | 120.00           | HQ       | N      |
| HB-009           | 120.00           | 130.00           | HQ       | N      |
| HB-009<br>HB-009 | 130.00<br>140.00 | 140.00<br>150.00 | HQ<br>HQ | N<br>N |
| HB-009           | 150.00           | 160.00           | HQ       | N<br>N |
| HB-009           | 160.00           | 170.00           | HQ       | N      |
| HB-009           | 170.00           | 180.00           | HQ       | N      |
|                  | EOH              |                  |          |        |
|                  |                  |                  |          |        |
| LID occ          | 0.00             | 00.00            |          | V      |
| HB-006<br>HB-006 | 0.00<br>20.00    | 20.00<br>30.00   |          | Y<br>N |
| HB-006           | 30.00            | 40.00            |          | N      |
| HB-006           | 40.00            | 45.00            |          | N      |
| HB-006           | 45.00            | 55.00            |          | N      |
| HB-006           | 55.00            | 65.00            |          | N      |
| HB-006           | 65.00            | 75.00            |          | N      |
| HB-006           | 75.00            | 85.00            |          | N      |
| HB-006           | 85.00            | 95.00            |          | N      |
| HB-006           | 95.00            | 105.00           |          | N      |
| HB-006           | 105.00           | 115.00           |          | N      |
| HB-006           | 115.00           | 125.00           |          | N      |
| HB-006           | 125.00           | 135.00           |          | N      |
| HB-006           | 135.00           | 145.00           |          | N      |
| HB-006           | 145.00           | 155.00           |          | N      |
| HB-006           | 155.00           | EOH              |          |        |
|                  |                  |                  |          |        |
|                  |                  |                  |          |        |
|                  |                  |                  |          |        |
|                  |                  |                  |          |        |
| HB-002           | 0.00             | 15.00            |          | Y      |
| HB-002           | 15.00            | 25.00            |          | N      |
| HB-002           | 25.00            | 35.00            |          | N      |
| HB-002           | 35.00            | 45.00            |          | N<br>N |
| HB-002           | 45.00            | 55.00            |          | N<br>N |
| HB-002           | 55.00            | 65.00            |          | N<br>N |
| HB-002           | 65.00            | 66.60            |          | N<br>N |
| HB-002<br>HB-002 | 66.60<br>75.00   | 75.00<br>85.00   |          | N<br>N |
| HB-002           | 85.00            | 95.00            |          | N<br>N |
| HB-002           | 95.00            | 105.00           |          | N      |
| HB-002           | 105.00           | 115.00           |          | N      |
| HB-002           | 115.00           | 125.00           |          | N      |
| HB-002           | 125.00           | 135.00           |          | N      |
| HB-002           | 135.00           | 145.00           |          | N      |
| HB-002           | 145.00           | 155.00           |          | N      |
| HB-002           | 155.00           | 165.00           |          | N      |
|                  | . 55.50          | . 55.55          |          |        |

| _                |                  |                  |          | 1      |
|------------------|------------------|------------------|----------|--------|
| Borehole ID      | From (ft)        | To (ft)          | Diameter | Casing |
| HB-002           | 165.00           | 175.00           |          | N      |
| HB-002           | 175.00           | 185.00           |          | N      |
| HB-002           | 185.00           | 195.00           |          | N      |
| HB-002           | 195.00           | 205.00           |          | N      |
| HB-002           | 205.00           | 215.00           |          | N      |
| HB-002           | 215.00           | EOH              |          |        |
|                  |                  |                  |          |        |
|                  |                  |                  |          |        |
| HB-003           | 0.00             | 5.00             |          | Υ      |
| HB-003           | 5.00             | 15.00            |          | N      |
| HB-003           | 15.00            | 25.00            |          | N      |
| HB-003           | 25.00            | 35.00            |          | N      |
| HB-003           | 35.00            | 45.00            |          | N      |
| HB-003           | 45.00            | 55.00            |          | N      |
| HB-003           | 55.00            | 65.00            |          | N      |
| HB-003           | 65.00            | 75.00            |          | N      |
| HB-003           | 75.00            | 85.00            |          | N      |
| HB-003           | 85.00            | 95.00            |          | N      |
| HB-003           | 95.00            | 105.00           |          | N<br>N |
| HB-003<br>HB-003 | 105.00<br>115.00 | 115.00<br>125.00 |          | N<br>N |
| HB-003           | 125.00           | 135.00           |          | N      |
| HB-003           | 135.00           | 145.00           |          | N      |
| HB-003           | 145.00           | EOH              |          | N      |
| HB-003           |                  |                  |          | N      |
|                  |                  |                  |          |        |
|                  |                  |                  |          |        |
| HB-004           | 0.00             | 45.00            |          | Υ      |
| HB-004           | 45.00            | 55.00            |          | N      |
| HB-004           | 55.00            | 59.00            |          | N      |
| HB-004           | 59.00            | 65.00            |          | N      |
| HB-004           | 65.00            | 75.00            |          | N      |
| HB-004           | 75.00            | 85.00            |          | N      |
| HB-004           | 85.00            | 95.00            |          | N      |
| HB-004           | 95.00            | 105.00           |          | N      |
| HB-004           | 105.00           | 115.00           |          | N      |
| HB-004           | 115.00           | 125.00           |          | N      |
| HB-004           | 125.00           | 135.00           |          | N      |
| HB-004           | 135.00           | 145.00           |          | N      |
| HB-004           | 145.00           | 155.00           |          | N      |
| HB-004           | 155.00           | 165.00           |          | N      |
| HB-004           | 165.00           | 175.00           |          | N      |
| HB-004           | 175.00           | 185.00           |          | N      |
| HB-004           | 185.00           | 195.00           |          | N      |
| HB-004           | 195.00           |                  |          |        |

#### **Field Location and Depth of Coreholes**

|             |                     |                    |            |              | 5.             |           |         |             |
|-------------|---------------------|--------------------|------------|--------------|----------------|-----------|---------|-------------|
| Borehole ID | Northing<br>(Final) | Easting<br>(Final) | Depth (Ft) | Date Started | Date completed | Elevation | Azimuth | Inclination |
| HB-001      | 4403904             | 656430             | 164.60     | 10/30/2010   | 10/30/2010     | 1961.00   | 0.00    | 90.00       |
| HB-002      | 4403947             | 655104             | 215.00     | 11/9/2010    | 11/9/2010      | 1929.00   | 0.00    | 90.00       |
| HB-003      | 4403958             | 654604             | 145.00     | 11/10/2010   | 11/10/2010     | 1835.00   | 0.00    | 90.00       |
| HB-004      | 4404839             | 654575             | 195.00     | 11/11/2010   | 11/12/2010     | 1889.00   | 0.00    | 90.00       |
| HB-005      | 4404819             | 655383             | 175.00     | 11/1/2010    | 11/2/2010      | 1881.00   | 0.00    | 90.00       |
| HB-006      | 4404092             | 655730             | 155.00     | 11/7/2010    | 11/8/2010      | 1928.00   | 0.00    | 90.00       |
| HB-007      | 4405284             | 656185             | 304.60     | 10/27/2010   | 10/29/2010     | 1957.00   | 0.00    | 90.00       |
| HB-008      | 4405283             | 655228             | 155.00     | 11/3/2010    | 11/4/2010      | 1855.00   | 0.00    | 90.00       |
| HB-009      | 4405434             | 654555             | 180.00     | 11/4/2010    | 11/5/2010      | 1835.00   | 0.00    | 90.00       |



#### Lithology and Geotechnical Measurements

|                  |                  |                  |                |           |                   |                |                | A,            |                 |                                |  |  |  |
|------------------|------------------|------------------|----------------|-----------|-------------------|----------------|----------------|---------------|-----------------|--------------------------------|--|--|--|
| Borehole ID      | From (ft)        | To (ft)          | Thickness      | Lith Code | Lithology         | Colour         | Mineralisation | Weathering    | Organic content | Description                    |  |  |  |
| HB-007<br>HB-007 | 0.00<br>10.10    | 10.10<br>26.20   | 10.10<br>16.10 | SST       |                   | GY<br>BK/BR    |                | HIGH<br>MED   |                 |                                |  |  |  |
| HB-007           | 26.20            | 30.00            | 3.80           | SST       |                   | GY             |                | MED           |                 |                                |  |  |  |
| HB-007           | 26.20<br>33.70   | 33.70<br>34.30   | 7.50<br>0.60   | SLT       |                   | BK/BR<br>GY    |                | NILL          |                 |                                |  |  |  |
| HB-007           | 34.30            | 41.50            | 7.20           | SLT       |                   | BK/BR          |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 41.50<br>41.50   | 49.50<br>49.50   | 8.00<br>8.00   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 49.50            | 51.90            | 2.40           | SST       |                   | GY             |                | NLL           |                 |                                |  |  |  |
| HB-007<br>HB-007 | 51.90<br>52.90   | 52.90<br>54.60   | 1.00           | SLT       |                   | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 54.60<br>62.00   | 62.00<br>66.10   | 7.40<br>4.10   | SLT       |                   | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 66.10<br>72.30   | 72.30<br>76.11   | 6.20<br>3.81   | SLT       |                   | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 76.11            | 80.30            | 4.19           | SLT       |                   | BK/BR          |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 80.30<br>81.30   | 81.30<br>84.40   | 1.00<br>3.10   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 84.40<br>87.10   | 87.10<br>94.60   | 2.70<br>7.50   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 94.60            | 97.60            | 3.00           | OL.       | Mudstone          | GY             |                | NILL          |                 |                                |  |  |  |
| HB-007           | 97.60            | 114.60           | 17.00          | SLT       |                   | BK/BR          |                | NILL          |                 | Expected depth of<br>wavy tuff |  |  |  |
| HB-007           | 114.60           | 116.80           | 2.20           |           | Mudstone          | GY             |                | NILL          |                 |                                |  |  |  |
| HB-007           | 116.80<br>135.60 | 135.60<br>136.60 | 18.80          | SLT       | Mudstone          | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 136.60<br>142.00 | 142.00<br>142.90 | 5.40           | SLT       |                   | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 142.90           | 146.60           | 3.70           | SLT       |                   | BK/BR          |                | NLL           |                 |                                |  |  |  |
| HB-007<br>HB-007 | 146.60<br>146.11 | 146.11<br>154.40 | -0.49<br>8.29  | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 154.40<br>156.60 | 156.60<br>161.00 | 2.20<br>4.40   | SLT       | Mudstone          | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 161.00           | 162.40           | 1.40           | SST       |                   | GY             |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 162.40<br>166.20 | 166.20<br>174.90 | 3.80<br>8.70   | AT<br>SLT |                   | OR/GY<br>BK/BR |                | NILL<br>NILL  |                 | wavy tuff                      |  |  |  |
| HB-007           | 174.90           | 179.11           | 4.21           |           | Mudstone          | GY             |                | NILL          |                 |                                |  |  |  |
| HB-007           | 179.11<br>182.70 | 182.70<br>184.60 | 3.59<br>1.90   | SLT       |                   | BK/BR<br>GY    |                | NILL<br>NILL  |                 | #                              |  |  |  |
| HB-007           | 184.60           | 186.60           | 2.00           |           | Mudstone          |                |                | NILL          |                 |                                |  |  |  |
| HB-007           | 186.60<br>192.40 | 192.40           | 5.80<br>2.40   | SLT       | Mudstone          | BK/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 194.80           | 197.20           | 2.40           | SLT       |                   | BK/BR          |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 197.20<br>198.10 | 198.10<br>200.50 | 0.90<br>2.40   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 200.50           | 206.30           | 5.80<br>-0.20  | SLT       | Mudstone          | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 206.10<br>207.60 | 207.60<br>212.60 | 1.50<br>5.00   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 212.60           | 214.80           | 2.20           |           | Mudstone          | GY             |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 214.80<br>216.00 | 216.00<br>220.70 | 1.20<br>4.70   | SLT<br>MB |                   | BK/BR<br>BK    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 220.70<br>222.30 | 222.30<br>222.11 | 1.60<br>-0.19  | SLT<br>MB |                   | BK/BR<br>BK    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 222.11<br>223.40 | 223.40           | 1.29<br>-0.28  | SLT<br>MB |                   | BK/BR<br>BK    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 223.12           | 223.12<br>224.90 | 1.78           | SLT       |                   | BK/BR          |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 224.90<br>225.60 | 225.60<br>226.10 | 0.70<br>0.50   | MB<br>SLT |                   | BK/BR          |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 226.10<br>226.90 | 226.90           | 0.80<br>4.70   | MB<br>SLT |                   | BK/BR          |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 231.60<br>232.60 | 232.60<br>224.60 | 1.00<br>12.00  | MB<br>SLT |                   | BK<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 224.60           | 245.60           | 21.00          | MB        |                   | BK             |                | NILL          |                 |                                |  |  |  |
| HB-007           | 245.60           | 254.60           | 9.00           | SLT       |                   | BK/BR/G<br>Y   |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 254.60<br>256.80 | 256.80<br>261.80 | 2.20<br>5.00   | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007<br>HB-007 | 261.80<br>261.11 | 261.11<br>262.11 | -0.69<br>1.00  | SST       |                   | GY<br>BK/BR    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | 262.11           | 263.60           | 1.49           | SST       |                   | GY             |                | NLL           |                 |                                |  |  |  |
| HB-007<br>HB-007 | 263.60<br>271.40 | 271.40<br>271.10 | 7.80<br>-0.30  | SLT<br>AT |                   | GY/BR<br>OR/GY |                | NILL<br>NILL  |                 | curvy tuff                     |  |  |  |
| HB-007           | 271.10           | 281.80           | 10.70          | SLT       |                   | GY/BR          |                | NILL          |                 | base of mahogany               |  |  |  |
| HB-007<br>HB-007 | 281.80           | 282.20           | 0.40<br>6.90   | SST       |                   | GY<br>GY/BR    |                | NILL<br>NII I |                 |                                |  |  |  |
| HB-007           | 282.20<br>289.10 | 290.11           | 1.01           | SLT       |                   | OR/GY          |                | NILL          |                 |                                |  |  |  |
| HB-007<br>HB-007 | 290.11<br>294.60 | 294.60<br>304.60 | 4.49<br>10.00  | SLT       |                   | GY/BR<br>GY    |                | NILL<br>NILL  |                 |                                |  |  |  |
| HB-007           | EOH              |                  |                |           |                   |                |                |               |                 |                                |  |  |  |
|                  |                  |                  | 0.00           |           |                   |                |                |               |                 |                                |  |  |  |
| HB-001<br>HB-001 | 0.00<br>10.00    | 10.00            | 10.00          | SST       | CASING            | GY             |                | Low           |                 |                                |  |  |  |
| HB-001<br>HB-001 | 11.00<br>22.90   | 22.90<br>25.80   | 11.90<br>2.90  | SLT       | Shale             | GY/BR<br>GY    |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001<br>HB-001 | 25.80<br>28.90   | 28.90<br>29.80   | 3.10<br>0.90   | SLT       | Mudstone<br>Shale | CR/GY<br>GY    |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001           | 29.80            | 30.60            | 0.80           |           | Mudstone          | CR/GY          |                | Nill          |                 |                                |  |  |  |
| HB-001<br>HB-001 | 30.60<br>32.40   | 32.40<br>35.60   | 1.80<br>3.20   | SLT       | Shale<br>Mudstone | GY<br>GY       |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001<br>HB-001 | 35.60<br>37.30   | 37.30<br>38.30   | 1.70<br>1.00   | SLT       | Shale<br>Mudstone | GY/BR<br>CR/GY |                | Nill<br>Nill  |                 | Mahogany Zone                  |  |  |  |
| HB-001<br>HB-001 | 38.30<br>39.60   | 39.60<br>42.20   | 1.30           | SLT       | Shale<br>Mudstone | GY/BR<br>CR/GY |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001           | 42.20            | 47.20            | 5.00           | SLT       | Shale             | GY/BR          |                | Nill          |                 |                                |  |  |  |
| HB-001<br>HB-001 | 47.20<br>47.90   | 47.90<br>50.10   | 0.70<br>2.20   | SLT       | Mudstone<br>Shale | CR/GY<br>GY/BR |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001           | 50.10            | 51.11            | 1.01           |           | Mudstone          | CR/GY          |                | Nill          |                 |                                |  |  |  |
| HB-001           | 51.11            | 54.10<br>55.00   | 2.99           | SLT       | Shale             | GY/BR          |                | Nill          |                 |                                |  |  |  |
| HB-001<br>HB-001 | 54.10<br>55.00   | 57.20            | 0.90<br>2.20   | SLT       | Mudstone<br>Shale | CR/GY<br>GY/BR |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001<br>HB-001 | 57.20<br>57.80   | 57.80<br>60.10   | 0.60<br>2.30   | SLT       | Mudstone<br>Shale | CR/GY<br>GY/BR |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001<br>HB-001 | 60.10            | 61.80            | 1.70           | MB        | Mudstone<br>Shale | CR/GY<br>GY/BR |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001           | 61.11            | 64.20            | 3.09           |           | Mudstone          | CR/GY          |                | Nill          |                 |                                |  |  |  |
| HB-001<br>HB-001 | 64.20<br>65.60   | 65.60<br>66.50   | 1.40<br>0.90   | MB        | Shale<br>Mudstone | BK/BR<br>GY    |                | Nill<br>Nill  |                 |                                |  |  |  |
| HB-001<br>HB-001 | 66.50<br>69.70   | 69.70<br>70.20   | 3.20<br>0.50   | MB        | Shale<br>Mudstone | BK/BR<br>GY    |                | Nill<br>Nill  |                 |                                |  |  |  |
|                  |                  |                  |                |           |                   |                |                |               |                 |                                |  |  |  |

| Control to   Penn for   To (0)   Piccipus   Incident   Incident  |                  |                  |                  |               |            |           |                |                |              |                 |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|---------------|------------|-----------|----------------|----------------|--------------|-----------------|-------------|
| 10.00   17.17   77.27   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.00   10.0 | Borehole ID      | From (ft)        | To (ft)          | Thickness     | Lith Code  | Lithology | Colour         | Mineralisation | Weathering   | Organic content | Description |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                  |               | MB         |           |                |                |              |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  | 74.50            |               | MB         |           |                |                |              |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 79.10            | 82.10            | 3.00          |            |           | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 82.40            | 82.70            | 0.30          |            | Mudstone  | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 83.10            | 85.20            | 2.10          |            | Mudstone  | GY             |                | Nill         |                 |             |
| 18.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.00   19.0 | HB-001           | 91.50            | 92.11            | 0.61          |            | Mudstone  | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 94.10            | 94.80            | 0.70          |            |           | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 96.80            | 97.50            | 0.70          | SLT        |           | GY/BR          |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 97.90            | 102.10           | 4.20          | SLT        |           | BK/BR          |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 103.60           | 105.00           | 1.40          | AT         |           | OR/BR          |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 109.90           | 110.70           | 0.80          | SLT        |           | GY             |                | Nill         |                 |             |
| Head   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0   11-10.0 | HB-001           | 110.90           | 118.00           | 7.10          | SLT        |           | GY             |                |              |                 |             |
| Hard   110,00   120,00   120,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151,00   151 |                  | 118.30           |                  | 1.20          | SLT        |           | CR/GY          |                |              |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                  | 4.10          | SLT        |           |                |                |              |                 |             |
| H8-901   12780   1290   1190   55.1   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   000   00 | HB-001           | 126.30           | 127.50           | 1.20          | SLT        |           | CR             |                |              |                 |             |
| 18-091   12-90   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17-20   17- | HB-001<br>HB-001 | 127.50<br>127.80 | 127.80<br>128.90 | 1.10          | SST        | -         | CR/GY          |                | Nill         |                 |             |
| He-Sept   192   20   312   20   1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB-001<br>HB-001 | 128.90<br>129.40 | 129.40<br>130.00 | 0.50          | SST        | clay      | CR<br>GY       |                | Nill         |                 |             |
| HB-021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB-001           | 130.20           | 131.20           | 1.00          |            | clay      | CR             |                | Nill         |                 |             |
| H8-091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB-001           | 140.11           | 145.40           | 5.29          | SLT        |           | GY             |                | Nill         |                 |             |
| H8-001   19.00   104-40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14.40   14 | HB-001           | 145.50           | 145.80           | 0.30          |            |           | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-001           | 150.00           |                  | 4.20<br>14.40 | SST        | claystone |                |                |              |                 |             |
| H8065   3.20   11.30   17.00   300   S.T.   G.Y.   Low   H8065   17.20   17.50   300   S.T.   G.Y.   Low   H8065   17.20   17.50   300   S.T.   G.Y.   N.   N.   N.   N.   N.   N.   N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HB-001           | EOH              |                  |               |            |           |                |                |              |                 |             |
| H8905   13.30   17.20   17.00   0.00   CRM   GY   NH   H8905   17.20   17.00   CRM   GY   NH   H8905   17.00   18.40   0.00   SLT   R8   R8   NH   H8905   17.00   18.00   0.00   SLT   R8   R8   NH   H8905   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00   18.00 |                  |                  |                  |               | CDM        | Collar    | CV             |                | Mod          |                 |             |
| H8905   17,80   18,40   18,70   20,00   SLT   BR   MI   MI   MI   MI   MI   MI   MI   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HB005            | 13.30            | 17.20            | 3.90          | SLT        |           | GY             |                | Low          |                 |             |
| H8005   18.70   19.00   2.90   3.90   SLT   SR-REK   Nal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HB005            | 17.80            | 18.40            | 0.60          | SLT        |           | BR             |                | Nill         |                 |             |
| H8005   22.90   21.90   10.0   SLT   BIR   NII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HB005            | 18.70            | 19.60            | 0.90          | SLT        |           | BR/BK          |                | Nill         |                 |             |
| H8005   24.12   25.70   15.8   CRM   GY   NII     H8005   25.70   27.40   17.0   SLT   GY   NII     H8005   27.40   27.11   0.20   SLT   GY   NII     H8005   27.40   27.11   0.20   SLT   GY   NII     H8005   27.40   27.11   0.20   SLT   GYR   NII     H8005   30.12   31.50   13.8   CRM   GY   NII     H8005   30.12   31.50   13.8   CRM   GY   NII     H8005   30.12   31.50   33.50   13.8   CRM   GY   NII     H8005   30.12   31.50   32.50   13.8   CRM   GY   NII     H8005   30.50   41.12   48.2   CRM   GY   NII     H8005   30.04   12.1   10.0   SLT   GYR   NII     H8005   44.11   44.11   40.0   SLT   GYR   NII     H8005   44.11   44.11   40.0   SLT   GYR   NII     H8005   45.11   40.0   SLT   GYR   NII     H8005   45.11   40.0   SLT   GYR   NII     H8005   40.11   41.11   40.0   SLT   GYR   NII     H8005   40.11   41.11   40.0   SLT   GYR   NII     H8005   40.11   40.11   40.0   SLT   GYR   NII     H8005   40.11   50.10   SLT   GYR   NII     H8005   40.11   50.10   SLT   GYR   NII     H8005   40.11   50.10   SLT   GYR   NII     H8005   50.00   50.00   50.00   SLT   GYR   NII     H8005   50.00   50.00   SLT   GYR   NII     H8005   50.00   50.00   50.00   SLT   GYR   NII     H8005   50.00   SLT   GYR   NII     H800 | HB005            | 22.90            | 23.90            | 1.00          | SLT        |           | BR             |                | Nill         |                 |             |
| HB005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HB005            | 24.12            | 25.70            | 1.58          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005   30.12   31.50   13.86   CRM   GY   Nat   H8005   37.50   32.50   10.00   SLT   BREK   Nat   H8005   37.50   32.50   36.30   38.10   31.12   4.82   CRM   GY   Nat   H8005   37.50   36.30   41.12   4.82   CRM   GY   Nat   H8005   41.12   4.82   CRM   GY   Nat   H8005   41.12   4.82   CRM   GY   Nat   H8005   41.12   4.81   4.00   SEM   GYY   Nat   H8005   4.11   4.11   4.11   4.00   SLT   GYR   Nat   H8005   4.11   4.91   1.00   SLT   GYR   Nat   H8005   4.91   4.91   1.00   SLT   GYRR   Nat   H8005   4.91   5.15   6.25   1.00   SLT   GYRR   Nat   H8005   51.50   62.50   1.00   SLT   GYRR   Nat   H8005   51.50   62.50   1.00   SLT   GYRR   Nat   H8005   52.70   64.40   2.20   CRM   GYY   Nat   H8005   52.70   64.40   2.20   CRM   GYR   Nat   H8005   63.40   63.50   63.60   SLT   GYRR   Nat   H8005   63.90   65.50   62.70   0.20   AT   GYRR   Nat   H8005   63.90   65.50   62.70   0.50   SLT   GYRR   Nat   H8005   65.20   67.70   0.50   SLT   GYRR   Nat   H8005   65.40   65.60   65.60   SLT   GYRR   Nat   H8005   65.40   65.60   65.60   SLT   GYRR   Nat   H8005   65.70   67.50   1.80   MB   BR   Nat   H8005   67.70   67.70   1.80   MB   BR   Nat   H8005   | HB005            | 27.40            | 27.11            | -0.29         | SLT        |           | BR/GY          |                | Nill         |                 |             |
| H8005   32.50   36.30   33.00   33.00   S.LT   GY   NII     H8005   41.12   42.12   42.12   10.00   S.LT   GYBR   NII     H8005   41.12   42.12   42.11   1.99   CEM   GY   NII     H8005   42.12   44.11   1.99   CEM   GY   NII     H8005   44.11   44.11   4.00   S.LT   GYBR   NII     H8005   44.11   44.11   4.00   S.LT   GYBR   NII     H8005   45.11   65.11   1.00   S.LT   GYBR   NII     H8005   51.50   51.50   0.00   S.LT   GYBR   NII     H8005   52.90   52.70   0.20   S.LT   GYBR   NII     H8005   55.20   50.50   0.00   S.LT   GYBR   NII     H8005   55.20   50.50   0.00   S.LT   GYBR   NII     H8005   55.20   55.00   0.00   S.LT   GYBR   NII     H8005   55.20   55.70   0.50   S.LT   GYBR   NII     H8005   55.20   55.70   0.50   S.LT   GYBR   NII     H8005   55.20   55.70   0.50   S.LT   GYBR   NII     H8005   50.70   65.00   50.00   S.LT   GYBR   NII     H8005   50.70   65.00   50.00   S.LT   GYBR   NII     H8005   67.00   67.00   67.00   67.00   S.LT   GYBR   NII     H8005   67.00   67.00   67.00   S.LT   GYBR   NII     H8005   67.00   67.00   67.00   S.LT   GYBR   |                  |                  |                  |               |            |           |                |                |              |                 |             |
| H8005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                  |                  | 3.80          | SLT        |           | GY             |                |              |                 |             |
| H8005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HB005            | 41.12            | 42.12            | 1.00          | SLT        |           | GY/BR          |                | Nill         |                 |             |
| H8005   49.11   51.50   22.39   SLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HB005            | 44.11            | 48.11            | 4.00          | SLT        |           | GY/BR          |                | Nill         |                 |             |
| H8005   52.70   52.70   0.20   AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HB005            | 49.11            | 51.50            | 2.39          | SLT        |           | BK             |                | Nill         |                 |             |
| H8005   55.80   55.80   50.90   SLT   GYBR   Nill     H8005   55.80   55.80   50.20   2.40   SLT   GYBR   Nill     H8005   55.80   59.20   2.40   SLT   GYBR   Nill     H8005   59.20   59.20   2.40   SLT   GYBR   Nill     H8005   59.20   59.70   61.40   1.70   SLT   SANDSTONE BR. Nill     H8005   59.20   59.70   61.40   1.70   SLT   GYBR   Nill     H8005   50.40   64.10   6.70   SLT   GYBR   Nill     H8005   63.40   64.10   0.70   SLT   GYBR   Nill     H8005   64.10   65.70   1.60   CRM   GY   Nill     H8005   65.70   67.50   1.80   MB   BK   Nill     H8005   65.70   67.50   1.80   MB   BK   Nill     H8005   67.50   67.50   1.80   MB   BK   Nill     H8005   67.50   67.50   1.80   MB   BKRR   Nill     H8005   67.50   67.50   0.40   SLT   GYBR   Nill     H8005   67.50   67.50   0.40   SLT   GYBR   Nill     H8005   67.50   67.50   0.40   SLT   GYBR   Nill     H8005   69.10   71.00   2.80   SLT   GYBR   Nill     H8005   77.400   75.00   1.00   SLT   GYBR   Nill     H8005   77.400   75.00   1.00   SLT   GYBR   Nill     H8005   77.60   76.00   1.00   SLT   GYBR   Nill     H8005   77.60   76.00   1.00   MB   BK   Nill     H8005   77.60   76.00   76.00   1.00   MB   BK   Nill     H8005   77.50   76.00   76.00   1.00   MB   BK   Nill     H8005   77.50   77.50   77.50   1.00   SLT   GYBR   Nill     H8005   78.60   78.60   2.60   SLT   GYBR   Nill     H8005   78.50   78.50   1.10   SLT   GYBR   Nill     H8005   78.50   3.50   SLT   GYBR   Nill     H8005   81.60   82.20   0.60   SLT   GYBR   Nill     H8005   81.60   81.60   81.60   SLT   GYBR   Nill      | HB005            | 52.50            | 52.70            | 0.20          | AT         |           | OR             |                | Nill         |                 |             |
| H8005   59.20   59.70   5.50   SANDSTONE   SKURR   NIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HB005            | 54.90            | 55.80            | 0.90          | SLT        |           | GY/BR          |                | Nill         |                 |             |
| H8005   597.0   61.40   1.70   SLT   BR   Nill     H8005   61.40   63.40   20.0   SLT   GYBR   Nill     H8005   63.40   64.10   67.70   1.60   CRM   GY   Nill     H8005   65.70   67.50   1.80   MB   BK   Nill     H8005   65.70   67.50   1.80   MB   BK   Nill     H8005   67.50   67.50   1.80   MB   BK   Nill     H8005   67.50   67.90   0.40   SLT   GYBR   Nill     H8005   67.50   67.90   0.40   SLT   GYBR   Nill     H8005   67.50   67.50   1.90   SLT   GYBR   Nill     H8005   69.10   71.90   2.80   SLT   GYBR   Nill     H8005   77.90   74.00   2.10   SLT   GYBR   Nill     H8005   77.90   74.00   SLT   GYBR   Nill     H8005   77.00   75.00   1.00   SLT   GYBR   Nill     H8005   75.00   76.00   1.00   MB   BK   Nill     H8005   75.00   76.00   1.00   MB   BK   Nill     H8005   77.00   78.40   2.40   SLT   GYBR   Nill     H8005   77.00   78.00   1.00   MB   BK   Nill     H8005   78.00   78.40   2.40   SLT   GYBR   Nill     H8005   78.00   78.50   1.10   SLT   GYBR   Nill     H8005   78.00   78.50   3.10   SLT   GYBR   Nill     H8005   78.50   3.16   2.20   3.00   0.80   CRM   GY   Nill     H8005   81.60   82.20   0.60   SLT   BRGY   Nill     H8005   83.00   84.30   1.30   SLT   GYBR   Nill     H8005   83.00   84.30   1.30   SLT   GYBR   Nill     H8005   85.80   89.10   3.30   SLT   GYBR   Nill     H8005   80.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   | HB005            | 56.80            | 59.20            | 2.40          |            | SANDSTONE | GY/BR          |                | Nill         |                 |             |
| H8005   63:140   64:10   67:70   50:17   67/BK   Nill     H8005   65:70   67:50   18:00   MB   BK   Nill     H8005   67:50   67:50   18:00   MB   BK   Nill     H8005   67:50   67:50   18:00   MB   BK   Nill     H8005   67:50   67:50   18:00   MB   BKBR   Nill     H8005   67:50   67:50   17:00   28:00   SLT   GYBR   Nill     H8005   77:90   74:00   22:10   SLT   GYBR   Nill     H8005   77:90   74:00   23:10   SLT   GYBR   Nill     H8005   77:90   74:00   SLT   GYBR   Nill     H8005   75:00   76:00   10:00   SLT   GYBR   Nill     H8005   75:00   76:00   10:00   MB   BK   Nill     H8005   76:00   78:40   24:00   SLT   GYBR   Nill     H8005   76:00   78:40   24:00   SLT   GYBR   Nill     H8005   76:00   78:40   24:00   SLT   GYBR   Nill     H8005   78:40   78:50   1.10   SLT   GYBR   Nill     H8005   78:50   81:60   21:00   CRM   GY   Nill     H8005   81:60   82:20   06:00   SLT   BRGY   Nill     H8005   83:00   84:30   1.30   SLT   GYBR   Nill     H8005   83:00   84:30   1.30   SLT   GYBR   Nill     H8005   84:30   85:80   15:00   MB   BK   Nill     H8005   85:80   89:10   3.30   SLT   GYBR   Nill     H8005   89:10   91:00   SCRM   GY   Nill     H8005   91:00   91:00   SCRM   GY | HB005            | 59.70            | 61.40            | 1.70          |            | SANDSTONE | BR             |                | Nill         |                 |             |
| H8005   67.70   67.50   1.80   MB   BK   NII     H8005   67.90   69.10   1.20   MB   BK/BR   NII     H8005   67.90   69.10   1.20   MB   BK/BR   NII     H8005   77.90   74.00   2.80   SLT   GYBR   NII     H8005   77.90   74.00   2.80   SLT   GYBR   NII     H8005   77.90   74.00   2.80   SLT   BK/BR   NII     H8005   77.90   76.00   1.00   SLT   GY   NII     H8005   76.00   76.00   1.00   MB   BK   NII     H8005   76.00   78.40   24.00   SLT   GYBR   NII     H8005   76.00   78.40   79.50   1.10   SLT   GYBR   NII     H8005   78.50   31.60   2.10   CRM   GY   NII     H8005   81.60   82.20   0.60   SLT   BR/GY   NII     H8005   81.60   82.20   0.60   SLT   BR/GY   NII     H8005   83.00   84.30   1.30   SLT   GYBR   NII     H8005   83.00   84.30   1.30   SLT   GYBR   NII     H8005   80.10   0.010   0.00   CRM   GY   NII     H8005   80.10   0.010   1.00   CRM   GY   NII     H8005   90.10   91.60   1.50   SLT   GYBR   NII     H8005   90.10   91.60   1.50   SLT   GYBR   NII     H8005   91.60   91.50   0.50   CRM   GY   NII     H8005   91.60   91.50   0.50   SLT   GYBR   NII     H8005   91.60   91.50   0.50   SLT   GYBR   NII     H8005   91.60   91.50   0.50   SLT   GYBR   NII     H8005   91.60   0.010   0.00   CRM   GY   NII     H8005   91.60   91.50   0.00   SLT   GYBR   NII     H8005   91.60   0.00   SLT   GYBR   NII     H8005   91.60 | HB005            | 63.40            | 64.10            | 0.70          | SLT        |           | GY/BK          |                | Nill         |                 |             |
| H8005   67:90   69:10   1:20   MB   BK/BR   NII     H8005   77:90   74:00   2:80   SLT   GY/BR   NII     H8005   77:90   74:00   2:00   SLT   BK/BR   NII     H8005   77:90   76:00   1:00   MB   BK   NII     H8005   76:00   76:00   1:00   MB   BK   NII     H8005   76:00   76:00   1:00   MB   BK   NII     H8005   76:00   76:00   1:00   SLT   GY/BR   NII     H8005   76:00   76:00   1:00   SLT   GY/BR   NII     H8005   76:00   76:00   76:00   CR/M   GY   NII     H8005   76:00   76:00   CR/M   GY   NII     H8005   81:60   82:20   0:60   SLT   BR/GY   NII     H8005   81:60   82:20   0:60   SLT   BR/GY   NII     H8005   83:00   84:30   1:30   SLT   GY/BR   NII     H8005   83:00   84:30   1:30   SLT   GY/BR   NII     H8005   85:80   89:10   3:30   SLT   GY/BR   NII     H8005   85:80   89:10   3:30   SLT   GY/BR   NII     H8005   85:80   89:10   3:30   SLT   GY/BR   NII     H8005   80:10   0:10   1:00   CR/M   GY   NII     H8005   80:10   0:10   1:00   CR/M   GY   NII     H8005   80:10   0:10   1:00   CR/M   GY   NII     H8005   80:10   9:10   1:50   SLT   GY/BR   NII     H8005   9:10   3:30   SLT   GY/BR   NII     H8005   9:10   9:00   0:00   CR/M   GY   NII     H8005   9:10   0:00   SLT   GY/BR   | HB005            | 65.70            | 67.50            | 1.80          | MB         |           | BK             |                | Nill         |                 |             |
| H8005   75.00   75.00   1.00   SLT   GY   Nill     H8005   75.00   75.00   1.00   MB   BK   Nill     H8005   75.00   75.00   75.00   1.00   MB   BK   Nill     H8005   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00   75.00 | HB005<br>HB005   | 67.90<br>69.10   | 69.10<br>71.90   | 1.20<br>2.80  | MB<br>SLT  |           | BK/BR<br>GY/BR |                | Nill<br>Nill |                 |             |
| H8005   78.40   78.40   2.40   SLT   GYBR   Nil     H8005   78.40   78.50   1.10   SLT   GYBR   Nil     H8005   78.40   78.50   18.60   2.10   CRM   GY   Nil     H8005   81.60   82.20   0.80   SLT   BRGY   Nil     H8005   82.20   83.00   0.80   CRM   GY   Nil     H8005   82.20   83.00   0.80   CRM   GY   Nil     H8005   83.00   84.30   13.00   SLT   GYBR   Nil     H8005   84.30   85.80   1.50   MB   BK   Nil     H8005   86.50   89.10   33.00   SLT   GYBR   Nil     H8005   89.10   90.10   1.00   CRM   GY   Nil     H8005   89.10   90.10   1.00   CRM   GY   Nil     H8005   90.10   91.60   1.50   SLT   GYBR   Nil     H8005   91.60   91.60   1.50   SLT   GYBR   Nil     H8005   91.60   91.60   1.50   SLT   GYBR   Nil     H8005   91.60   91.60   1.50   SLT   GYBR   Nil     H8005   91.90   0.30   CRM   GY   Nil     H8005   91.90   0.30   CRM   GY   Nil     H8005   91.90   0.30   CRM   GY   Nil     H8005   93.10   93.60   0.50   SLT   GYBR   Nil     H8005   93.10   93.60   0.50   SLT   GYBR   Nil     H8005   93.10   93.60   0.50   SLT   GYBR   Nil     H8005   94.60   10.00   SLT   GYBR   Nil     H8005   96.00   96.80   0.80   SLT   GYBR   Nil     H8005   96.00   96.80   0.80   SLT   GYBR   Nil     H8005   96.00   96.80   0.80   SLT   GYBR   Nil     H8005   98.80   99.80   10.00   SLT   GYBR   Nil     H8005   99.80   09.80   1.00   SLT   GYBR   Nil     H8005   10.80   10.13   0.57   1.60   SROR   Nil     H8005   10.80   10.13   0.50   CRM   GY   Nil     H8005   10.80   10.30   SLT   GYBR   Nil     H8005   10.80   10.30   GRM   GY   Nil     H8005   10.80   10.80   0.30   CRM   GY   Nil     H8005   10.80   10.80   CRM   GY   Nil                                           | HB005            | 74.00            | 75.00            | 1.00          | SLT        |           | GY             |                | Nill         |                 |             |
| H8005   79.50   81.60   2.10   CRM   GY   NiI     H8005   81.50   82.20   83.00   SLT   BRGY   NII     H8005   82.20   83.00   80.80   CRM   GY   NII     H8005   83.00   84.30   13.00   SLT   GYBR   NII     H8005   83.00   84.30   13.00   SLT   GYBR   NII     H8005   83.00   83.01   33.00   SLT   GYBR   NII     H8005   83.00   80.10   30.00   SLT   GYBR   NII     H8005   80.10   90.10   1.00   CRM   GY   NII     H8005   90.10   91.60   15.00   SLT   GYBR   NII     H8005   91.60   91.90   0.30   CRM   GY   NII     H8005   91.90   92.60   0.70   SLT   GYBR   NII     H8005   93.10   33.60   55.00   SLT   GYBR   NII     H8005   93.10   33.60   55.00   SLT   GYBR   NII     H8005   93.10   93.50   0.50   CRM   GY   NII     H8005   93.10   93.60   05.00   SLT   GYBR   NII     H8005   93.10   93.60   05.00   SLT   GYBR   NII     H8005   93.60   94.60   1.00   CRM   GY   NII     H8005   94.60   90.00   SLT   GYBR   NII     H8005   95.00   96.00   55.00   SLT   GYBR   NII     H8005   95.00   96.00   05.00   CRM   GY   NII     H8005   95.00   96.00   96.00   SLT   GYBR   NII     H8005   95.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00   96.00  | HB005            | 76.00            | 78.40            | 2.40          | SLT        |           | GY/BR          |                | Nill         |                 |             |
| HB005   82.20   83.00   0.80   CRM   GY   NiI     HB005   83.00   85.80   1.50   MB   BK   NiI     HB005   85.80   85.80   81.00   3.00   S.LT   GYBR   NiI     HB005   85.80   89.10   3.30   S.LT   GYBR   NiI     HB005   89.10   90.10   1.00   CRM   GY   NiI     HB005   90.10   91.60   1.50   S.LT   GY   NiI     HB005   91.60   91.90   0.30   CRM   GY   NiI     HB005   91.90   92.60   0.70   S.LT   GYBR   NiI     HB005   91.90   92.60   0.70   S.LT   GYBR   NiI     HB005   93.10   93.00   0.50   CRM   GY   NII     HB005   93.10   93.00   0.50   S.LT   GYBR   NII     HB005   93.10   93.00   0.50   S.LT   GYBR   NII     HB005   93.10   93.00   0.50   S.LT   GYBR   NII     HB005   94.60   95.00   0.40   S.LT   GYBR   NII     HB005   95.00   96.00   0.50   S.LT   GYBR   NII     HB005   95.00   96.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   0.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   0.00   S.LT   GYBR   NII     HB005   95.00   0.00   0.00   0.00   0.00   S.LT   GYBR   NII     HB005   103.30   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0 | HB005            | 79.50            | 81.60            | 2.10          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005   83-80   85-80   83-91   33-30   SLT   GYBR   NII     H8005   83-90   83-91   83-91   SLT   GYBR   NII     H8005   80-10   90-10   1.00   CRM   GY   NII     H8005   90-10   91-90   0.30   CRM   GY   NII     H8005   91-90   22-80   0.70   SLT   GYBR   NII     H8005   91-90   22-80   0.70   SLT   GYBR   NII     H8005   93-90   33-10   0.55   CRM   GY   NII     H8005   93-10   33-80   0.55   SLT   GYBR   NII     H8005   93-10   33-80   0.55   SLT   GYBR   NII     H8005   93-10   33-80   0.55   SLT   GYBR   NII     H8005   93-10   0.50   SLT   GYBR   NII     H8005   94-80   95-00   0.40   SLT   GYBR   NII     H8005   95-00   96-00   0.80   SLT   GYBR   NII     H8005   96-00   98-80   0.80   SLT   GYBR   NII     H8005   96-00   98-80   0.80   SLT   GYBR   NII     H8005   96-00   98-80   0.80   SLT   GYBR   NII     H8005   98-80   99-80   10.00   CRM   GY   NII     H8005   99-80   10.00   GYBR   NII     H8005   99-80   10.00   SLT   GYBR   NII     H8005   10.30   0.71-10   5.80   SLT   GYBR   NII     H8005   10.80   0.13-30   GYBR   NII     H8005   10.80   0.13-30   GYBR   NII     H8005   10.80   0.13-30   GYBR   NII     H8005   113-30   118-60   5.30   CRM   GY   NII     H8005   113-30   118-60   S.30   CRM   GY   NII     H8005   121-10   121-80   0.30   CRM   GY   NII     H8005   121-10   121-80   0.30   CRM   GY   NII     H8005   121-10   121-80   0.30   CRM   GY   NII     H8005   123-40   124-80   120   SLT   GYBR   NII                                                                                                                                                                                                                                                                                                                                    | HB005            | 82.20            | 83.00            | 0.80          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005 89.10 90.10 1.00 CRM GY NiII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HB005            | 84.30            | 85.80            | 1.50          | MB         |           | BK             |                | Nill         |                 |             |
| HB005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HB005            | 89.10            | 90.10            | 1.00          | CRM        |           | GY             |                | Nill         |                 |             |
| HB005   92.60   93.10   0.50   CRM   GY   Nil     HB005   93.10   33.60   0.50   SLT   GYBR   Nil     HB005   93.60   94.60   1.00   CRM   GY   Nil     HB005   94.60   1.00   SLT   GYBR   Nil     HB005   95.00   96.00   1.00   SLT   GYBR   Nil     HB005   96.00   96.00   1.00   SLT   BKBR   Nil     HB005   96.00   96.00   0.80   SLT   GYBR   Nil     HB005   96.00   98.80   20.80   SLT   GYBR   Nil     HB005   98.80   99.80   1.00   CRM   GY   Nil     HB005   98.80   99.80   1.00   CRM   GY   Nil     HB005   99.80   10.80   0.100   SLT   GYBR   Nil     HB005   101.30   107.10   5.80   SLT   GYBR   Nil     HB005   101.30   107.10   5.80   SLT   GYBR   Nil     HB005   101.30   107.10   5.80   SLT   GYBR   Nil     HB005   108.90   103.80   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   103.90   10 | HB005            | 91.60            | 91.90            | 0.30          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005   93.60   94.60   1.00   CRM   GY   NiI     H8005   94.60   94.60   1.00   SLT   GYBR   NiI     H8005   95.00   96.00   1.00   SLT   BKBR   NiI     H8005   96.00   96.00   1.00   SLT   GYBR   NiI     H8005   96.00   96.80   98.00   SLT   GYBR   NiI     H8005   96.00   98.80   20.00   SLT   GY   NiI     H8005   98.80   99.80   1.00   CRM   GY   NiI     H8005   99.80   100.80   1.00   SLT   GYBR   NII     H8005   100.80   110.30   550   CRM   GY   NII     H8005   100.80   101.30   550   CRM   GY   NII     H8005   101.30   107.10   55.80   SLT   GYBR   NII     H8005   107.10   108.07   16.80   SLT   GYBR   NII     H8005   107.10   108.00   103.00   CRM   GY   NII     H8005   113.30   140.57   15.80   SLT   GYBR   NII     H8005   113.30   140.57   160.50   SROPR   NII     H8005   113.30   140.50   SLT   GYBR   NII     H8005   113.30   141.60   S.30   CRM   GY   NII     H8005   113.30   141.60   S.30   CRM   GY   NII     H8005   113.30   143.00   SLT   GYBR   NII     H8005   113.30   143.00   SLT   GYBR   NII     H8005   123.40   123.40   SLT   GYBR   NII     H8005   123.40   123.40   SLT   GYBR   SKGY   NII     H8005   123.40   123.40   SLT   SLT   SKGY   NII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HB005            | 92.60            | 93.10            | 0.50          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005   95.00   96.00   1.00   SLT   BKBR   Nill     H8005   96.00   96.00   98.00   0.80   SLT   GYBR   Nill     H8005   96.00   98.80   20.00   SLT   GY   Nill     H8005   96.80   98.80   20.00   SLT   GY   Nill     H8005   96.80   98.80   10.00   SLT   GYBR   Nill     H8005   96.80   10.00   10.00   SLT   GYBR   Nill     H8005   10.00   10.13   0.50   CRM   GY   Nill     H8005   10.80   0.10.30   0.50   SLT   GYBR   Nill     H8005   10.13   0.10   0.10   0.50   SLT   GYBR   Nill     H8005   10.71   0.10   0.00   0.00   SLT   GYBR   Nill     H8005   1.00   1.00   0.00   0.20   AT   GROR   Nill     H8005   1.00   0.00   0.20   AT   GROR   Nill     H8005   1.10   0.00   0.00   0.20   SLT   GYBR   Nill     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10     H8005   1.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10  | HB005            | 93.60            | 94.60            | 1.00          | CRM        |           | GY             |                | Nill         |                 |             |
| H8005   96.80   96.80   20.00   SLT   GY   Nil     H8005   98.80   99.80   1.00   CRM   GY   Nil     H8005   99.80   100.80   1.00   SLT   GYBR   Nil     H8005   101.80   101.30   0.55   CRM   GY   Nil     H8005   101.80   101.30   0.55   CRM   GY   Nil     H8005   101.30   107.10   0.580   SLT   GYBR   Nil     H8005   107.10   108.70   1.68   SANDSTONE   BROR   Nil     H8005   108.70   108.90   0.20   AT   OR   Nil     H8005   108.70   108.90   0.20   AT   OR   Nil     H8005   113.30   141.60   S.30   CRM   GY   Nil     H8005   113.30   118.60   21.25   0.20   SLT   GYBR   Nil     H8005   113.30   118.60   0.30   CRM   GY   Nil     H8005   121.50   121.80   0.30   CRM   PMK   Nil     H8005   121.50   121.80   0.30   SLT   GYBR   Nil     H8005   121.50   121.80   0.30   SLT   SANDSTONE   BKGY   Nil     H8005   123.40   123.40   0.30   SLT   GYBR   BKGY   Nil     H8005   123.40   123.40   0.30   SLT   GYBR   BKGY   Nil     H8005   123.40   123.40   0.30   SLT   GYBR   BKGY   Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HB005            | 95.00            | 96.00            | 1.00          | SLT        |           | BK/BR          |                | Nill         |                 |             |
| H8005   99.80   100.80   1.00   SLT   GY/BR   NII     H8005   109.80   101.30   0.55   CRM   GY   NII     H8005   101.30   107.10   5.80   SLT   GY/BR   NII     H8005   107.10   108.70   1.68   SANDSTONE   BROR   NII     H8005   108.70   108.90   0.20   AT   OR   NII     H8005   108.70   108.90   0.20   AT   OR   NII     H8005   108.80   113.30   44.0   SLT   BRGY   NII     H8005   113.30   118.60   5.30   CRM   GY   NII     H8005   113.30   118.60   12.15   CY/BR   NII     H8005   121.50   121.80   0.30   CRM   PNK   NII     H8005   121.50   121.80   0.30   SLT   GY/BR   NII     H8005   121.50   121.80   0.30   SLT   GY/BR   NII     H8005   123.40   123.40   0.30   SLT   GY/BR   NII     H8005   123.40   123.40   0.30   SLT   GY/BR   NII     H8005   123.40   123.40   0.30   SLT   GY/BR   NII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HB005            | 96.80            | 98.80            | 2.00          | SLT        |           | GY             |                | Nill         |                 |             |
| H8005   101.30   107.10   5.80   SLT   GYBR   Nill   H8005   107.10   108.70   1.60   SANDSTONE BROOR   Nill   H8005   108.70   108.90   0.20   AT   OR   Nill   H8005   1108.70   113.30   44.0   SLT   BRGY   Nill   H8005   113.30   118.60   5.30   CRM   GY   Nill   H8005   113.30   118.60   121.50   SLT   GYBR   Nill   H8005   121.50   121.80   0.30   CRM   PNK   Nill   H8005   121.50   121.80   0.30   SLT   GYBR   Nill   H8005   121.80   123.10   13.30   SLT   GYBR   Nill   H8005   123.10   123.40   0.30   SLT   GYBR   Nill   H8005   123.10   123.40   0.30   SLT   GYBR   H8005   123.40   124.40   12.00   SLT   GYBR   H8005   123.40   124.40   12.00   SLT   GYBR   H8005   123.40   124.40   12.00   SLT   GYBR   H8005   123.40   124.60   12.00   SLT   GYBR   H8005   MILL   MI | HB005            | 99.80            | 100.80           | 1.00          | SLT        |           | GY/BR          |                | Nill         |                 |             |
| HB005   108.70   108.90   0.20   AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HB005            | 101.30           | 107.10           | 5.80<br>1.60  | SLT        | SANDSTONE | GY/BR          |                | Nill         |                 |             |
| HB005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HB005            | 108.70<br>108.90 | 108.90<br>113.30 | 0.20<br>4.40  | SLT        |           | OR<br>BR/GY    |                | Nill         |                 |             |
| HB005   121.80   123.10   1.30   SLT   GY   Nill   HB005   123.40   0.30   SANDSTONE   BK/GY   Nill   HB005   123.40   124.60   1.20   SLT   GY   Nill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB005<br>HB005   | 113.30<br>118.60 | 121.50           | 5.30<br>2.90  | CRM<br>SLT |           | GY<br>GY/BR    |                | Nill<br>Nill |                 |             |
| HB005 123.40 124.60 1.20 SLT GY Nill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB005            | 121.80           | 123.10           | 1.30          |            | -         | GY             |                | Nill         |                 |             |
| HB005 124.60 124.90 0.30 CRM BK/GY Nill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HB005            | 123.40           | 124.60           | 1.20          |            | SANDSTONE | GY             |                | Nill         |                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                  |                  |               |            |           |                |                |              |                 | CURLYTUFF   |

|                         | ı                          |                            |                       |            |               |                         |                |                      |                 |                   |
|-------------------------|----------------------------|----------------------------|-----------------------|------------|---------------|-------------------------|----------------|----------------------|-----------------|-------------------|
| Borehole ID             | From (ft)                  | To (ft)                    | Thickness             | Lith Code  | Lithology     | Colour                  | Mineralisation | Weathering           | Organic content | Description       |
| HB005                   | 125.00                     | 127.90                     | 2.90                  | SLT        | 0.11/0.0001/0 | GY                      |                | Nill                 |                 |                   |
| HB005<br>HB005<br>HB005 | 127.90<br>128.00<br>131.60 | 128.00<br>131.60<br>132.00 | 0.10<br>3.60<br>0.40  | SLT        | SANDSTONE     | GY/BR<br>GY/BK          |                | Nill<br>Nill<br>Nill |                 |                   |
| HB005                   | 132.00                     | 132.60                     | 0.60                  | SLT        | SANDSTONE     | GY                      |                | Nill<br>Nill         |                 |                   |
| HB005<br>HB005          | 132.60                     | 133.90                     | 0.30                  | CRM        |               | GY/BR<br>GY/BK          |                | Nill                 |                 |                   |
| HB005<br>HB005          | 134.20                     | 135.00                     | 2.30                  | CRM        |               | GY/BR<br>CR             |                | Nill<br>Nill         |                 |                   |
| HB005<br>HB005          | 137.30<br>140.50           | 140.50<br>143.90           | 3.20<br>3.40          | SLT<br>CRM |               | BR/GY<br>CR             |                | Nill<br>Nill         |                 |                   |
| HB005<br>HB005          | 143.90<br>155.00           | 155.00<br>163.70           | 11.10<br>8.70         | CRM        |               | BR/BK<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB005<br>HB005          | 163.70<br>168.50           | 168.50<br>175.00           | 4.80<br>6.50          | CRM<br>CRM |               | GY/BK<br>CR/GY          |                | Nill<br>Nill         |                 |                   |
| HB005                   | 175.00<br>EOH              |                            | -175.00               |            |               |                         |                |                      |                 |                   |
|                         |                            |                            |                       |            |               |                         |                |                      |                 |                   |
| HB008<br>HB008<br>HB008 | 0.00<br>16.90<br>19.30     | 16.90<br>19.30<br>20.80    | 16.90<br>2.40<br>1.50 | SLT<br>SLT | Casing        | gy                      |                | Low<br>Nill          |                 |                   |
| HB008<br>HB008          | 20.80                      | 26.00                      | 5.20                  | SLT        |               | gy/bk<br>GY/BR<br>GY    |                | Nill<br>Nill         |                 |                   |
| HB008                   | 30.00                      | 30.11                      | 0.11                  | SLT<br>MB  |               | BK/BR                   |                | Nill                 |                 | Water encountered |
| HB008<br>HB008          | 30.11<br>32.90             | 32.90<br>33.10             | 2.79<br>0.20          | SLT        |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 33.10<br>33.30             | 33.30<br>35.50             | 0.20<br>2.20          | SLT        |               | GY/BR<br>BK/BR          |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 35.50<br>40.30             | 40.30<br>41.60             | 4.80<br>1.30          | SLT<br>MB  |               | GY/BR<br>BK/BR          |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 41.60<br>42.30             | 42.30<br>43.80             | 0.70                  | CRM<br>MB  |               | GY<br>BK/BR             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 43.80<br>45.00             | 45.00<br>49.60             | 1.20                  | CRM<br>MB  |               | GY<br>BK/BR             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 49.60<br>52.00             | 52.00<br>52.11             | 2.40                  | SLT<br>SLT |               | GY/BR<br>BR/BK          |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 52.11<br>53.60             | 53.60<br>56.10             | 1.49                  | CRM        |               | GY<br>GY/BR             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 56.10<br>57.10             | 57.10<br>58.90             | 1.00                  | SLT        |               | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 58.90<br>58.11             | 58.11<br>59.20             | -0.79<br>1.09         | SLT        |               | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 59.20<br>59.50             | 59.50<br>61.60             | 0.30<br>2.10          | SLT        |               | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 61.60<br>62.00             | 62.00<br>63.30             | 0.40<br>1.30          | SLT        |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 63.30<br>63.90             | 63.90<br>64.70             | 0.60                  | SLT        |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 64.70<br>68.90             | 68.90<br>69.10             | 4.20<br>0.20          | SLT        | SANDSTONE     | GY/BR<br>BK             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 69.10<br>72.40             | 72.40<br>72.60             | 3.30<br>0.20          | SLT<br>AT  |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 72.60<br>73.00             | 73.00<br>74.80             | 0.40<br>1.80          | SLT        |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 74.80<br>75.00             | 75.00<br>76.60             | 0.20<br>1.60          | SLT        |               | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 76.60<br>80.60             | 80.60<br>82.00             | 4.00<br>1.40          | SLT<br>SLT |               | GY/BR                   |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 82.00<br>82.50             | 82.50<br>82.70             | 0.50<br>0.20          | CRM<br>AT  |               | GY/BK                   |                | Nill<br>Nill         |                 | Stop sampling     |
| HB008<br>HB008          | 82.70<br>86.00             | 86.00<br>89.30             | 3.30<br>3.30          | SLT        |               | GY<br>GY                |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 89.30<br>89.90             | 90.90<br>90.90             | 1.00                  | SLT SLT    | CANDOTONE     | GY/BR<br>PK/CR          |                | Nill<br>Nill<br>Nill |                 |                   |
| HB008<br>HB008          | 90.90<br>91.20<br>105.30   | 91.20<br>105.30<br>105.90  | 0.30<br>14.10         | SLT<br>CAM | SANDSTONE     | BK<br>GY                |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 105.90<br>108.60           | 108.60<br>108.12           | 0.60<br>2.70<br>-0.48 | SLT        |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 108.12                     | 109.30                     | 1.18                  | SLT        |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 113.80<br>123.11           | 123.11<br>124.70           | 9.31                  | CRM        | SANDSTONE     |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 124.70                     | 125.20<br>128.20           | 0.50                  | CRM        | SANDSTONE     |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 128.20                     | 128.90                     | 0.70                  | CRM        | CLAYSTONE     |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 130.90<br>131.90           | 131.90<br>132.10           | 1.00<br>0.20          | SLT        |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 132.10<br>133.00           | 133.00<br>133.30           | 0.90                  | SLT        |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 133.30<br>136.21           | 136.20<br>144.20           | 2.90<br>7.99          | SLT        |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 147.60<br>148.00           | 148.00<br>151.00           | 0.40<br>3.00          | SLT<br>CRM |               |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 151.00<br>151.80           | 151.30<br>152.70           | 0.30<br>0.90          | CRM<br>CRM | CLAYSTONE     |                         |                | Nill<br>Nill         |                 |                   |
| HB008<br>HB008          | 152.70<br>153.10           | 153.10<br>155.00           | 0.40<br>1.90          | CRM        | CLAYSTONE     |                         |                | Nill<br>Nill         |                 |                   |
| HB008                   | EOH                        |                            |                       |            |               |                         |                |                      |                 |                   |
| HB009                   | 0.00                       | 17.20                      |                       |            | CASING        |                         |                | * ***                |                 |                   |
| HB009<br>HB009          | 17.20<br>20.00             | 30.90                      | 10.90                 | SLT        |               | GR/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 30.90<br>34.10             | 34.10                      | 3.20<br>0.60          | SLT        |               | GY/BK                   |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 34.70<br>35.50             | 35.50<br>37.00             | 0.80<br>1.50          | SLT<br>CPM |               | GY/BK                   |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009<br>HB009 | 37.00<br>41.00             | 41.00<br>48.00<br>48.30    | 7.00<br>0.30          | SLT<br>CRM |               | GY<br>GY                |                | Nill<br>Nill<br>Nill |                 |                   |
| HB009<br>HB009<br>HB009 | 48.00<br>48.30<br>53.80    | 48.30<br>53.80<br>58.20    | 0.30<br>5.50<br>4.40  | SLT<br>SLT |               | GY<br>GY/BR             |                | Nill<br>Nill<br>Nill |                 |                   |
| HB009<br>HB009          | 58.20<br>58.90             | 58.20<br>58.90<br>59.20    | 0.70<br>0.30          | SLT<br>SLT |               | GY/BR<br>GY/PK<br>GY/BR |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 59.20<br>59.90             | 59.20<br>59.90<br>62.50    | 0.30<br>0.70<br>2.60  | CRM<br>SLT |               | GY/BR<br>GY/BR          |                | Nill<br>Nill<br>Nill |                 |                   |
| HB009<br>HB009          | 62.50<br>62.90             | 62.90<br>64.50             | 0.40                  | CRM        |               | GY/BR<br>GY/BR          |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 64.50<br>65.00             | 65.00<br>69.20             | 0.50<br>4.20          | AT<br>SLT  |               | BR/OR<br>GY/BR          |                | Nill<br>Nill         |                 | WAVYTUFF          |
| HB009<br>HB009          | 69.20<br>71.80             | 71.80<br>72.40             | 2.60                  | CRM        |               | GY/BR                   |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 72.40<br>72.90             | 72.90<br>75.10             | 0.50                  | SLT        |               | GY/BK<br>GY             |                | Nill<br>Nill         |                 | Water at 75ft     |
| HB009<br>HB009          | 75.10<br>79.30             | 79.30<br>80.30             | 4.20<br>1.00          | MB<br>CRM  |               | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
| HB009<br>HB009          | 80.30<br>82.50             | 82.50<br>85.00             | 2.20                  | MB<br>CRM  |               | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                   |
|                         |                            | 2.30                       |                       |            |               | -                       |                |                      |                 |                   |

| Borehole ID             | From (ft)                  | To (ft)                    | Thickness            | Lith Code         | Lithology | Colour                  | Mineralisation | Weathering           | Organic content | Description                   |
|-------------------------|----------------------------|----------------------------|----------------------|-------------------|-----------|-------------------------|----------------|----------------------|-----------------|-------------------------------|
| HB009<br>HB009          | 85.00<br>86.40             | 86.40<br>86.90             | 1.40<br>0.50         | MB<br>CRM         |           | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 86.90<br>88.60             | 88.60<br>90.60             | 1.70<br>2.00         | MB<br>CRM         |           | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 90.60<br>91.60             | 91.60<br>93.90             | 1.00<br>2.30         | MB<br>CRM         |           | BK/BR<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 93.90<br>94.60             | 94.60<br>97.50             | 0.70<br>2.90         | SLT<br>MB         |           | BK/BR                   |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 97.50<br>101.30            | 101.30<br>101.80           | 3.80<br>0.50         | SLT               |           | GY                      |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 101.80                     | 102.80                     | 1.00<br>5.80         | SLT<br>MB         |           | BK/BR                   |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009<br>HB009 | 108.60<br>109.00<br>110.00 | 109.00<br>110.00<br>113.30 | 0.40<br>1.00<br>3.30 | SLT<br>SND<br>SLT |           | GY/BR<br>GY/BK<br>BR/BK |                | Nill<br>Nill<br>Nill |                 |                               |
| HB009<br>HB009          | 113.30<br>113.80           | 113.80<br>114.80           | 0.50                 | SND               |           | GY/BR<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 114.80                     | 115.00                     | 0.20                 | CRM               |           | CR<br>BR/OR             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 117.20                     | 117.80                     | 0.60                 | CRM               |           | GY                      |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 120.10<br>127.10           | 127.10<br>127.30           | 7.00<br>0.20         | SLT<br>AT         |           | GY/BK<br>GY/BR          |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 127.30<br>129.70           | 129.70<br>130.40           | 2.40<br>0.70         | SLT               |           | GY/BR<br>BK             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 130.40                     | 133.90                     | 3.50<br>0.20         | SLT               |           | GY<br>OR/PK             |                | Nill<br>Nill         |                 | CURLY TUFF -                  |
| HB009                   | 134.10                     | 138.00                     | 3.90                 | SLT               |           | GY                      |                | Nill                 |                 | END OF MAHZ                   |
| HB009<br>HB009          | 138.00                     | 138.20                     | 0.20<br>3.20         | SND               |           | BK/GY<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009<br>HB009 | 141.40<br>141.90<br>142.70 | 141.90<br>142.70<br>142.90 | 0.50<br>0.80<br>0.20 | SND<br>SLT<br>CAM |           | GY<br>CR                |                | Nill<br>Nill<br>Nill |                 |                               |
| HB009<br>HB009          | 142.70<br>142.90<br>145.30 | 145.30<br>145.90           | 2.40<br>0.60         | SLT<br>CAM        |           | GY<br>CR                |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 145.90<br>146.11           | 146.11<br>147.90           | 0.21                 | SLT               |           | GY<br>GY                |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 147.90<br>149.50           | 149.50<br>153.90           | 1.60                 | CAM               |           | BR<br>CR/GY             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 153.90<br>155.90           | 155.90<br>156.70           | 2.00<br>0.80         | CRM<br>CRM        |           | GY<br>GY/BR             |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 156.70<br>164.60           | 164.60<br>167.60           | 7.90<br>3.00         | CRM<br>SND        |           | BR<br>BR                |                | Nill<br>Nill         |                 |                               |
| HB009<br>HB009          | 167.60<br>168.10           | 168.10<br>171.11           | 0.50<br>3.01         | SND               |           | CR<br>BR                |                | Nill<br>Nill         |                 |                               |
| HB009                   | 171.11<br>172.40           | 172.40<br>180.00           | 7.60                 | CRM               |           | CR<br>BR                |                | Nill<br>Nill         |                 |                               |
| HB006                   | EOH<br>0.00                | 14.80                      | 0.00                 |                   | CASING    |                         |                |                      |                 |                               |
| HB006<br>HB006          | 14.80<br>17.10             | 17.10<br>18.10             | 2.30                 | SLT               | CASINO    | GY/BK<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 18.10<br>18.30             | 18.30<br>22.70             | 0.20<br>4.40         | SLT               | SANDSTONE | OR/CR<br>GY/BK          |                | Nill<br>Nill         |                 | oil seepage                   |
| HB006<br>HB006          | 22.70<br>23.90             | 23.90<br>25.90             | 1.20<br>2.00         | CRM<br>SLT        |           | CR<br>GY/BR             |                | Nill<br>Nill         |                 | oil seepage                   |
| HB006<br>HB006          | 25.90<br>27.00             | 27.00<br>30.00             | 1.10<br>3.00         | CRM<br>SLT        |           | CR<br>GY                |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 30.00<br>31.00             | 31.00<br>34.80             | 1.00<br>3.80         | SLT               | SANDSTONE | BR/BK<br>GY/BK          |                | Nill<br>Nill         |                 | OIL SEEPAGE<br>OIL SEEPAGE    |
| HB006<br>HB006          | 34.80<br>35.40             | 35.40<br>37.20             | 1.80                 | SLT               |           | GY<br>CR                |                | Nill<br>Nill         |                 | OL SEEPAGE AT                 |
| HB006<br>HB006          | 37.20<br>47.60             | 47.60<br>48.00             | 10.40                | SLT<br>SLT        |           | GY/BK<br>GY             |                | Nill<br>Nill         |                 | 40.0 TO 40.8FT<br>oil seepage |
| HB006<br>HB006          | 48.00<br>52.90             | 52.90<br>55.00             | 4.90<br>2.10         | SLT               |           | GY/BK<br>GY             |                | Nill<br>Nill         |                 | oii seepage                   |
| HB006<br>HB006          | 55.00<br>55.50             | 55.50<br>60.40             | 0.50<br>4.90         | SLT               |           | CR<br>BK/BR             |                | Nill<br>Nill         |                 | oil seepage                   |
| HB006<br>HB006          | 60.40<br>61.90             | 61.90<br>62.90             | 1.50<br>1.00         | CRM<br>SLT        |           | CR<br>GY/BR             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 62.90<br>63.20             | 63.20<br>63.60             | 0.30<br>0.40         | CRM<br>SLT        |           | GY/BR                   |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 63.60<br>65.00             | 65.00<br>67.00             | 1.40<br>2.00         | CRM<br>SLT        |           | CR<br>GY/BR             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 67.00<br>67.30             | 67.30<br>67.90             | 0.30                 | CRM               |           | GY/BK<br>GY             |                | Nill<br>Nill<br>Nill |                 |                               |
| HB006<br>HB006<br>HB006 | 67.90<br>68.40<br>68.80    | 68.40<br>68.80<br>69.60    | 0.50<br>0.40<br>0.80 | SLT<br>CRM<br>SLT |           | GY/BR<br>GY/BR          |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 69.60<br>70.00             | 70.00<br>74.60             | 0.40<br>4.60         | SLT               | SANDSTONE | BK<br>GY/BR             |                | Nill<br>Nill         |                 | oil seepage                   |
| HB006<br>HB006          | 74.60<br>76.50             | 76.50<br>77.20             | 1.90                 | CRM<br>SLT        |           | GY<br>GY/BR             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 77.20<br>77.70             | 77.70<br>78.50             | 0.50<br>0.80         | SLT               | SANDSTONE | BK/BR<br>GY/BR          |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 78.50<br>78.90             | 78.90<br>82.90             | 0.40<br>4.00         | CRM<br>SLT        |           | CR<br>GY/BR             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 82.90<br>83.00             | 83.00<br>84.90             | 1.90                 | CRM               | SANDSTONE | GY/BR                   |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 84.90<br>87.90             | 90.90<br>92.30             | 3.00                 | SLT<br>SLT<br>CPM |           | GY/BR                   |                | Nill<br>Nill<br>Nill |                 |                               |
| HB006<br>HB006          | 90.90<br>92.30<br>93.20    | 92.30<br>93.20<br>93.50    | 1.40<br>0.90<br>0.30 | CRM<br>SLT        | SANDSTONE | BR/CR<br>GY/BR<br>BK/GY |                | Nill<br>Nill<br>Nill |                 |                               |
| HB006<br>HB006          | 93.50<br>94.60             | 94.60<br>94.90             | 1.10                 | SLT               | SANDSTONE | GY/BR<br>BK/GY          |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 94.90<br>96.00             | 96.00<br>96.30             | 1.10<br>0.30         | SLT               | SANDSTONE | GY<br>GY/BK             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 96.30<br>98.10             | 98.10<br>99.70             | 1.80<br>1.60         | SLT               |           | GY/BR<br>GY/BK          |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 99.70<br>101.10            | 101.10                     | 1.40<br>0.30         | SLT               |           | GY/BR                   |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 101.40                     | 103.20                     | 1.80<br>3.80         | CAM               |           | GY/BR<br>CR             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 107.00<br>107.90<br>111.10 | 107.90<br>111.10<br>111.70 | 0.90<br>3.20<br>0.60 | SLT<br>CRM<br>AT  |           | GY/BR<br>GY<br>GY/CR    |                | Nill<br>Nill<br>Nill |                 | Curly Tuff                    |
| HB006<br>HB006          | 111.10<br>111.70<br>112.00 | 111.70<br>112.00<br>118.70 | 0.60<br>0.30<br>6.70 | CRM               | SANDSTONE | CR/BK<br>BK             |                | Nill<br>Nill         |                 | OIL CONTENT?                  |
| HB006<br>HB006          | 118.70<br>119.90           | 119.90<br>120.60           | 1.20                 | CRM<br>SLT        |           | GY<br>GY                |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 120.60<br>121.40           | 121.40<br>123.90           | 0.80                 | CRM<br>SLT        |           | GY<br>GY                |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 123.90<br>124.70           | 124.70<br>126.60           | 0.80<br>1.90         | CAM               | SANDSTONE | BK<br>GY                |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 126.60<br>128.80           | 128.80<br>131.60           | 2.20<br>2.80         | CRM<br>CAM        |           | GY/BK<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB006<br>HB006          | 131.60<br>138.90           | 138.90<br>142.10           | 7.30<br>3.20         | CRM               | SANDSTONE | BK/PR<br>GY             |                | Nill<br>Nill         |                 |                               |
| HB006                   | 142.10                     | 145.90                     | 3.80                 | SLT               |           | GY                      |                | Nill                 | l               | l                             |

| Borehole ID                | From (ft)                  | To (ft)                    | Thickness             | Lith Code         | Lithology | Colour                  | Mineralisation | Weathering   | Organic content | Description                                             |
|----------------------------|----------------------------|----------------------------|-----------------------|-------------------|-----------|-------------------------|----------------|--------------|-----------------|---------------------------------------------------------|
| HB006<br>HB006             | 145.90<br>146.90           | 146.90<br>147.90           | 1.00                  | CRM<br>SLT        |           | GY<br>GY                |                | Nill<br>Nill |                 |                                                         |
| HB006<br>HB006             | 147.90<br>148.90           | 148.90                     | 1.00<br>0.90          | CRM<br>SLT        |           | GY<br>GY                |                | Nill<br>Nill |                 |                                                         |
| HB006                      | 149.80                     | 151.50                     | 1.70                  | CRM               |           | GY                      |                | Nill         |                 |                                                         |
| HB006<br>HB006             | 151.50<br>153.20           | 153.20<br>154.10           | 1.70<br>0.90          | SLT<br>CRM        |           | GY<br>GY                |                | Nill<br>Nill |                 |                                                         |
| HB006<br>HB006             | 154.10<br>155.00           | 155.00                     | 0.90<br>-155.00       | SLT               |           | GY                      |                | Nill         |                 |                                                         |
|                            | EOH                        |                            |                       |                   |           |                         |                |              |                 |                                                         |
|                            |                            |                            |                       |                   | 010110    |                         |                |              |                 |                                                         |
| HB-002<br>HB-002           | 0.00<br>6.30               | 6.30<br>11.30              | 6.30<br>5.00          | SLT               | CASING    | GY/BK                   |                | Low          |                 |                                                         |
| HB-002<br>HB-002           | 11.30<br>18.30             | 18.30<br>18.90             | 7.00<br>0.60          | CRM<br>SLT        |           | GY/BK                   |                | Low          |                 |                                                         |
| HB-002<br>HB-002           | 18.90<br>20.20             | 20.20                      | 1.30<br>4.40          | SLT               |           | GY/BK                   |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 24.60<br>26.40             | 26.40<br>26.90             | 1.80                  | SLT               |           | GY<br>GY/BK             |                | Nill<br>Nill |                 |                                                         |
| HB-002                     | 26.90                      | 28.10                      | 1.20                  | SLT               |           | GY                      |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 28.10<br>36.60             | 36.60<br>39.20             | 8.50<br>2.60          | SLT<br>SLT        |           | GY/BK<br>GY             |                | Nill<br>Nill |                 | HIGH OIL                                                |
| HB-002<br>HB-002           | 39.20<br>42.90             | 42.90<br>44.30             | 3.70<br>1.40          | SLT<br>CRM        |           | GY/BK<br>GY             |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 44.30<br>48.00             | 48.00<br>48.90             | 3.70<br>0.90          | SLT               |           | GY/BK<br>GY             |                | Nill<br>Nill |                 |                                                         |
| HB-002                     | 48.90                      | 52.10                      | 3.20                  | SLT               |           | GY/BK                   |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 52.10<br>53.40             | 53.40<br>57.11             | 1.30<br>3.71          | CRM<br>SLT        |           | GY/BK                   |                | Nill<br>Nill |                 | HIGH OIL                                                |
| HB-002                     | 57.11<br>58.10             | 58.10<br>60.30             | 0.99<br>2.20          | CRM<br>SLT        |           | GY/BK                   |                | Nill<br>Nill |                 | HIGH OIL                                                |
| HB-002                     | 60.30                      | 60.70                      | 0.40                  | CRM               |           | GY/BK                   |                | Nill         |                 |                                                         |
| HB-002                     | 60.70                      | 68.10                      | 7.40                  | SLT               |           | GY                      |                | Nill         |                 | MAHOGANY ZONE                                           |
| HB-002                     | 68.10                      | 73.00                      | 4.90                  | SLT               |           | BK/GY                   |                | Nill         |                 | - OIL SEEPAGE<br>VISIBLE IN CORE<br>RETURNS             |
| HB-002                     | 73.00                      | 74.90                      | 1.90                  | CRM               |           | GY                      |                | Nill         |                 | HIGH OIL 66.5 - 81                                      |
| HB-002                     | 74.90<br>81.20             | 81.20<br>81.50             | 6.30<br>0.30          | SLT               |           | BK/GY<br>GY             |                | Nill         |                 |                                                         |
| HB-002                     | 81.50                      | 97.30                      | 15.80                 | SLT               |           | BK/GY                   |                | Nill         |                 | HIGH OIL 85 - 87.9<br>& MED OIL 91.2 -<br>99.0          |
| HB-002                     | 97.30                      | 104.30                     | 7.00                  | SLT               |           | GY/BR                   |                | Nill         |                 | HIGH OIL 99.8 -<br>102.5 & 108                          |
| HB-002<br>HB-002           | 104.30<br>105.00           | 105.00<br>108.30           | 0.70<br>3.30          | SLT               | SANDSTONE | RD/BK<br>GY/BK          |                | Nill<br>Nill |                 | HIGH OIL                                                |
| HB-002                     | 108.30                     | 110.60                     | 2.30                  | SLT               |           | GY/BR                   |                | Nill         |                 | HIGH OIL -                                              |
| HB-002<br>HB-002<br>HB-002 | 110.60<br>120.60<br>121.80 | 120.60<br>121.80<br>124.00 | 10.00<br>1.20<br>2.20 | SLT<br>SLT<br>SLT |           | BR/GY<br>GY/BK<br>GY/BR |                | Nill<br>Nill |                 | MEDIUM 116.4-<br>117.6<br>HIGH OIL                      |
| HB-002                     | 124.00                     | 143.70                     | 19.70                 | JE1               |           | BK/GY                   |                | Nill         |                 | 145-151 HIGH OIL                                        |
| HB-002                     | 143.70                     | 155.80                     | 12.10                 | SLT               |           | GY/BR                   |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 155.80<br>158.10           | 158.10<br>158.70           | 2.30<br>0.60          | SLT<br>SLT        |           | BK/GY<br>GY             |                | Nill<br>Nill |                 | MED OIL                                                 |
| HB-002<br>HB-002           | 158.70<br>162.50           | 162.50<br>163.00           | 3.80<br>0.50          | SLT<br>AT         |           | GY/BR<br>OR/BR          |                | Nill<br>Nill |                 | LOW OIL<br>TUFF                                         |
| HB-002<br>HB-002           | 163.00<br>164.30           | 164.30<br>165.10           | 1.30<br>0.80          | CAM<br>SLT        |           | GY<br>GY/BR             |                | Nill<br>Nill |                 | LOW OIL                                                 |
| HB-002<br>HB-002           | 165.10<br>166.50           | 166.50<br>168.00           | 1.40                  | SLT               | SANDSTONE | BR<br>GY/BR             |                | Nill<br>Nill |                 | LOW OIL<br>LOW OIL                                      |
| HB-002                     | 168.00                     | 168.80                     | 0.80                  | CRM               |           | GY                      |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 168.80<br>171.30           | 171.30<br>171.60           | 2.50<br>0.30          | SLT               | SANDSTONE | GY<br>RD/PR             |                | Nill<br>Nill |                 | TAR VISIBLE                                             |
| HB-002<br>HB-002           | 171.60<br>172.60           | 172.60<br>173.00           | 1.00<br>0.40          | SLT<br>AT         |           | GY<br>BR/GY             |                | Nill<br>Nill |                 | TUFF                                                    |
| HB-002                     | 173.00<br>179.60           | 179.60                     | 6.60<br>0.20          | SLT               | SANDSTONE | GY<br>PR                |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 179.80<br>180.00           | 180.00<br>180.20           | 0.20                  | SLT               | SANDSTONE | GY<br>PR                |                | Nill<br>Nill |                 |                                                         |
| HB-002                     | 180.20                     | 181.40                     | 1.20                  | SLT               | SANDSTONE | GY                      |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 181.40<br>181.70           | 181.70<br>181.90           | 0.30<br>0.20          | CRM<br>SLT        |           | BK<br>GY                |                | Nill<br>Nill |                 |                                                         |
| HB-002                     | 181.90                     | 182.10                     | 0.20                  | CRM               |           | вк                      |                | Nill         |                 | TAR ON<br>SURFACE OF                                    |
| HB-002                     | 182.10                     | 186.00                     | 3.90                  | SLT               |           | GY                      |                | Nill         |                 | CORE<br>B                                               |
| HB-002<br>HB-002           | 186.00<br>186.30           | 186.30<br>189.40           | 0.30<br>3.10          | CRM<br>SLT        | _         | GY<br>GY/CR             |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 189.40<br>190.00           | 190.00                     | 0.60                  | CRM               |           | GY<br>GY/CR             |                | Nill<br>Nill |                 |                                                         |
| HB-002                     | 191.40                     | 191.80                     | 0.40                  | CRM               |           | GY                      |                | Nill         |                 |                                                         |
| HB-002<br>HB-002           | 191.80                     | 193.00<br>195.00           | 2.00                  | CAM               |           | GY/BR<br>CR             |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 195.00<br>196.50           | 196.50<br>197.10           | 1.50<br>0.60          | SLT<br>CRM        |           | GY/BR<br>BR/RD          |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 197.10<br>197.70           | 197.70<br>212.90           | 0.60<br>15.20         | CAM<br>CRM        |           | GY<br>BR                |                | Nill<br>Nill |                 |                                                         |
| HB-002<br>HB-002           | 212.90<br>215.00           | 215.00<br>EOH              | 2.10                  | CRM               |           | GY/CR                   |                | Nill         |                 | -                                                       |
|                            |                            |                            |                       |                   |           |                         |                |              |                 |                                                         |
| HB-003<br>HB-003           | 0.00<br>5.00               | 5.00<br>6.10               | 5.00<br>1.10          | SLT               | CASING    | GY                      |                | Low          |                 |                                                         |
| HB-003<br>HB-003           | 6.10<br>9.90               | 9.90                       | 3.80<br>5.90          | SLT<br>SLT        |           | GY/BR<br>GY             |                | Nill<br>Nill |                 | OIL SEEPAGE                                             |
| HB-003                     | 9.90<br>15.80              | 16.90                      | 1.10                  | SLT               |           | GY/RD                   |                | Nill<br>Nill |                 | I OW OIL                                                |
| HB-003                     | 16.90                      | 23.20                      | 6.30                  | SLT               |           | GY/BR                   |                | Nill         |                 | SEEPAGE                                                 |
| HB-003                     | 23.20                      | 23.80                      | 0.60                  | SLT               | <u></u>   | GY/BK                   |                | Nill         | <u></u>         | LOW OIL<br>SEEPAGE                                      |
| HB-003<br>HB-003           | 23.80<br>24.10             | 24.10<br>27.90             | 0.30<br>3.80          | CRM<br>SLT        |           | BR/BK<br>GY/BR          |                | Nill<br>Nill |                 | OIL SEEPAGE                                             |
| HB-003<br>HB-003           | 27.90<br>28.60             | 28.60<br>30.10             | 0.70<br>1.50          | CRM<br>SLT        |           | GY<br>GY                |                | Nill<br>Nill |                 |                                                         |
| HB-003<br>HB-003           | 30.10<br>35.00             | 35.00<br>37.30             | 4.90                  | CRM               |           | GY<br>GY/BR             |                | Nill<br>Nill |                 | MED OIL                                                 |
| HB-003                     | 37.30                      | 43.50                      | 6.20                  | SLT               |           | GY/BR                   |                | Nill         |                 |                                                         |
| HB-003                     | 43.50                      | 55.00                      | 11.50                 | SLT               |           | GY/BK                   |                | Nill         |                 | MAHZ - HIGH OIL<br>YIELD VISIBLE -<br>Water encountered |
| HB-003                     | 55.00                      | 56.60                      | 1.60                  | SLT               |           | GY                      |                | Nill         |                 | NO OIL                                                  |

| Borehole ID      | From (ft)        | To (ft)          | Thickness     | Lith Code  | Lithology   | Colour           | Mineralisation | Weathering   | Organic content | Description                        |
|------------------|------------------|------------------|---------------|------------|-------------|------------------|----------------|--------------|-----------------|------------------------------------|
|                  |                  |                  |               |            |             |                  |                |              |                 |                                    |
| HB-003           | 50.00            | 00.00            | 4.00          | SLT        |             | OV/DI/           |                | Nill         |                 | MAHZ - HIGH OIL                    |
| HB-003           | 56.60<br>60.90   | 60.90            | 4.30<br>2.40  | SLI        |             | GY/BK<br>GY/BR   |                | Nill         |                 | YIELD VISIBLE                      |
| HB-003           | 63.30            | 73.00            | 9.70          | SLI        |             | GY/BR            |                | Nill         |                 | MAHZ - HIGH OIL                    |
| ПБ-003           | 63.30            | 73.00            | 9.70          | SLI        |             | G1/BR            |                | NIII         |                 | YIELD VISIBLE<br>high clay matrix. |
| HB-003           | 73.00            | 79.50            | 6.50          | SLT        |             | GY/BR            |                | Nill         |                 | contains visible oil               |
|                  |                  |                  |               |            |             |                  |                |              |                 |                                    |
| HB-003<br>HB-003 | 79.50<br>85.00   | 85.00<br>85.30   | 5.50<br>0.30  | CRM<br>SLT |             | BR/CR<br>BK/CR   |                | Nill<br>Nill |                 | contains visble oil<br>LOW OIL     |
| HB-003           | 85.30            | 88.40            | 3.10          | CRM        |             | GY/BK            |                | Nill         |                 |                                    |
| HB-003           | 88.40<br>89.60   | 89.60<br>89.90   | 1.20          | SLT        |             | GY/BR<br>BK/OR/G |                | Nill<br>Nill |                 | CURLYTUFF                          |
| ***              | 89.60            | 91.00            | 0.30          | AT         |             | N<br>GY/BR       |                | Nill         |                 |                                    |
| HB-003<br>HB-003 | 91.00            | 91.00            | 1.10<br>0.80  | SLT        |             | CR/WT            |                | Nill         |                 |                                    |
| HB-003<br>HB-003 | 91.80<br>92.20   | 92.20<br>93.20   | 0.40<br>1.00  | SLT        |             | GY/BR<br>CR/GY   |                | Nill<br>Nill |                 |                                    |
| HB-003           | 93.20            | 94.40            | 1.00          | SLT        |             | BK/BR            |                | Nill         |                 |                                    |
| HB-003           | 94.40            | 98.10            | 3.70          | CRM        | CANDOTOL    | GY/BR            |                | Nill         |                 |                                    |
| HB-003<br>HB-003 | 98.10<br>98.70   | 98.70<br>100.10  | 0.60<br>1.40  | CRM        | SANDSTONE   | BK<br>PR         |                | Nill<br>Nill |                 | <u></u>                            |
| HB-003           | 100.10           | 101.80           | 1.70          | CRM        |             | GY<br>PR         |                | Nill<br>Nill |                 |                                    |
| HB-003<br>HB-003 | 101.80           | 108.00<br>112.40 | 6.20<br>4.40  | CRM        |             | PR<br>CM         |                | Nill<br>Nill |                 | l                                  |
| HB-003           | 112.40           | 115.20           | 2.80          | CRM        | CANDOTONE   | GY               |                | Nill         |                 |                                    |
| HB-003<br>HB-003 | 115.20<br>116.20 | 116.20<br>145.00 | 1.00<br>28.80 | CRM        | SANDSTONE   | GY<br>GY         |                | Nill<br>Nill |                 | <u> </u>                           |
|                  | EOH              |                  |               |            |             |                  |                |              |                 |                                    |
|                  |                  |                  |               |            |             |                  |                |              |                 |                                    |
| HB-004<br>HB-004 | 0.00<br>45.00    | 45.00<br>47.00   | 45.00<br>2.00 | CRM        | collar      | BK/BR            |                | Nill         |                 |                                    |
| HB-004           | 45.00<br>47.00   | 53.00            | 6.00          | SLT        |             | BR/GY            |                | Nill         |                 |                                    |
| HB-004           | 53.00            | 58.60            | 5.60          | SLT        |             | GY/BR            |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 58.60<br>65.60   | 65.60<br>69.10   | 7.00<br>3.50  | SLT        |             | BK/BR<br>GR/GY   |                | Nill         |                 |                                    |
| HB-004           | 69.10            | 70.10            | 1.00          | CRM        |             | GY               |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 70.10<br>73.70   | 73.70<br>75.00   | 3.60<br>1.30  | SLT        |             | GY/BR<br>GY      |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 75.00<br>81.90   | 81.90<br>84.90   | 6.90          | SLT        |             | BR/GY<br>BR/BK   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 84.90            | 85.90            | 1.00          | SLT        |             | BK/BR            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 85.90<br>90.20   | 90.20<br>93.50   | 4.30<br>3.30  | SLT        |             | BR/BK<br>BR/GY   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 93.50            | 94.10            | 0.60          | SLT        |             | BK/BR            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 94.10<br>98.60   | 98.60<br>104.00  | 4.50<br>5.40  | SLT<br>SLT |             | GY/BR<br>GY/BR   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 104.00           | 104.30           | 0.30          | SLT        |             | BK/BR            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 104.30           | 109.80           | 5.50          | SLT        |             | CR/GY<br>BK/BR   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 111.40           | 113.10           | 1.70          | SLT        |             | GY/BK            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 113.10<br>117.80 | 117.80           | 4.70<br>1.30  | SLT        |             | BK/BR<br>GY/BR   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 119.10           | 120.40           | 1.30          | SLT        |             | BR/BK            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 120.40<br>122.80 | 122.80<br>123.90 | 2.40<br>1.10  | SLT        |             | GY/BR<br>BK/BR   |                | Nill<br>Nill |                 |                                    |
| HB-004           | 123.90           | 132.90           | 9.00          | SLT        |             | BR/GY            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 132.90<br>133.40 | 133.40           | 0.50<br>1.10  | SLT        |             | GY<br>BR/GY      |                | Nill<br>Nill |                 |                                    |
| HB-004           | 134.50           | 136.00           | 1.50          | SLT        |             | BK/BR            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 136.00<br>141.10 | 141.10<br>144.00 | 5.10<br>2.90  | SLT        |             | BR/GY<br>GY      |                | Nill<br>Nill |                 |                                    |
| HB-004           | 144.00           | 145.60           | 1.60          | AT         |             | GY/PR            |                | Nill         |                 | Curly Tuff                         |
| HB-004<br>HB-004 | 145.60<br>146.60 | 146.60<br>147.90 | 1.00          | SLT        |             | BR/GY<br>CR/GY   |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 147.90           | 155.00           | 7.10          | CRM        |             | GY<br>GY/BR      |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 155.00<br>158.10 | 158.10<br>158.30 | 3.10<br>0.20  | SLI        | SANDSTONE   | GY/BR<br>GY/BK   |                | Nill<br>Nill |                 | <u> </u>                           |
| HB-004           | 158.30           | 159.10           | 0.80          | SLT        | CANDOTONE   | GY/BR            |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 159.10<br>159.30 | 159.30<br>160.90 | 0.20<br>1.60  | SLT        | SANDSTONE   | BR<br>GY         |                | Nill<br>Nill |                 | <u></u>                            |
| HB-004<br>HB-004 | 160.90<br>161.00 | 161.00<br>162.00 | 0.10<br>1.00  | SLT        | SANDSTONE   | BK/GY<br>GY      |                | Nill<br>Nill | _               |                                    |
| HB-004           | 162.00           | 162.30           | 0.30          |            | SANDSTONE   | GY/BK            |                | Nill         |                 |                                    |
| HB-004<br>HB-004 | 162.30<br>165.00 | 165.00<br>166.20 | 2.70          | SLT        | SANDSTONE   | GY/OR<br>GY      |                | Nill<br>Nill |                 |                                    |
| HB-004           | 166.20           | 169.30           | 1.20<br>3.10  | SLT        | SAINDS TUNE | GY/BR            |                | Nill<br>Nill |                 |                                    |
| HB-004           | 169.30<br>169.90 | 169.90<br>172.00 | 0.60          | CRM<br>SLT |             | GY<br>BY/BR      |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 172.00           | 175.50           | 2.10<br>3.50  | CRM        |             | CR/GY            |                | Nill<br>Nill |                 |                                    |
| HB-004<br>HB-004 | 175.50<br>177.30 | 177.30<br>181.00 | 1.80<br>3.70  | SLT        |             | BR/GY<br>GY      |                | Nill         | _               |                                    |
| HB-004           | 181.00           | 181.00           | 14.00         | CKIN       | SANDSTONE   | BR/RD            |                | Nill<br>Nill |                 |                                    |
| HB-004           | 195.00           | EOH              |               |            |             |                  |                |              |                 |                                    |



## **Geotech Sheet**

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Frac   | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60 | 06-09 EC |       |         |              |                   |
| HB-007      | SST       | 0.00      | 10.10   | 10.10       | 1.80     | 18%   | 1.00     | 10%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 10.10     | 26.30   | 16.20       | 13.90    | 86%   | 8.60     | 53%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SST       | 26.30     | 30.00   | 3.70        | 3.70     | 100%  | 2.00     | 54%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 30.00     | 33.70   | 3.70        | 3.70     | 100%  | 1.80     | 49%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SST       | 33.70     | 34.30   | 0.60        | 0.60     | 100%  | 0.60     | 100%  |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 34.30     | 41.50   | 7.20        | 7.20     | 100%  | 4.00     | 56%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SST       | 41.50     | 49.50   | 8.00        | 8.00     | 100%  | 4.70     | 59%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SST       | 49.50     | 51.90   | 2.40        | 2.40     | 100%  | 1.70     | 71%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 51.90     | 52.90   | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SST       | 52.90     | 54.60   | 1.70        | 1.70     | 100%  | 1.50     | 88%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 54.60     | 62.00   | 7.40        | 7.40     | 100%  | 5.80     | 78%   | 0.20     | 3%    | 2       |          |          | 2     | 0.3     | 3.70         |                   |
| HB-007      | SST       | 62.00     | 66.10   | 4.10        | 4.10     | 100%  | 2.60     | 63%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 66.10     | 72.30   | 6.20        | 6.20     | 100%  | 5.40     | 87%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SND       | 72.30     | 76.11   | 3.81        | 3.81     | 100%  | 2.40     | 63%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 76.11     | 80.30   | 4.19        | 4.19     | 100%  | 3.50     | 84%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SND       | 80.30     | 81.30   | 1.00        | 1.00     | 100%  | 0.60     | 60%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SLT       | 81.30     | 84.40   | 3.10        | 3.10     | 100%  | 1.80     | 58%   |          | 0%    |         |          |          | 0     | 0.0     | #DIV/0!      |                   |
| HB-007      | SND       | 84.40     | 87.10   | 2.70        | 2.70     | 100%  |          | 0%    |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 87.10     | 94.60   | 7.50        | 7.50     | 100%  | 2.00     | 27%   | 0.10     | 1%    | 1       |          |          | 1     | 0       | 7.50         |                   |
| HB-007      | MDS       | 94.60     | 97.60   | 3.00        | 3.00     | 100%  | 1.00     | 33%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 97.60     | 114.60  | 17.00       | 17.00    | 100%  | 10.00    | 59%   | 0.40     | 2%    | 4       |          |          | 4     | 0       | 4.25         |                   |
| HB-007      | MDS       | 114.60    | 116.80  | 2.20        | 2.20     | 100%  | 0.60     | 27%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 116.80    | 135.60  | 18.80       | 18.80    | 100%  | 14.00    | 74%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | MDS       | 135.60    | 136.60  | 1.00        | 1.00     | 100%  |          | 0%    |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 136.60    | 142.00  | 5.40        | 5.40     | 100%  | 4.00     | 74%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SND       | 142.00    | 142.90  | 0.90        | 0.90     | 100%  | 0.90     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 142.90    | 146.60  | 3.70        | 3.70     | 100%  | 1.60     | 43%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SND       | 146.60    | 146.11  | -0.49       | 0.49     | -100% | 0.49     | -100% |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 146.11    | 154.40  | 8.29        | 8.29     | 100%  | 3.00     | 36%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | MDS       | 154.40    | 156.60  | 2.20        | 2.20     | 100%  | 1.30     | 59%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 156.60    | 161.00  | 4.40        | 4.40     | 100%  | 2.00     | 45%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SND       | 161.00    | 162.40  | 1.40        | 1.40     | 100%  | 1.30     | 93%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | MDS       | 162.40    | 166.20  | 3.80        | 2.40     | 63%   | 0.80     | 21%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SLT       | 166.20    | 174.90  | 8.70        | 8.70     | 100%  | 8.00     | 92%   | 1.00     | 11%   | 6       |          |          | 6     | 1       | 1.45         |                   |
| HB-007      | MDS       | 174.90    | 179.11  | 4.21        | 4.00     | 95%   | 2.00     | 48%   | 0.80     | 19%   | 4       |          |          | 4     | 1       | 1.00         |                   |
| HB-007      | SLT       | 179.11    | 182.70  | 3.59        | 3.50     | 97%   | 3.00     | 84%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | SND       | 182.70    | 184.60  | 1.90        | 1.90     | 100%  | 1.80     | 95%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB-007      | MDS       | 184.60    | 186.60  | 2.00        | 2.00     | 100%  | 1.60     | 80%   | 0.10     | 5%    | 1       |          |          | 1     | 1       | 2.00         |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) |       | SCR (in) |       | RQD (in) | RQD % | Oper    | n Frac   | tures    | Total | (FF/in) |          | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|----------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60 | 06-09 EF |       |         |          |                   |
| HB-007      | SLT       | 186.60    | 192.40  | 5.80        | 5.80     | 100%  | 4.90     | 84%   | 0.30     | 5%    | 3       |          |          | 3     | 1       | 1.93     |                   |
| HB-007      | MDS       | 192.40    | 194.80  | 2.40        | 2.40     | 100%  | 2.10     | 87%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 194.80    | 197.20  | 2.40        | 2.40     | 100%  | 1.30     | 54%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 197.20    | 198.10  | 0.90        | 0.90     | 100%  | 0.75     | 83%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 198.10    | 200.50  | 2.40        | 2.40     | 100%  | 1.40     | 58%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MDS       | 200.50    | 206.30  | 5.80        | 5.80     | 100%  | 4.40     | 76%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 206.30    | 206.10  | -0.20       | 0.80     | -400% | 0.45     | -225% |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 206.10    | 207.60  | 1.50        | 1.50     | 100%  | 1.30     | 87%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 207.60    | 212.60  | 5.00        | 5.00     | 100%  | 3.20     | 64%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MDS       | 212.60    | 214.80  | 2.20        | 1.20     | 55%   | 1.00     | 45%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 214.80    | 216.00  | 1.20        | 1.20     | 100%  | 1.00     | 83%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 216.00    | 220.70  | 4.70        | 4.70     | 100%  | 2.80     | 60%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 220.70    | 222.30  | 1.60        | 1.60     | 100%  | 1.10     | 69%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 222.30    | 222.11  | -0.19       | 0.80     | -421% | 0.40     | -211% |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 222.11    | 223.40  | 1.29        | 0.69     | 53%   | 0.50     | 39%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 223.40    | 223.12  | -0.28       | 0.80     | -286% | 0.30     | -107% |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 223.12    | 224.90  | 1.78        | 1.78     | 100%  | 1.20     | 67%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 224.90    | 225.60  | 0.70        | 0.70     | 100%  | 0.30     | 43%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 225.60    | 226.10  | 0.50        | 0.50     | 100%  | 0.30     | 60%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 226.10    | 226.90  | 0.80        | 0.80     | 100%  | 0.40     | 50%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 226.90    | 231.60  | 4.70        | 4.70     | 100%  | 3.60     | 77%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MB        | 231.60    | 232.60  | 1.00        | 1.00     | 100%  | 0.40     | 40%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 232.60    | 244.60  | 12.00       | 11.40    | 95%   | 5.00     | 42%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | MAHZ      | 244.60    | 245.60  | 1.00        | 1.00     | 100%  | 0.45     | 45%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 245.60    | 254.60  | 9.00        | 9.00     | 100%  | 5.40     | 60%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 254.60    | 256.80  | 2.20        | 2.20     | 100%  | 1.80     | 82%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 256.80    | 261.80  | 5.00        | 5.00     | 100%  | 3.90     | 78%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 261.80    | 261.11  | -0.69       | 0.30     | -43%  | 0.30     | -43%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 261.11    | 262.11  | 1.00        | 1.00     | 100%  | 0.70     | 70%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 262.11    | 263.60  | 1.49        | 1.70     | 114%  | 1.60     | 107%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 263.60    | 271.40  | 7.80        | 7.80     | 100%  | 3.80     | 49%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SST       | 271.40    | 271.10  | -0.30       | 0.60     | -200% | 0.45     | -150% |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 271.10    | 281.80  | 10.70       | 10.70    | 100%  | 6.20     | 58%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SST       | 281.80    | 282.20  | 0.40        | 0.60     | 150%  | 0.60     | 150%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 282.20    | 289.10  | 6.90        | 6.90     | 100%  | 4.10     | 59%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SND       | 289.10    | 290.11  | 1.01        | 1.10     | 109%  | 1.10     | 109%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      | SLT       | 290.11    | 294.60  | 4.49        | 4.49     | 100%  | 3.65     | 81%   | 1.60     | 36%   |         |          | 1        | 1     | 0       | 4.49     |                   |
| HB-007      | SND       | 294.60    | 304.60  | 10.00       | 10.00    | 100%  | 9.50     | 95%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-007      |           | 304.60    | ЕОН     |             |          |       |          |       |          |       |         |          |          |       |         |          |                   |
| LID 001     | CACINIC   |           |         | 10.00       |          | 00/   |          | 00/   |          | 00/   |         |          |          | _     |         | #DIV (01 |                   |
| HB-001      | CASING    | 0.00      | 10.00   | 10.00       | 1.00     | 0%    | 0.00     | 0%    | 0.10     | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-001      | SND       | 10.00     | 11.00   | 1.00        | 1.00     | 100%  | 0.90     | 90%   | 0.10     | 10%   | 1       |          |          | 1     | 1       | 1.00     |                   |
| HB-001      | SLT       | 11.00     | 22.90   | 11.90       | 11.90    | 100%  | 8.50     | 71%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-001      | SND       | 22.90     | 25.80   | 2.90        | 2.90     | 100%  | 2.80     | 97%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |
| HB-001      | MDS       | 25.80     | 28.90   | 3.10        | 3.10     | 100%  | 3.00     | 97%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!  |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Oper | 1 Fract | tures | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|------|---------|-------|-------|---------|--------------|-------------------|
|             |           | , ,       | , ,     |             | , ,      |       | , ,      |       | ,        |       |      |         |       |       |         |              |                   |
|             |           |           |         |             |          |       |          |       |          |       | 0-30 | 30-60   | 06-09 |       |         |              |                   |
|             |           |           |         |             |          |       |          |       |          |       | 1 0- | 12 30   | 13 6( |       |         |              |                   |
| HB-001      | SLT       | 28.90     | 29.80   | 0.90        | 0.90     | 100%  | 0.85     | 94%   |          | 0%    | Ì    | ñ       | Š     | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 29.80     | 30.60   | 0.80        | 0.80     | 100%  | 0.80     | 100%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 30.60     | 32.40   | 1.80        | 1.80     | 100%  | 1.70     | 94%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 32.40     | 35.60   | 3.20        | 3.20     | 100%  | 3.00     | 94%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 35.60     | 37.30   | 1.70        | 1.70     | 100%  | 1.30     | 76%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 37.30     | 38.30   | 1.00        | 1.00     | 100%  | 0.90     | 90%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 38.30     | 39.60   | 1.30        | 1.30     | 100%  | 1.00     | 77%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 39.60     | 42.20   | 2.60        | 2.60     | 100%  | 2.00     | 77%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 42.20     | 47.20   | 5.00        | 4.00     | 80%   | 3.70     | 74%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 47.20     | 47.90   | 0.70        | 0.70     | 100%  | 0.65     | 93%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 47.90     | 50.10   | 2.20        | 2.20     | 100%  | 2.00     | 91%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 50.10     | 51.11   | 1.01        | 1.10     | 109%  | 1.00     | 99%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 51.11     | 54.10   | 2.99        | 2.99     | 100%  | 2.80     | 94%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 54.10     | 55.00   | 0.90        | 0.90     | 100%  | 0.75     | 83%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 55.00     | 57.20   | 2.20        | 2.20     | 100%  | 1.65     | 75%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 57.20     | 57.80   | 0.60        | 0.60     | 100%  | 0.50     | 83%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 57.80     | 60.10   | 2.30        | 2.30     | 100%  | 1.80     | 78%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 60.10     | 61.80   | 1.70        | 1.70     | 100%  | 1.40     | 82%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 61.80     | 61.11   | -0.69       | 0.30     | -43%  | 0.30     | -43%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 61.11     | 64.20   | 3.09        | 2.30     | 74%   | 2.00     | 65%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 64.20     | 65.60   | 1.40        | 1.40     | 100%  | 1.20     | 86%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 65.60     | 66.50   | 0.90        | 0.90     | 100%  | 0.70     | 78%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 66.50     | 69.70   | 3.20        | 3.20     | 100%  | 3.00     | 94%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 69.70     | 70.20   | 0.50        | 0.50     | 100%  | 0.40     | 80%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 70.20     | 71.70   | 1.50        | 1.50     | 100%  | 1.30     | 87%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 71.70     | 72.70   | 1.00        | 1.00     | 100%  | 0.80     | 80%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 72.70     | 74.50   | 1.80        | 1.80     | 100%  | 1.50     | 83%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 74.50     | 76.00   | 1.50        | 1.50     | 100%  | 1.20     | 80%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 76.00     | 79.10   | 3.10        | 3.10     | 100%  | 2.80     | 90%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 79.10     | 82.10   | 3.00        | 3.00     | 100%  | 2.65     | 88%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 82.10     | 82.40   | 0.30        | 0.30     | 100%  | 0.25     | 83%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 82.40     | 82.70   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 82.70     | 83.10   | 0.40        | 0.40     | 100%  | 0.35     | 88%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 83.10     | 85.20   | 2.10        | 2.10     | 100%  | 1.60     | 76%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 85.20     | 91.50   | 6.30        | 6.30     | 100%  | 5.60     | 89%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 91.50     | 92.11   | 0.61        | 1.80     | 295%  | 1.50     | 246%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 92.11     | 94.10   | 1.99        | 1.90     | 95%   | 1.65     | 83%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | MDS       | 94.10     | 94.80   | 0.70        | 0.70     | 100%  | 0.60     | 86%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 94.80     | 96.80   | 2.00        | 2.00     | 100%  | 1.70     | 85%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 96.80     | 97.50   | 0.70        | 0.70     | 100%  | 0.50     | 71%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SND       | 97.50     | 97.90   | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 97.90     | 102.10  | 4.20        | 4.20     | 100%  | 3.40     | 81%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 102.10    | 103.60  | 1.50        | 2.00     | 133%  | 1.50     | 100%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SND       | 103.60    | 105.00  | 1.40        | 1.40     | 100%  | 1.40     | 100%  |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SND       | 105.00    | 109.90  | 4.90        | 4.90     | 100%  | 4.80     | 98%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |
| HB-001      | SLT       | 109.90    | 110.70  | 0.80        | 0.80     | 100%  | 0.70     | 88%   |          | 0%    |      |         |       | 0     | 0       | #DIV/0!      |                   |

| Borehole ID      | Lithology | From (ft)     | To (ft)        | Length (ft) | TCR (in) | TCR % | SCR (in) |       |  | RQD % | Oper    | n Frac   | tures                                            | Total | (FF/in) |         | Number Joint Sets |
|------------------|-----------|---------------|----------------|-------------|----------|-------|----------|-------|--|-------|---------|----------|--------------------------------------------------|-------|---------|---------|-------------------|
|                  |           |               |                |             |          |       |          |       |  |       | J1 0-30 | J2 30-60 | 13 60-90                                         |       |         |         |                   |
| HB-001           | SND       | 110.70        | 110.90         | 0.20        | 0.20     | 100%  | 0.20     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 110.90        | 118.00         | 7.10        | 7.10     | 100%  | 6.40     | 90%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | AT        | 118.00        | 118.30         | 0.30        | 0.30     | 100%  | 0.30     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 118.30        | 119.50         | 1.20        | 1.20     | 100%  | 1.20     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SND       | 119.50        | 119.80         | 0.30        | 0.30     | 100%  | 0.30     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 119.80        | 123.90         | 4.10        | 4.10     | 100%  | 3.40     | 83%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SND       | 123.90        | 124.00         | 0.10        | 0.10     | 100%  | 0.10     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 124.00        | 125.90         | 1.90        | 1.90     | 100%  | 1.70     | 89%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 125.90        | 126.30         | 0.40        | 0.40     | 100%  | 0.40     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 126.30        | 127.50         | 1.20        | 1.20     | 100%  | 1.10     | 92%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SST       | 127.50        | 127.80         | 0.30        | 0.30     | 100%  | 0.30     | 100%  |  | 0%    |         |          |                                                  | 0     | _       | #DIV/0! |                   |
| HB-001           | SLT       | 127.80        | 128.90         | 1.10        | 1.10     | 100%  | 0.90     | 82%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | CLAY      | 128.90        | 129.40         | 0.50        | 0.50     | 100%  | 0.50     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SST       | 129.40        | 130.00         | 0.60        | 0.60     | 100%  | 0.60     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 130.00        | 130.20         | 0.20        | 0.20     | 100%  | 0.20     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | CLAY      | 130.20        | 131.20         | 1.00        | 1.00     | 100%  | 1.00     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SST       | 131.20        | 140.11         | 8.91        | 8.91     | 100%  | 8.40     | 94%   |  | 0%    | 2       |          |                                                  | 2     | 0       | 4.46    |                   |
| HB-001           | SST       | 140.11        | 145.40         | 5.29        | 5.29     | 100%  | 5.00     | 95%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 145.40        | 145.50         | 0.10        | 0.10     | 100%  | 0.10     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SST       | 145.50        | 145.80         | 0.30        | 0.30     | 100%  | 0.30     | 100%  |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001           | SLT       | 145.80        | 150.00         | 4.20        | 4.20     | 100%  | 4.00     | 95%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-001<br>HB-001 | CLAY      | 150.00        | 164.40         | 14.40       | 14.40    | 100%  | 14.00    | 97%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| MB-001           |           | 164.40        | EOH            |             |          |       |          |       |  |       |         |          |                                                  |       |         |         |                   |
|                  |           |               |                |             |          |       | -        |       |  |       |         |          | <b>.</b>                                         |       |         |         |                   |
| HB-005           | CASING    | 0.00          | 2.00           | 3.00        | 0.00     | 0%    |          | 0%    |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 0.00          | 3.00           | 10.10       | 1.40     | 14%   | 1.00     | 10%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 3.20<br>13.30 | 13.30<br>17.20 | 3.90        | 3.60     | 92%   | 3.40     | 87%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 17.20         | 17.20          | 0.60        | 0.55     | 92%   | 0.50     | 83%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 17.20         | 18.40          | 0.60        | 0.60     | 100%  | 0.58     | 96%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 18.40         | 18.70          | 0.30        | 0.25     | 83%   | 0.25     | 83%   |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 18.40         | 19.60          | 0.90        | 0.25     | 94%   | 0.25     | 94%   |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 19.60         | 22.90          | 3.30        | 3.00     | 91%   | 2.80     | 85%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 22.90         | 23.90          | 1.00        | 1.00     | 100%  | 0.80     | 80%   |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 23.90         | 24.12          | 0.22        | 0.30     | 136%  | 0.00     | 123%  |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 24.12         | 25.70          | 1.58        | 0.70     | 44%   | 0.50     | 32%   |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 25.70         | 27.40          | 1.70        | 1.90     | 112%  | 1.00     | 59%   |  | 0%    |         |          | <del>                                     </del> | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 27.40         | 27.40          | -0.29       | 0.70     | -241% | 0.40     | -138% |  | 0%    |         |          | <del>                                     </del> | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 27.40         | 29.10          | 1.99        | 1.90     | 95%   | 1.40     | 70%   |  | 0%    |         |          | <del>                                     </del> | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 29.10         | 30.12          | 1.02        | 1.20     | 118%  | 0.60     | 59%   |  | 0%    |         |          | <del>                                     </del> | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 30.12         | 31.50          | 1.38        | 0.60     | 43%   | 0.45     | 33%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 31.50         | 32.50          | 1.00        | 1.00     | 100%  | 0.70     | 70%   |  | 0%    |         |          |                                                  | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 32.50         | 36.30          | 3.80        | 3.80     | 100%  | 3.80     | 100%  |  | 0%    |         |          | t                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 36.30         | 41.12          | 4.82        | 5.90     | 122%  | 5.85     | 121%  |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |
| HB-005           | SLT       | 41.12         | 42.12          | 1.00        | 1.00     | 100%  | 0.80     | 80%   |  | 0%    |         |          | <del>                                     </del> | 0     | 0       | #DIV/0! |                   |
| HB-005           | CAM       | 42.12         | 44.11          | 1.99        | 1.90     | 95%   | 1.00     | 50%   |  | 0%    |         |          | 1                                                | 0     | 0       | #DIV/0! |                   |

|                  | Lithology | From (ft)      | To (ft)        | Length (ft)  | TCR (in)     | TCR %        | SCR (in)     |              |      | RQD %     | Opei    | n Frac      | tures    | Total |   |                    | Number Joint Sets |
|------------------|-----------|----------------|----------------|--------------|--------------|--------------|--------------|--------------|------|-----------|---------|-------------|----------|-------|---|--------------------|-------------------|
|                  |           |                |                |              |              |              |              |              |      |           | J1 0-30 | J2 30-60    | 13 60-90 |       |   |                    |                   |
| HB-005           | SLT       | 44.11          | 48.11          | 4.00         | 4.00         | 100%         | 2.40         |              |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 48.11          | 49.11          | 1.00         | 1.00         | 100%         | 0.60         | 60%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 49.11          | 51.50          | 2.39         | 1.60         | 67%          | 1.20         | 50%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 51.50          | 52.50          | 1.00         | 1.00         | 100%         | 0.80         | 80%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | AT        | 52.50          | 52.70          | 0.20         | 0.20         | 100%         | 0.20         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 52.70          | 54.90          | 2.20         | 2.20         | 100%         | 1.70         | 77%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 54.90          | 55.80          | 0.90         | 1.11         | 123%         | 0.90         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 55.80          | 56.80          | 1.00         | 1.00         | 100%         | 0.75         | 75%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 56.80          | 59.20          | 2.40         | 2.60         | 108%         | 1.30         | 54%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | OLT.      | 59.20          | 59.70          | 0.50         | 0.50         | 100%         | 0.50         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 59.70          | 61.40          | 1.70         | 1.70         | 100%         | 1.00         | 59%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 61.40          | 63.40          | 2.00         | 2.00         | 100%         | 1.60         | 80%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 63.40          | 64.10          | 0.70         | 0.90         | 129%         | 0.65         | 93%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 64.10          | 65.70          | 1.60         | 1.60         | 100%         | 1.30         | 81%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | MB        | 65.70          | 67.50          | 1.80         | 1.80         | 100%         | 1.80         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 67.50          | 67.90          | 0.40         | 0.40         | 100%         | 0.40         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | MB        | 67.90          | 69.10          | 1.20         | 1.20         | 100%         | 1.20         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 69.10          | 71.90          | 2.80         | 0.80         | 29%          | 0.80         | 29%          | 0.50 | 0%        |         |             | 1        | 0     | 0 | #DIV/0!            |                   |
| HB-005<br>HB-005 | SLT       | 71.90          | 74.00          | 2.10         | 2.10<br>1.00 | 100%<br>100% | 2.10         | 100%<br>100% | 0.50 | 24%<br>0% |         |             | '        | 1     | 0 | 2.10<br>#DIV/0!    |                   |
|                  | SLT       | 74.00          | 75.00          | 1.00         |              |              | 1.00         |              |      |           |         |             |          | 0     | 0 |                    |                   |
| HB-005           | MB<br>SLT | 75.00          | 76.00          | 1.00         | 1.00         | 100%         | 1.00         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005<br>HB-005 | SLT       | 76.00          | 78.40          | 2.40         | 2.40         | 100%<br>100% | 2.40         | 100%<br>100% |      | 0%        |         |             |          | 0     | 0 | #DIV/0!<br>#DIV/0! |                   |
| HB-005           | CAM       | 78.40          | 79.50          | 1.10<br>2.10 | 1.10<br>2.00 | 95%          | 1.10<br>1.80 | 86%          |      | 0%<br>0%  |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 79.50          | 81.60          | 0.60         | 0.60         | 100%         | 0.55         | 92%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 81.60          | 82.20          | 0.80         | 0.80         | 100%         | 0.33         | 88%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 82.20          | 83.00          | 1.30         | 1.30         | 100%         | 1.30         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | MB        | 83.00          | 84.30          | 1.50         | 1.50         | 100%         | 1.50         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 84.30          | 85.80          | 3.30         | 3.30         | 100%         | 3.20         | 97%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 85.80          | 89.10          | 1.00         | 0.95         | 95%          | 0.90         | 90%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 89.10<br>90.10 | 90.10          | 1.50         | 1.50         | 100%         | 1.50         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 91.60          | 91.60<br>91.90 | 0.30         | 0.30         | 100%         | 0.30         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 91.90          | 92.60          | 0.70         | 0.70         | 100%         | 0.70         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 92.60          | 93.10          | 0.50         | 0.50         | 100%         | 0.50         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 93.10          | 93.10          | 0.50         | 0.50         | 100%         | 0.50         | 100%         |      | 0%        |         | -           |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 93.10          | 93.60          | 1.00         | 1.00         | 100%         | 1.00         | 100%         |      | 0%        |         | -           |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 94.60          | 95.00          | 0.40         | 0.40         | 100%         | 0.40         | 100%         |      | 0%        |         | <del></del> |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 95.00          | 96.00          | 1.00         | 1.00         | 100%         | 1.00         | 100%         |      | 0%        |         | <del></del> |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 96.00          | 96.80          | 0.80         | 0.80         | 100%         | 0.80         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 96.80          | 98.80          | 2.00         | 2.00         | 100%         | 1.90         | 95%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 98.80          | 99.80          | 1.00         | 0.90         | 90%          | 0.70         | 70%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 99.80          | 100.80         | 1.00         | 1.00         | 100%         | 1.00         | 100%         |      | 0%        |         | <del></del> |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | CAM       | 100.80         | 100.80         | 0.50         | 0.50         | 100%         | 0.50         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SLT       | 100.80         | 107.10         | 5.80         | 5.80         | 100%         | 5.50         | 95%          |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | SND       | 107.10         | 108.70         | 1.60         | 1.60         | 100%         | 1.60         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |
| HB-005           | AT        | 108.70         | 108.90         | 0.20         | 0.20         | 100%         | 0.20         | 100%         |      | 0%        |         |             |          | 0     | 0 | #DIV/0!            |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Frac                                           | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|--------------------------------------------------|----------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60                                         | 13 60-90 |       |         |              |                   |
| HB-005      | SLT       | 108.90    | 113.30  | 4.40        | 4.40     | 100%  | 4.30     |       |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CAM       | 113.30    | 118.60  | 5.30        | 5.20     | 98%   | 4.00     |       |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 118.60    | 121.50  | 2.90        | 2.90     | 100%  | 2.80     | 97%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CAM       | 121.50    | 121.80  | 0.30        | 0.30     | 100%  | 0.30     |       |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 121.80    | 123.10  | 1.30        | 1.30     | 100%  | 1.30     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SND       | 123.10    | 123.40  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 123.40    | 124.60  | 1.20        | 1.20     | 100%  | 1.10     | 92%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CAM       | 124.60    | 124.90  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | AT        | 124.90    | 125.00  | 0.10        | 0.10     | 100%  | 0.10     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 125.00    | 127.90  | 2.90        | 2.90     | 100%  | 2.80     | 97%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SND       | 127.90    | 128.00  | 0.10        | 0.10     | 100%  | 0.10     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 128.00    | 131.60  | 3.60        | 3.60     | 100%  | 3.40     | 94%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SND       | 131.60    | 132.00  | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 132.00    | 132.60  | 0.60        | 0.60     | 100%  | 0.60     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 132.60    | 133.90  | 1.30        | 1.30     | 100%  | 1.00     | 77%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 133.90    | 134.20  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 134.20    | 135.00  | 0.80        | 0.80     | 100%  | 0.80     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 135.00    | 137.30  | 2.30        | 2.20     | 96%   | 1.75     | 76%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | SLT       | 137.30    | 140.50  | 3.20        | 3.20     | 100%  | 2.90     | 91%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 140.50    | 143.90  | 3.40        | 3.20     | 94%   | 2.80     | 82%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 143.90    | 155.00  | 11.10       | 11.00    | 99%   | 10.60    | 95%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 155.00    | 163.70  | 8.70        | 8.30     | 95%   | 3.60     | 41%   | 0.40     | 5%    | 1       |                                                  | 2        | 3     | 0       | 2.77         |                   |
| HB-005      | CRM       | 163.70    | 168.50  | 4.80        | 4.60     | 96%   | 2.40     | 50%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB-005      | CRM       | 168.50    | 175.00  | 6.50        | 6.20     | 95%   | 3.00     | 46%   | 0.50     | 8%    | 2       |                                                  | 2        | 4     | 1       | 1.55         |                   |
| HB-005      |           | 175.00    | EOH     |             |          |       |          |       |          |       |         |                                                  |          |       |         |              |                   |
|             | -         | 170.00    |         |             |          |       |          |       |          |       |         |                                                  |          |       |         |              |                   |
|             |           |           |         |             |          |       |          |       |          |       |         |                                                  |          |       |         |              |                   |
| HB008       | CASING    | 0.00      | 16.90   | 16.90       | 0.00     | 0%    |          | 0%    |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 16.90     | 19.30   | 2.40        | 2.40     | 100%  | 2.00     | 83%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 19.30     | 20.80   | 1.50        | 1.50     | 100%  | 1.00     | 67%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 20.80     | 26.00   | 5.20        | 5.20     | 100%  | 3.40     | 65%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 26.00     | 30.00   | 4.00        | 4.00     | 100%  | 2.80     | 70%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | MB        | 30.00     | 30.11   | 0.11        | 0.11     | 100%  | 0.11     | 100%  |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 30.11     | 32.90   | 2.79        | 0.40     | 14%   | 0.35     | 13%   |          | 0%    |         | <del>                                     </del> |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | CRM       | 32.90     | 33.10   | 0.20        | 0.20     | 100%  | 0.15     | 75%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 33.10     | 33.30   | 0.20        | 0.20     | 100%  | 0.13     | 90%   |          | 0%    |         | 1                                                | 1        | 0     | 0       | #DIV/0!      | <del> </del>      |
| HB008       | MB        | 33.30     | 35.50   | 2.20        | 2.10     | 95%   | 2.10     | 95%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 35.50     | 40.30   | 4.80        | 4.80     | 100%  | 4.20     |       |          | 0%    |         | 1                                                | 1        | 0     | 0       | #DIV/0!      | <del> </del>      |
| HB008       | MB        | 40.30     | 41.60   | 1.30        | 1.30     | 100%  | 0.90     |       |          | 0%    |         | 1                                                | 1        | 0     | 0       | #DIV/0!      | <del> </del>      |
| HB008       | CRM       | 40.30     | 42.30   | 0.70        | 0.70     | 100%  | 0.70     |       |          | 0%    |         | -                                                |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | MB        | 42.30     | 42.30   | 1.50        | 1.50     | 100%  | 1.00     |       |          | 0%    |         | -                                                |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | CRM       |           |         | 1.20        | 1.20     | 100%  | 0.80     | 67%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | MB        | 43.80     | 45.00   | 4.60        | 4.60     | 100%  | 2.80     | 61%   |          | 0%    |         | 1                                                |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 45.00     | 49.60   | 2.40        | 2.40     | 100%  | 1.60     |       |          | 0%    |         | 1                                                |          | 0     | 0       | #DIV/0!      |                   |
| HB008       | SLT       | 49.60     | 52.00   | 0.11        | 0.11     | 100%  | 0.10     | 91%   |          | 0%    |         | <del> </del>                                     |          | 0     | 0       | #DIV/0!      |                   |
|             |           | 52.00     | 52.11   |             |          |       |          |       |          |       |         |                                                  |          | 0     | 0       |              |                   |
| HB008       | CRM       | 52.11     | 53.60   | 1.49        | 0.69     | 46%   | 0.90     | 60%   |          | 0%    |         |                                                  |          | 0     | 0       | #DIV/0!      |                   |

|                | Lithology  | From (ft)        | To (ft)          | Length (ft)  | TCR (in)     | TCR %        | SCR (in)     | SCR %       | RQD (in) | RQD %     | Oper | n Fract | tures | Total | (FF/in) | Spacing (in)       | Number Joint Sets |
|----------------|------------|------------------|------------------|--------------|--------------|--------------|--------------|-------------|----------|-----------|------|---------|-------|-------|---------|--------------------|-------------------|
|                | - 0,       | , ,              | , ,              |              | ,            |              | , ,          |             | ,        |           |      |         |       |       | · ′     | ,                  |                   |
|                |            |                  |                  |              |              |              |              |             |          |           | 0-30 | 30-60   | 06-09 |       |         |                    |                   |
|                |            |                  |                  |              |              |              |              |             |          |           |      | 30      | 09    |       |         |                    |                   |
|                |            |                  |                  |              |              |              |              |             |          |           | 7    | J2      | J3    |       |         |                    |                   |
|                | SLT        | 53.60            | 56.10            | 2.50         | 2.50         | 100%         | 2.20         | 88%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 56.10            | 57.10            | 1.00         | 1.00         | 100%         | 0.90         | 90%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 57.10            | 58.90            | 1.80         | 1.80         | 100%         | 1.60         | 89%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 58.90            | 58.11            | -0.79        | 0.30         | -38%         | 0.30         | -38%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 58.11            | 59.20            | 1.09         | 1.30         | 119%         | 1.20         | 110%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 59.20            | 59.50            | 0.30         | 0.30         | 100%         | 0.30         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 59.50            | 61.60            | 2.10         | 2.10         | 100%         | 1.70         | 81%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 61.60            | 62.00            | 0.40         | 0.40         | 100%         | 0.35         | 88%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 62.00            | 63.30            | 1.30         | 1.30         | 100%         | 1.20         | 92%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 63.30            | 63.90            | 0.60         | 0.60         | 100%         | 0.50         | 83%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 63.90            | 64.70            | 0.80         | 0.80         | 100%         | 0.80         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
|                | SLT        | 64.70            | 68.90            | 4.20         | 4.20         | 100%         | 3.70         | 88%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008<br>HB008 | SND        | 68.90            | 69.10            | 0.20         | 0.40         | 200%<br>100% | 0.40<br>3.10 | 200%<br>94% |          | 0%<br>0%  |      |         |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
|                | SLT        | 69.10            | 72.40            | 3.30         | 3.30         | 100%         |              | 100%        |          |           |      |         |       | 0     | 0       |                    |                   |
|                | AT         | 72.40            | 72.60            | 0.20         | 0.20         |              | 0.20         |             |          | 0%        |      |         |       | Ů     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 72.60            | 73.00            | 0.40         | 0.40         | 100%         | 0.40         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 73.00            | 74.80            | 1.80         | 1.80         | 100%         | 1.70         | 94%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 74.80            | 75.00            | 0.20         | 0.20         | 100%         | 0.20         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 75.00            | 76.60            | 1.60         | 1.60         | 100%         | 1.10         | 69%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 76.60            | 80.60            | 4.00         | 4.00         | 100%         | 3.40         | 85%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 80.60            | 82.00            | 1.40         | 1.40         | 100%         | 1.10         | 79%         | 0.20     | 0%        | -    |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 82.00            | 82.50            | 0.50         | 0.50         | 100%         | 0.50         | 100%        | 0.20     | 40%       | 1    |         |       | 1     | 2       | 0.50               |                   |
| HB008          | AT         | 82.50            | 82.70            | 0.20         | 0.20         | 100%         | 0.20         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008<br>HB008 | SLT        | 82.70            | 86.00            | 3.30         | 3.30         | 100%         | 3.10         | 94%<br>91%  | 0.10     | 0%        | - 1  |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 86.00            | 89.30            | 3.30<br>0.60 | 3.30         | 100%<br>100% | 3.00<br>0.50 | 83%         | 0.10     | 3%<br>17% |      |         |       | 0     | 0       | 3.30               |                   |
|                | CRM        | 89.30            | 89.90            | 1.00         | 0.60         | 100%         |              | 100%        | 0.10     | 0%        |      |         |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB008<br>HB008 | SLT<br>SND | 89.90            | 90.90            | 0.30         | 1.00<br>0.30 | 100%         | 1.00<br>0.30 | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
|                | SLT        | 90.90            | 91.20            | 14.10        | 14.10        | 100%         | 13.00        | 92%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CAM        | 91.20            | 105.30           | 0.60         | 0.60         | 100%         | 0.55         | 92%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 105.30           | 105.90           | 2.70         | 2.70         | 100%         | 2.60         | 92%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 105.90<br>108.60 | 108.60<br>108.12 | -0.48        | 0.60         | -125%        | 0.50         | -104%       |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 108.60           | 108.12           | 1.18         | 1.18         | 100%         | 1.10         | 93%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 108.12           | 109.30           | 4.50         | 4.50         | 100%         | 4.00         | 89%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SND        | 113.80           | 123.11           | 9.31         | 9.30         | 100%         | 7.80         | 84%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 123.11           | 123.11           | 1.59         | 1.80         | 113%         | 1.50         | 94%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SND        | 123.11           | 124.70           | 0.50         | 0.70         | 140%         | 0.70         | 140%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 124.70           | 125.20           | 3.00         | 3.00         | 100%         | 2.60         | 87%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 125.20           | 128.20           | 0.70         | 0.70         | 100%         | 0.60         | 86%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 128.20           | 130.90           | 2.00         | 2.00         | 100%         | 1.60         | 80%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
|                | SLT        | 130.90           | 131.90           | 1.00         | 1.00         | 100%         | 0.90         | 90%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 131.90           | 131.90           | 0.20         | 0.20         | 100%         | 0.20         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            | <del> </del>      |
| HB008          | SLT        | 131.90           | 133.00           | 0.90         | 0.20         | 12%          | 0.10         | 11%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM        | 133.00           | 133.30           | 0.30         | 0.30         | 100%         | 0.10         | 100%        |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | SLT        | 133.30           | 136.20           | 2.90         | 3.10         | 107%         | 2.70         | 93%         |          | 0%        |      |         |       | 0     | 0       | #DIV/0!            |                   |
|                | CRM        | 136.21           | 144.20           | 7.99         | 8.10         | 101%         | 6.00         | 75%         | 0.20     | 3%        | 1    |         |       | 1     | 0       | 8.10               |                   |

| Borehole ID    | Lithology | From (ft) | To (ft) | Length (ft)  | TCR (in)     | TCR %        | SCR (in)     | SCR %       | RQD (in) | RQD %    | Opei | n Frac | tures | Total | (FF/in) | Spacing (in)       | Number Joint Sets |
|----------------|-----------|-----------|---------|--------------|--------------|--------------|--------------|-------------|----------|----------|------|--------|-------|-------|---------|--------------------|-------------------|
|                |           |           |         |              | , ,          |              |              |             | , ,      |          | 0:-0 | 30-60  | 06-09 |       |         | ,                  |                   |
|                |           |           |         |              |              |              |              |             |          |          | 11 ( | 12.3   | 13 (  |       |         |                    |                   |
| HB008          | SLT       | 147.60    | 148.00  | 0.40         | 0.60         | 150%         | 0.55         | 137%        |          | 0%       | ,    |        | ,     | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM       | 148.00    | 151.00  | 3.00         | 3.00         | 100%         | 3.00         | 100%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM       | 151.00    | 151.30  | 0.30         | 0.30         | 100%         | 0.30         | 100%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM       | 151.80    | 152.70  | 0.90         | 1.10         | 122%         | 1.00         | 111%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM       | 152.70    | 153.10  | 0.40         | 0.60         | 150%         | 0.60         | 150%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB008          | CRM       | 153.10    | 155.00  | 1.90         | 2.10         | 111%         | 2.00         | 105%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB008          |           | 155.00    | EOH     |              |              |              |              |             |          |          |      |        |       |       |         |                    |                   |
|                |           |           |         |              |              |              |              |             |          |          |      |        |       |       |         |                    |                   |
|                |           |           |         |              |              |              |              |             |          |          |      |        |       |       |         |                    |                   |
| LIBOOO         |           |           |         | 47.00        |              |              |              | -           |          | -        |      |        |       |       |         | #DIV/01            |                   |
| HB009          | casing    | 0.00      | 17.20   | 17.20        | 0.00         | 0%           | 0.00         | 0%          |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 17.20     | 20.00   | 2.80         | 2.80         | 100%         | 1.00         | 36%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 20.00     | 30.90   | 10.90        | 10.90        | 100%         | 3.60         | 33%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 30.90     | 34.10   | 3.20         | 2.80         | 87%          | 0.80         | 25%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 34.10     | 34.70   | 0.60         | 0.60         | 100%         | 0.50         | 83%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 34.70     | 35.50   | 0.80         | 0.80         | 100%         | 0.60         | 75%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 35.50     | 37.00   | 1.50         | 1.50         | 100%         | 1.30         | 87%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 37.00     | 41.00   | 4.00         | 4.00         | 100%         | 6.30         | 158%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 41.00     | 48.00   | 7.00         | 7.00         | 100%         | 4.20         | 60%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 48.00     | 48.30   | 0.30         | 0.30         | 100%         | 0.60         | 200%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 48.30     | 53.80   | 5.50         | 4.60         | 84%          | 3.80         | 69%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 53.80     | 58.20   | 4.40         | 4.40         | 100%         | 4.10         | 93%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 58.20     | 58.90   | 0.70         | 0.70         | 100%         | 0.60         | 86%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 58.90     | 59.20   | 0.30         | 0.30         | 100%         | 0.30         | 100%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 59.20     | 59.90   | 0.70         | 0.70         | 100%         | 0.60         | 86%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 59.90     | 62.50   | 2.60         | 2.60         | 100%         | 2.40         | 92%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 62.50     | 62.90   | 0.40         | 0.40         | 100%         | 0.30         | 75%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 62.90     | 64.50   | 1.60         | 1.60         | 100%         | 1.55         | 97%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 64.50     | 65.00   | 0.50         | 0.50         | 100%         | 0.40         | 80%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 65.00     | 69.20   | 4.20         | 4.20         | 100%         | 3.90         | 93%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009<br>HB009 | CRM       | 69.20     | 71.80   | 2.60         | 2.60         | 100%<br>100% | 2.30<br>0.60 | 88%<br>100% |          | 0%<br>0% |      |        |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB009          | CRM       | 71.80     | 72.40   | 0.60<br>0.50 | 0.60<br>0.50 | 100%         | 0.60         | 100%        |          |          |      |        |       | 0     | 0       |                    |                   |
|                | SLT       | 72.40     | 72.90   |              |              |              |              | 91%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB009<br>HB009 | CRM<br>MB | 72.90     | 75.10   | 2.20         | 2.20<br>4.20 | 100%<br>100% | 2.00         | 100%        | 0.20     | 0%<br>5% |      |        |       | 0     | 0       | #DIV/0!<br>4.20    |                   |
| HB009          |           | 75.10     | 79.30   | 4.20         |              | 100%         | 4.20<br>0.90 | 90%         | 0.20     |          |      |        |       | 1     | 0       | #DIV/0!            |                   |
| HB009          | CRM<br>MB | 79.30     | 80.30   | 1.00<br>2.20 | 1.00<br>2.20 | 100%         | 2.10         | 90%         |          | 0%<br>0% |      |        |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB009          |           | 80.30     | 82.50   | 2.20         | 2.20         | 100%         | 2.10         | 95%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB009          | CRM<br>MB | 82.50     | 85.00   | 1.40         | 1.40         | 100%         | 1.20         | 92%<br>86%  |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 85.00     | 86.40   | 0.50         | 0.50         | 100%         | 0.50         | 100%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | MB        | 86.40     | 86.90   | 1.70         | 1.70         | 100%         | 1.60         | 94%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009<br>HB009 | CRM       | 86.90     | 88.60   | 2.00         | 2.00         | 100%         | 1.60         | 94%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009<br>HB009 | MB        | 88.60     | 90.60   | 1.00         |              | 100%         | 1.90         | 100%        |          | 0%       |      | ļ      |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 90.60     | 91.60   | 2.30         | 1.00<br>2.30 | 100%         | 2.30         | 100%        |          | 0%       |      |        |       | 0     | 0       | #DIV/0!<br>#DIV/0! |                   |
| HB009          |           | 91.60     | 93.90   |              |              |              |              | 86%         |          |          |      |        |       | 0     | 0       |                    |                   |
|                | SLT       | 93.90     | 94.60   | 0.70         | 0.70         | 100%         | 0.60         |             |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            |                   |
| HB009          | MB        | 94.60     | 97.50   | 2.90         | 2.90         | 100%         | 2.60         | 90%         |          | 0%       |      |        |       | 0     | 0       | #DIV/0!            | 1                 |

| Borehole ID    | Lithology | From (ft)        | To (ft)          | Length (ft)  | TCR (in)     | TCR %      | SCR (in)     | SCR %        | RQD (in) | RQD %    | Ope     | n Frac   | tures    | Total | (FF/in) | Spacing (in)       | Number Joint Sets |
|----------------|-----------|------------------|------------------|--------------|--------------|------------|--------------|--------------|----------|----------|---------|----------|----------|-------|---------|--------------------|-------------------|
| Nagao          | G. T.     |                  |                  | 0.00         | 2.00         | 4000       | 2.40         | 05%          |          | 004      | J1 0-30 | J2 30-60 | 13 60-90 |       |         | // NV / O          |                   |
| HB009          | SLT       | 97.50            | 101.30           | 3.80         | 3.80         | 100%       | 3.60         | 95%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 101.30           | 101.80           | 0.50         | 0.50         | 100%       | 0.45         | 90%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 101.80           | 102.80           | 1.00         | 1.00         | 100%       | 0.85         | 85%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | MB        | 102.80           | 108.60           | 5.80         | 5.60         | 97%        | 3.20         | 55%          | 0.40     | 7%       |         |          | 1        | 1     | 0       | 5.60               |                   |
| HB009          | SLT       | 108.60           | 109.00           | 0.40         | 0.40         | 100%       | 0.40         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 109.00           | 110.00           | 1.00         | 1.00         | 100%       | 1.00         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 110.00           | 113.30           | 3.30         | 3.30         | 100%       | 3.10         | 94%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009<br>HB009 | SND       | 113.30           | 113.80           | 0.50         | 0.40         | 80%        | 0.40         | 80%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
|                | SLT       | 113.80           | 114.80           | 1.00         | 1.00         | 100%       | 1.00         | 100%<br>100% |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 114.80           | 115.00           | 0.20         | 0.20         | 100%       | 0.20         |              |          | 0%       |         | <u> </u> |          | 0     | 0       | #DIV/0!            |                   |
| HB009<br>HB009 | SLT       | 115.00           | 117.20           | 2.20<br>0.60 | 2.10<br>0.55 | 95%<br>92% | 1.90<br>0.45 | 86%<br>75%   |          | 0%<br>0% |         | -        |          | 0     | _       | #DIV/0!<br>#DIV/0! |                   |
| HB009          | SLT       | 117.20           | 117.80           | 2.30         | 2.30         | 100%       | 2.00         | 75%<br>87%   |          | 0%       |         | -        | -        | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 117.80           | 120.10           | 7.00         | 6.60         | 94%        | 5.60         | 80%          | 0.80     | 11%      |         |          | 1        | 0     | 0       | 3.30               |                   |
| HB009          | SND       | 120.10           | 127.10           | 2.60         | 2.50         | 96%        | 2.00         | 77%          | 0.60     | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 127.10           | 129.70           | 0.70         | 0.70         | 100%       | 0.70         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 129.70           | 130.40           | 3.50         | 3.50         | 100%       | 3.20         | 91%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 130.40           | 133.90           | 0.20         | 0.20         | 100%       | 0.20         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 133.90<br>134.10 | 134.10<br>138.00 | 3.90         | 3.90         | 100%       | 3.70         | 95%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 134.10           | 138.20           | 0.20         | 0.20         | 100%       | 0.20         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 138.20           | 141.40           | 3.20         | 3.20         | 100%       | 3.00         | 94%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 141.40           | 141.40           | 0.50         | 0.50         | 100%       | 0.50         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 141.40           | 141.90           | 0.80         | 0.80         | 100%       | 0.80         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CAM       | 141.90           | 142.70           | 0.20         | 0.20         | 100%       | 0.20         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SLT       | 142.70           | 145.30           | 2.40         | 2.40         | 100%       | 2.00         | 83%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CAM       | 145.30           | 145.90           | 0.60         | 0.60         | 100%       | 0.60         | 100%         | 0.60     | 100%     |         |          | 1        | 1     | 2       | 0.60               |                   |
| HB009          | SLT       | 145.90           | 146.11           | 0.21         | 1.20         | 571%       | 1.20         | 571%         | 0.00     | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CAM       | 146.11           | 147.90           | 1.79         | 1.20         | 67%        | 1.20         | 67%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CAM       | 147.90           | 149.50           | 1.60         | 1.60         | 100%       | 1.50         | 94%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 149.50           | 153.90           | 4.40         | 4.40         | 100%       | 4.20         | 95%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 153.90           | 155.90           | 2.00         | 2.00         | 100%       | 1.90         | 95%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 155.90           | 156.70           | 0.80         | 0.80         | 100%       | 0.80         | 100%         |          | 0%       |         | l        | İ        | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 156.70           | 164.60           | 7.90         | 7.90         | 100%       | 7.90         | 100%         |          | 0%       |         | l        | İ        | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 164.60           | 167.60           | 3.00         | 3.00         | 100%       | 2.90         | 97%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 167.60           | 168.10           | 0.50         | 0.50         | 100%       | 0.50         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | SND       | 168.10           | 171.11           | 3.01         | 3.10         | 103%       | 2.70         | 90%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 171.11           | 172.40           | 1.29         | 1.50         | 116%       | 1.20         | 93%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          | CRM       | 172.40           | 180.00           | 7.60         | 7.60         | 100%       | 7.20         | 95%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB009          |           | 180.00           | EOH              |              |              |            |              |              |          |          |         |          |          |       |         |                    |                   |
|                |           |                  |                  |              |              |            |              |              |          |          |         |          |          |       |         |                    |                   |
| HB006          | 1         | 0.00             | 14.80            | 14.80        | 0.00         | 0%         | 0.00         | 0%           |          | 0%       |         |          | Ì        | 0     | 0       | #DIV/0!            |                   |
| HB006          | SLT       | 14.80            | 17.10            | 2.30         | 2.30         | 100%       | 0.60         | 26%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB006          | SLT       | 17.10            | 18.10            | 1.00         | 1.00         | 100%       | 0.30         | 30%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB006          | SND       | 18.10            | 18.30            | 0.20         | 0.20         | 100%       | 0.20         | 100%         |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |
| HB006          | SLT       | 18.30            | 22.70            | 4.40         | 3.30         | 75%        | 2.60         | 59%          |          | 0%       |         |          |          | 0     | 0       | #DIV/0!            |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Oper    | n Frac   | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|--------------|-------------------|
| NIDOO /     |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60 | 13 60-90 |       |         |              |                   |
| HB006       | CRM       | 22.70     | 23.90   | 1.20        | 1.20     | 100%  | 0.80     | 67%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 23.90     | 25.90   | 2.00        | 2.00     | 100%  | 1.65     | 83%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 25.90     | 27.00   | 1.10        | 1.10     | 100%  | 0.60     | 55%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 27.00     | 30.00   | 3.00        | 3.00     | 100%  | 2.20     | 73%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 30.00     | 31.00   | 1.00        | 1.00     | 100%  | 0.70     | 70%   | 0.60     | 60%   |         |          | 1        | 1     | 1       | 1.00         |                   |
| HB006       | SLT       | 31.00     | 34.80   | 3.80        | 3.40     | 89%   | 3.00     | 79%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 34.80     | 35.40   | 0.60        | 0.60     | 100%  | 0.50     | 83%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 35.40     | 37.20   | 1.80        | 1.80     | 100%  | 1.00     | 56%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 37.20     | 47.60   | 10.40       | 9.80     | 94%   | 4.20     | 40%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 47.60     | 48.00   | 0.40        | 0.40     | 100%  | 0.30     | 75%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 48.00     | 52.90   | 4.90        | 4.40     | 90%   | 2.40     | 49%   |          | 0%    |         |          |          | 0     | _       | #DIV/0!      |                   |
| HB006       | CRM       | 52.90     | 55.00   | 2.10        | 2.10     | 100%  | 1.95     | 93%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 55.00     | 55.50   | 0.50        | 0.50     | 100%  | 0.45     | 90%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 55.50     | 60.40   | 4.90        | 4.90     | 100%  | 3.40     | 69%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 60.40     | 61.90   | 1.50        | 1.50     | 100%  | 1.30     | 87%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 61.90     | 62.90   | 1.00        | 1.00     | 100%  | 0.60     | 60%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 62.90     | 63.20   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 63.20     | 63.60   | 0.40        | 0.40     | 100%  | 0.25     | 63%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 63.60     | 65.00   | 1.40        | 1.40     | 100%  | 1.30     | 93%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 65.00     | 67.00   | 2.00        | 1.70     | 85%   | 1.20     | 60%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 67.00     | 67.30   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 67.30     | 67.90   | 0.60        | 0.60     | 100%  | 0.60     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 67.90     | 68.40   | 0.50        | 0.50     | 100%  | 0.40     | 80%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 68.40     | 68.80   | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 68.80     | 69.60   | 0.80        | 0.80     | 100%  | 0.70     | 88%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 69.60     | 70.00   | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 70.00     | 74.60   | 4.60        | 4.60     | 100%  | 3.00     | 65%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 74.60     | 76.50   | 1.90        | 1.90     | 100%  | 1.40     | 74%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 76.50     | 77.20   | 0.70        | 0.70     | 100%  | 0.50     | 71%   |          | 0%    |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 77.20     | 77.70   | 0.50        | 0.50     | 100%  | 0.50     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 77.70     | 78.50   | 0.80        | 0.80     | 100%  | 0.65     | 81%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 78.50     | 78.90   | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 78.90     | 82.90   | 4.00        | 4.00     | 100%  | 3.10     | 78%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 82.90     | 83.00   | 0.10        | 0.10     | 100%  | 0.10     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 83.00     | 84.90   | 1.90        | 1.90     | 100%  | 1.60     | 84%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 84.90     | 87.90   | 3.00        | 3.00     | 100%  | 1.40     | 47%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 87.90     | 90.90   | 3.00        | 3.00     | 100%  | 1.30     | 43%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 90.90     | 92.30   | 1.40        | 1.40     | 100%  | 1.00     | 71%   | 0.30     | 21    | 1       |          |          | 1     | 1       | 1.40         |                   |
| HB006       | SLT       | 92.30     | 93.20   | 0.90        | 0.90     | 100%  | 0.70     | 78%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 93.20     | 93.50   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 93.50     | 94.60   | 1.10        | 1.10     | 100%  | 0.90     | 82%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 94.60     | 94.90   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |          | 1        | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 94.90     | 96.00   | 1.10        | 1.10     | 100%  | 0.80     | 73%   |          |       |         |          | 1        | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 96.00     | 96.30   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |          | 1        | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 96.30     | 98.10   | 1.80        | 1.80     | 100%  | 1.20     | 67%   |          |       |         |          | 1        | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 98.10     | 99.70   | 1.60        | 1.60     | 100%  | 1.30     | 81%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Frac                                           | tures                                            | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|--------------------------------------------------|--------------------------------------------------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60                                         | 13 60-90                                         |       |         |              |                   |
| HB006       | SLT       | 99.70     | 101.10  | 1.40        | 1.40     | 100%  | 1.00     | 71%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 101.10    | 101.40  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 101.40    | 103.20  | 1.80        | 1.80     | 100%  | 1.10     | 61%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CAM       | 103.20    | 107.00  | 3.80        | 3.80     | 100%  | 3.10     | 82%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 107.00    | 107.90  | 0.90        | 0.90     | 100%  | 0.80     | 89%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 107.90    | 111.10  | 3.20        | 3.20     | 100%  | 3.10     | 97%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | AT        | 111.10    | 111.70  | 0.60        | 0.60     | 100%  | 0.60     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 111.70    | 112.00  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 112.00    | 118.70  | 6.70        | 6.70     | 100%  | 6.50     | 97%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 118.70    | 119.90  | 1.20        | 1.20     | 100%  | 1.10     | 92%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 119.90    | 120.60  | 0.70        | 0.70     | 100%  | 0.60     | 86%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 120.60    | 121.40  | 0.80        | 0.80     | 100%  | 0.75     | 94%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 121.40    | 123.90  | 2.50        | 2.50     | 100%  | 1.70     | 68%   | 0.50     | 20    |         |                                                  | 1                                                | 1     | 0       | 2.50         |                   |
| HB006       | SND       | 123.90    | 124.70  | 0.80        | 0.80     | 100%  | 0.80     | 100%  | 0.80     | 100   |         |                                                  | 1                                                | 1     | 1       | 0.80         |                   |
| HB006       | CAM       | 124.70    | 126.60  | 1.90        | 1.90     | 100%  | 1.80     | 95%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 126.60    | 128.80  | 2.20        | 2.20     | 100%  | 2.10     | 95%   | 1.20     | 55    |         |                                                  | 1                                                | 1     | 0       | 2.20         |                   |
| HB006       | CAM       | 128.80    | 131.60  | 2.80        | 2.80     | 100%  | 2.40     | 86%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SND       | 131.60    | 138.90  | 7.30        | 7.30     | 100%  | 6.30     | 86%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 138.90    | 142.10  | 3.20        | 3.20     | 100%  | 3.00     | 94%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 142.10    | 145.90  | 3.80        | 3.80     | 100%  | 3.00     | 79%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 145.90    | 146.90  | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 146.90    | 147.90  | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 147.90    | 148.90  | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 148.90    | 149.80  | 0.90        | 1.00     | 111%  | 1.00     | 111%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 149.80    | 151.50  | 1.70        | 1.70     | 100%  | 1.70     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 151.50    | 153.20  | 1.70        | 1.70     | 100%  | 1.40     | 82%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | CRM       | 153.20    | 154.10  | 0.90        | 0.90     | 100%  | 0.90     | 100%  |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       | SLT       | 154.10    | 155.00  | 0.90        | 0.90     | 100%  | 0.80     | 89%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB006       |           | 155.00    | EOH     |             |          |       |          |       |          |       |         |                                                  |                                                  | 0     | #DIV/0! | #DIV/0!      |                   |
|             |           |           |         |             |          |       |          |       |          |       |         |                                                  |                                                  | 0     |         |              |                   |
| HB002       | SLT       | 0.00      | 6.30    | 6.30        | 0.00     | 0     |          |       |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 6.30      | 11.30   | 5.00        | 5.00     | 100%  | 2.00     | 40%   |          |       |         | i e                                              |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 11.30     | 18.30   | 7.00        | 7.00     | 100%  | 3.00     | 43%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 18.30     | 18.90   | 0.60        | 0.60     | 100%  | 0.40     | 67%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 18.90     | 20.20   | 1.30        | 1.30     | 100%  | 0.80     | 62%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 20.20     | 24.60   | 4.40        | 4.40     | 100%  | 2.00     | 45%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      | <del> </del>      |
| HB002       | SLT       | 24.60     | 26.40   | 1.80        | 1.50     | 83%   | 1.20     | 67%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 26.40     | 26.90   | 0.50        | 0.50     | 100%  | 0.40     | 80%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      | <del> </del>      |
| HB002       | SLT       | 26.90     | 28.10   | 1.20        | 1.20     | 100%  | 1.00     | 83%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 28.10     | 36.60   | 8.50        | 8.50     | 100%  | 6.00     | 71%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 36.60     | 39.20   | 2.60        | 2.60     | 100%  | 1.80     | 69%   |          |       |         | <del>                                     </del> | <del>                                     </del> | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 39.20     | 42.90   | 3.70        | 2.90     | 78%   | 3.00     | 81%   |          |       |         | 1                                                | 1                                                | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 42.90     | 44.30   | 1.40        | 1.40     | 100%  | 1.20     | 86%   |          |       |         | <del>                                     </del> | <del>                                     </del> | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 44.30     | 48.00   | 3.70        | 3.70     | 100%  | 2.60     | 70%   |          |       |         |                                                  |                                                  | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 48.00     | 48.90   | 0.90        | 0.90     | 100%  | 0.70     | 78%   |          |       |         | 1                                                | <del>                                     </del> | 0     | 0       | #DIV/0!      |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Frac   | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | J1 0-30 | J2 30-60 | 13 60-90 |       |         |              |                   |
| HB002       | SLT       | 48.90     | 52.10   | 3.20        | 3.20     | 100%  | 2.40     |       |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 52.10     | 53.40   | 1.30        | 1.30     | 100%  | 0.90     | 69%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 53.40     | 57.11   | 3.71        | 3.71     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 57.11     | 58.10   | 0.99        | 0.99     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 58.10     | 60.30   | 2.20        | 2.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 60.30     | 60.70   | 0.40        | 0.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 60.70     | 68.10   | 7.40        | 7.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 68.10     | 73.00   | 4.90        | 3.90     | 80%   |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 73.00     | 74.90   | 1.90        | 1.90     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 74.90     | 81.20   | 6.30        | 6.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 81.20     | 81.50   | 0.30        | 0.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 81.50     | 97.30   | 15.80       | 15.80    | 100%  | 9.00     | 57%   | 0.60     | 4     |         |          | 1        | 1     | 0       | 15.80        |                   |
| HB002       | SLT       | 97.30     | 104.30  | 7.00        | 7.00     | 100%  | 5.10     | 73%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       |           | 104.30    | 105.00  | 0.70        | 0.70     | 100%  | 0.50     | 71%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 105.00    | 108.30  | 3.30        | 3.30     | 100%  | 1.60     | 48%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 108.30    | 110.60  | 2.30        | 2.30     | 100%  | 2.10     | 91%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 110.60    | 120.60  | 10.00       | 9.90     | 99%   | 4.80     | 48%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 120.60    | 121.80  | 1.20        | 1.20     | 100%  | 0.80     | 67%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 121.80    | 124.00  | 2.20        | 2.20     | 100%  | 1.80     | 82%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 124.00    | 143.70  | 19.70       | 19.70    | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 143.70    | 155.80  | 12.10       | 12.10    | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 155.80    | 158.10  | 2.30        | 2.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 158.10    | 158.70  | 0.60        | 0.60     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 158.70    | 162.50  | 3.80        | 3.80     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | AT        | 162.50    | 163.00  | 0.50        | 0.50     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CAM       | 163.00    | 164.30  | 1.30        | 1.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 164.30    | 165.10  | 0.80        | 0.80     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       |           | 165.10    | 166.50  | 1.40        | 1.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 166.50    | 168.00  | 1.50        | 1.50     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 168.00    | 168.80  | 0.80        | 0.80     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 168.80    | 171.30  | 2.50        | 2.50     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       |           | 171.30    | 171.60  | 0.30        | 0.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 171.60    | 172.60  | 1.00        | 1.00     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | AT        | 172.60    | 173.00  | 0.40        | 0.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 173.00    | 179.60  | 6.60        | 6.60     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | 0.7       | 179.60    | 179.80  | 0.20        | 0.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 179.80    | 180.00  | 0.20        | 0.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       |           | 180.00    | 180.20  | 0.20        | 0.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 180.20    | 181.40  | 1.20        | 1.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 181.40    | 181.70  | 0.30        | 0.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 181.70    | 181.90  | 0.20        | 0.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 181.90    | 182.10  | 0.20        | 0.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 182.10    | 186.00  | 3.90        | 3.90     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 186.00    | 186.30  | 0.30        | 0.30     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 186.30    | 189.40  | 3.10        | 3.10     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 189.40    | 190.00  | 0.60        | 0.60     | 100%  |          | 0%    |          |       |         | <u> </u> | <u> </u> | 0     | 0       | #DIV/0!      |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Fract  | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|--------------|-------------------|
|             |           |           | , (,)   |             |          |       | ,        |       | ,        |       | J1 0-30 | J2 30-60 | 13 60-90 |       | ,       |              |                   |
| HB002       | SLT       | 190.00    | 191.40  | 1.40        | 1.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 191.40    | 191.80  | 0.40        | 0.40     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 191.80    | 193.00  | 1.20        | 1.20     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CAM       | 193.00    | 195.00  | 2.00        | 2.00     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | SLT       | 195.00    | 196.50  | 1.50        | 1.50     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 196.50    | 197.10  | 0.60        | 0.60     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CAM       | 197.10    | 197.70  | 0.60        | 0.60     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 197.70    | 212.90  | 15.20       | 15.20    | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       | CRM       | 212.90    | 215.00  | 2.10        | 2.10     | 100%  |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB002       |           | 215.00    | EOH     |             |          |       |          |       |          |       |         |          |          | 0     | #DIV/0! | #DIV/0!      |                   |
|             |           |           |         |             |          |       |          |       |          |       |         |          |          | 0     |         |              |                   |
|             |           |           |         |             |          |       |          |       |          |       |         |          |          | 0     |         |              |                   |
| HB003       |           | 0.00      | 5.00    | 5.00        | 0.00     | 0%    |          | 0%    |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 5.00      | 6.10    | 1.10        | 1.10     | 100%  | 0.45     | 41%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 6.10      | 9.90    | 3.80        | 3.80     | 100%  | 2.00     | 53%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 9.90      | 15.80   | 5.90        | 5.90     | 100%  | 3.10     | 53%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 15.80     | 16.90   | 1.10        | 1.10     | 100%  | 0.60     | 55%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 16.90     | 23.20   | 6.30        | 6.30     | 100%  | 2.70     | 43%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 23.20     | 23.80   | 0.60        | 0.60     | 100%  | 0.40     | 67%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 23.80     | 24.10   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 24.10     | 27.90   | 3.80        | 3.80     | 100%  | 2.80     | 74%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 27.90     | 28.60   | 0.70        | 0.70     | 100%  | 0.50     | 71%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 28.60     | 30.10   | 1.50        | 1.50     | 100%  | 1.00     | 67%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 30.10     | 35.00   | 4.90        | 4.90     | 100%  | 1.00     | 20%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 35.00     | 37.30   | 2.30        | 2.00     | 87%   | 1.00     | 43%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 37.30     | 43.50   | 6.20        | 6.40     | 103%  | 6.20     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 43.50     | 55.00   | 11.50       | 11.10    | 97%   | 10.20    | 89%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 55.00     | 56.60   | 1.60        | 1.60     | 100%  | 1.30     | 81%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 56.60     | 60.90   | 4.30        | 4.30     | 100%  | 4.10     | 95%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 60.90     | 63.30   | 2.40        | 2.40     | 100%  | 2.30     | 96%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 63.30     | 73.00   | 9.70        | 9.70     | 100%  | 9.20     | 95%   | 0.40     | 4     |         |          | 1        | 1     | 0       | 9.70         |                   |
| HB003       | SLT       | 73.00     | 79.50   | 6.50        | 6.50     | 100%  | 6.20     | 95%   | 1.30     | 20    |         |          | 1        | 1     | 0       | 6.50         |                   |
| HB003       | CRM       | 79.50     | 85.00   | 5.50        | 5.50     | 100%  | 5.20     | 95%   | 0.40     | 7     |         | 2        |          | 2     | 0       | 2.75         |                   |
| HB003       | SLT       | 85.00     | 85.30   | 0.30        | 0.30     | 100%  | 0.25     | 83%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 85.30     | 88.40   | 3.10        | 3.10     | 100%  | 3.00     | 97%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 88.40     | 89.60   | 1.20        | 1.20     | 100%  | 1.00     | 83%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | AT        | 89.60     | 89.90   | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 89.90     | 91.00   | 1.10        | 1.10     | 100%  | 1.00     | 91%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CAM       | 91.00     | 91.80   | 0.80        | 0.80     | 100%  | 0.80     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 91.80     | 92.20   | 0.40        | 0.40     | 100%  | 0.40     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CAM       | 92.20     | 93.20   | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SLT       | 93.20     | 94.40   | 1.20        | 1.20     | 100%  | 1.10     | 92%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 94.40     | 98.10   | 3.70        | 3.70     | 100%  | 3.60     | 97%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SND       | 98.10     | 98.70   | 0.60        | 0.60     | 100%  | 0.60     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 98.70     | 100.10  | 1.40        | 1.40     | 100%  | 1.40     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 100.10    | 101.80  | 1.70        | 1.70     | 100%  | 1.60     | 94%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD %   | Ope     | n Frac   | tures    | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|---------|---------|----------|----------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |         | J1 0-30 | J2 30-60 | 13 60-90 |       |         |              |                   |
| HB003       | CRM       | 101.80    | 108.00  | 6.20        | 6.20     | 100%  | 5.80     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 108.00    | 112.40  | 4.40        | 4.40     | 100%  | 4.00     |       | 0.90     | 20      |         | 1        |          | 1     | 0       | 4.40         |                   |
| HB003       | CRM       | 112.40    | 115.20  | 2.80        | 2.80     | 100%  | 1.80     | 64%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | SND       | 115.20    | 116.20  | 1.00        | 1.00     | 100%  | 1.00     | 100%  |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB003       | CRM       | 116.20    | EOH     |             |          |       |          |       |          |         |         |          |          | 0     | #DIV/0! | #DIV/0!      |                   |
|             |           |           |         |             |          |       |          |       |          |         |         |          |          | 0     |         |              |                   |
|             |           |           |         |             |          |       |          |       |          |         |         |          |          | 0     |         |              |                   |
| HB004       |           | 0.00      | 45.00   | 45.00       | 0.00     | 0%    |          | 0%    |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 45.00     | 47.00   | 2.00        | 2.00     | 100%  | 1.30     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 47.00     | 53.00   | 6.00        | 6.00     | 100%  | 3.70     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 53.00     | 58.60   | 5.60        | 5.60     | 100%  | 3.30     | 59%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 58.60     | 65.60   | 7.00        | 7.00     | 100%  | 4.30     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 65.60     | 69.10   | 3.50        | 3.50     | 100%  | 2.80     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 69.10     | 70.10   | 1.00        | 1.00     | 100%  | 0.70     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 70.10     | 73.70   | 3.60        | 3.60     | 100%  | 3.00     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 73.70     | 75.00   | 1.30        | 1.30     | 100%  | 0.90     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 75.00     | 81.90   | 6.90        | 6.90     | 100%  | 5.80     | 84%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 81.90     | 84.90   | 3.00        | 3.00     | 100%  | 2.30     | 77%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 84.90     | 85.90   | 1.00        | 1.00     | 100%  | 0.80     | 80%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 85.90     | 90.20   | 4.30        | 4.30     | 100%  | 4.00     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 90.20     | 93.50   | 3.30        | 3.30     | 100%  | 2.90     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 93.50     | 94.10   | 0.60        | 0.60     | 100%  | 0.50     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 94.10     | 98.60   | 4.50        | 4.50     | 100%  | 2.00     | 44%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 98.60     | 104.00  | 5.40        | 5.40     | 100%  | 3.60     | 67%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 104.00    | 104.30  | 0.30        | 0.30     | 100%  | 0.30     | 100%  |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 104.30    | 109.80  | 5.50        | 5.50     | 100%  | 5.20     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 109.80    | 111.40  | 1.60        | 1.60     | 100%  | 1.30     | 81%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 111.40    | 113.10  | 1.70        | 1.70     | 100%  | 1.60     | 94%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 113.10    | 117.80  | 4.70        | 4.70     | 100%  | 3.50     | 74%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 117.80    | 119.10  | 1.30        | 1.30     | 100%  | 1.00     | 77%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 119.10    | 120.40  | 1.30        | 1.30     | 100%  | 1.10     | 85%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 120.40    | 122.80  | 2.40        | 2.40     | 100%  | 2.00     | 83%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 122.80    | 123.90  | 1.10        | 1.10     | 100%  | 1.10     | 100%  |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 123.90    | 132.90  | 9.00        | 9.00     | 100%  | 8.00     | 89%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 132.90    | 133.40  | 0.50        | 0.50     | 100%  | 0.45     | 90%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 133.40    | 134.50  | 1.10        | 1.10     | 100%  | 0.85     | 77%   | 0.60     | 55      |         |          | 1        | 1     | 1       | 1.10         |                   |
| HB004       | SLT       | 134.50    | 136.00  | 1.50        | 1.50     | 100%  | 1.10     | 73%   | #        | #VALUE! |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 136.00    | 141.10  | 5.10        | 5.10     | 100%  | 4.40     | 86%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 141.10    | 144.00  | 2.90        | 2.90     | 100%  | 2.80     |       |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | AT        | 144.00    | 145.60  | 1.60        | 1.60     | 100%  | 1.60     | 100%  |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 145.60    | 146.60  | 1.00        | 1.00     | 100%  | 0.70     | 70%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 146.60    | 147.90  | 1.30        | 1.30     | 100%  | 1.00     | 77%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 147.90    | 155.00  | 7.10        | 7.10     | 100   | 5.60     | 79%   |          |         |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 155.00    | 158.10  | 3.10        | 3.10     | 100   | 2.80     | 90%   |          |         | İ       | 1        |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SND       | 158.10    | 158.30  | 0.20        | 0.20     | 100   | 0.20     | 100%  |          |         | İ       | 1        |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 158.30    | 159.10  | 0.80        | 0.80     | 100   | 0.60     | 75%   |          |         |         | i        |          | 0     | 0       | #DIV/0!      |                   |

| Borehole ID | Lithology | From (ft) | To (ft) | Length (ft) | TCR (in) | TCR % | SCR (in) | SCR % | RQD (in) | RQD % | Ope     | n Fract  | ures     | Total | (FF/in) | Spacing (in) | Number Joint Sets |
|-------------|-----------|-----------|---------|-------------|----------|-------|----------|-------|----------|-------|---------|----------|----------|-------|---------|--------------|-------------------|
|             |           |           |         |             |          |       |          |       |          |       | 11 0-30 | J2 30-60 | 06-09 EF |       |         |              |                   |
| HB004       | SND       | 159.10    | 159.30  | 0.20        | 0.20     | 100   | 0.20     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 159.30    | 160.90  | 1.60        | 1.60     | 100   | 1.20     | 75%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SND       | 160.90    | 161.00  | 0.10        | 0.10     | 100   | 0.10     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 161.00    | 162.00  | 1.00        | 1.00     | 100   | 0.85     | 85%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SND       | 162.00    | 162.30  | 0.30        | 0.30     | 100   | 0.30     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 162.30    | 165.00  | 2.70        | 2.10     | 78    | 1.60     | 59%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SND       | 165.00    | 166.20  | 1.20        | 1.20     | 100   | 1.10     | 92%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 166.20    | 169.30  | 3.10        | 3.10     | 100   | 2.80     | 90%   | 0.90     | 29    |         |          | 2        | 2     | 1       | 1.55         |                   |
| HB004       | CRM       | 169.30    | 169.90  | 0.60        | 0.60     | 100   | 0.55     | 92%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 169.90    | 172.00  | 2.10        | 2.10     | 100   | 2.00     | 95%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 172.00    | 175.50  | 3.50        | 3.50     | 100   | 3.50     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SLT       | 175.50    | 177.30  | 1.80        | 1.80     | 100   | 1.60     | 89%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | CRM       | 177.30    | 181.00  | 3.70        | 3.70     | 100   | 3.70     | 100%  |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       | SND       | 181.00    | 195.00  | 14.00       | 14.00    | 100   | 13.60    | 97%   |          |       |         |          |          | 0     | 0       | #DIV/0!      |                   |
| HB004       |           | 195.00    | EOH     |             |          |       |          |       |          |       |         |          |          |       |         |              |                   |

| Corenole / | <del>, '</del> | ED 0 1 1 | <b>TO</b> | 04 -111 | . 1 11 . |        |
|------------|----------------|----------|-----------|---------|----------|--------|
| BHID       | SAMPID         | FROM     | ТО        | %shoil  | shoilgt  | zone   |
| HB-001     | HB-001-1       | 25       | 27        | 6.52    | 17.34    |        |
| HB-001     | HB-001-2       | 27       | 29        | 7.05    |          |        |
| HB-001     | HB-001-3       | 29       | 31        | 0.63    |          | AGR    |
| HB-001     | HB-001-4       | 31       | 33        | 0.21    | 0.57     | AGR    |
| HB-001     | HB-001-5       | 33       | 35        | 1.25    | 3.25     | AGR    |
| HB-001     | HB-001-6       | 35       | 37        | 1.25    | 3.26     | AGR    |
| HB-001     | HB-001-7       | 37       | 39        | 1.75    | 4.52     | AGR    |
| HB-001     | HB-001-8       | 39       | 41        | 2.8     |          | AGR    |
| HB-001     | HB-001-9       | 41       | 43        | 7.03    | 18.85    | MAHZA  |
| HB-001     | HB-001-10      | 43       | 45        | 5.33    | 14.18    | MAHZA  |
| HB-001     | HB-001-11      | 45       | 47        | 7.78    | 20.78    | MAHZA  |
| HB-001     | HB-001-12      | 47       | 49        | 8.54    | 22.7     | MAHZA  |
| HB-001     | HB-001-13      | 49       | 51        | 12.55   | 33.84    | MAHZA  |
| HB-001     | HB-001-14      | 51       | 53        | 5.08    | 13.55    | MAHZA  |
| HB-001     | HB-001-15      | 53       | 55        | 5.22    | 13.89    | MAHZA  |
| HB-001     | HB-001-16      | 55       | 57        | 3.9     | 10.32    | MAHZA  |
| HB-001     | HB-001-17      | 57       | 59        | 2.95    | 7.85     | MAHZA  |
| HB-001     | HB-001-18      | 59       | 61        | 6.41    | 17.06    | MAHZA  |
| HB-001     | HB-001-19      | 61       | 63        | 8.03    | 21.6     | MAHZA  |
| HB-001     | HB-001-20      | 63       | 65        | 14.67   | 39.31    | MAHZA  |
| HB-001     | HB-001-21      | 65       | 66        | 18.47   | 49.55    | MAHZA  |
| HB-001     | HB-001-22      | 66       | 67        | 28.81   | 76.77    | MAHBED |
| HB-001     | HB-001-23      | 67       | 68        | 24.53   | 65.9     | MAHBED |
| HB-001     | HB-001-24      | 68       | 69        | 15.59   | 41.77    | MAHZB  |
| HB-001     | HB-001-25      | 69       | 70        | 14.8    | 39.93    | MAHZB  |
| HB-001     | HB-001-26      | 70       | 71        | 16.99   | 45.45    | MAHZB  |
| HB-001     | HB-001-27      | 71       | 72        | 9.04    | 23.9     | MAHZB  |
| HB-001     | HB-001-28      | 72       | 73        | 6.48    | 17.2     | MAHZB  |
| HB-001     | HB-001-29      | 73       | 74        | 16.07   | 43.11    | MAHZB  |
| HB-001     | HB-001-30      | 74       | 75        | 16.15   | 43.27    | MAHZB  |
| HB-001     | HB-001-31      | 75       | 76        | 9.8     | 26.3     | MAHZB  |
| HB-001     | HB-001-32      | 76       | 77        | 14.01   | 37.84    | MAHZB  |
| HB-001     | HB-001-33      | 77       | 78        | 7.24    | 19.57    | MAHZB  |
| HB-001     | HB-001-34      | 78       | 79        | 7.95    | 21.21    | MAHZB  |
| HB-001     | HB-001-35      | 79       | 80        | 6.36    | 16.95    | MAHZB  |
| HB-001     | HB-001-36      | 80       | 81        | 7.26    |          | MAHZB  |
| HB-001     | HB-001-37      | 81       | 82        | 10.28   |          | MAHZB  |
| HB-001     | HB-001-38      | 82       | 83        | 3.06    |          | MAHZB  |
| HB-001     | HB-001-39      | 83       | 84        | 3.58    |          | MAHZB  |
| HB-001     | HB-001-40      | 84       | 85        | 3.28    |          | MAHZB  |
| HB-001     | HB-001-41      | 85       | 86        | 7.02    |          | MAHZB  |
| HB-001     | HB-001-42      | 86       | 87        | 11.33   |          | MAHZB  |
| HB-001     | HB-001-43      | 87       | 88        | 9.47    |          | MAHZB  |
|            | 1.15 501 45    | 37       | 30        | 5.47    | 25.71    | , 120  |

| Corehole A |           |      |     | I.,    |         | T .   |
|------------|-----------|------|-----|--------|---------|-------|
| BHID       | SAMPID    | FROM | ТО  | %shoil | shoilgt | zone  |
| HB-001     | HB-001-44 | 88   |     | 8.7    | 23.27   |       |
| HB-001     | HB-001-45 | 89   | 90  | 8.95   |         | MAHZB |
| HB-001     | HB-001-46 | 90   | 91  | 4.18   |         | MAHZB |
| HB-001     | HB-001-47 | 91   | 92  | 3.08   |         | MAHZB |
| HB-001     | HB-001-48 | 92   | 93  | 4.44   | 11.76   | MAHZB |
| HB-001     | HB-001-49 | 93   | 94  | 5.99   | 15.75   | MAHZB |
| HB-001     | HB-001-50 | 94   | 96  | 1.33   |         | MAHZB |
| HB-001     | HB-001-51 | 96   | 98  | 3.06   | 8.12    | MAHZB |
| HB-001     | HB-001-52 | 98   | 100 | 6.34   | 16.82   | MAHZB |
| HB-001     | HB-001-53 | 100  | 102 | 3.21   | 8.52    | MAHZB |
| HB-001     | HB-001-54 | 102  | 104 | 2.59   | 6.84    | MAHZB |
| HB-001     | HB-001-55 | 104  | 106 | 3.34   | 8.78    | MAHZB |
| HB-001     | HB-001-56 | 106  | 108 | 1.04   | 2.78    | BGR   |
| HB-001     | HB-001-57 | 108  | 110 | 0.89   | 2.38    | BGR   |
| HB-001     | HB-001-58 | 110  | 112 | 0.31   | 0.82    | BGR   |
| HB-001     | HB-001-59 | 112  | 114 | 1.87   | 4.98    | BGR   |
| HB-001     | HB-001-60 | 114  | 116 | 3.34   | 8.92    | BGR   |
| HB-001     | HB-001-61 | 116  | 118 | 3.74   | 10.09   | BGR   |
| HB-001     | HB-001-62 | 118  | 120 | 0.53   | 1.44    | BGR   |
| HB-001     | HB-001-63 | 120  | 122 | 1.62   | 4.31    | BGR   |
| HB-001     | HB-001-64 | 122  | 124 | 2.24   | 6.01    | BGR   |
| HB-002     | HB-002-1  | 68   | 69  | 6.96   | 18.56   | В3    |
| HB-002     | HB-002-2  | 69   | 70  | 6.7    | 17.95   | B3    |
| HB-002     | HB-002-3  | 70   | 71  | 6.58   | 17.61   | В3    |
| HB-002     | HB-002-4  | 71   | 72  | 2.81   | 7.42    |       |
| HB-002     | HB-002-5  | 72   | 73  | 2.64   | 6.95    |       |
| HB-002     | HB-002-6  | 73   | 74  | 3.67   | 9.71    |       |
| HB-002     | HB-002-7  | 74   | 75  | 2.64   | 6.95    |       |
| HB-002     | HB-002-8  | 75   | 76  | 2.2    | 5.8     |       |
| HB-002     | HB-002-9  | 76   | 77  | 1.28   | 3.38    |       |
| HB-002     | HB-002-10 | 77   | 78  | 1.98   | 5.24    |       |
| HB-002     | HB-002-11 | 78   | 79  | 5.17   | 13.78   |       |
| HB-002     | HB-002-12 | 79   | 80  | 3.18   | 8.42    |       |
| HB-002     | HB-002-13 | 80   | 81  | 3.05   | 8.05    |       |
| HB-002     | HB-002-14 | 81   | 82  | 2.79   | 7.39    |       |
| HB-002     | HB-002-15 | 82   | 83  | 3.01   | 7.97    |       |
| HB-002     | HB-002-16 | 83   | 84  | 4.09   | 10.82   |       |
| HB-002     | HB-002-17 | 84   | 85  | 5.74   |         | 4SEN  |
| HB-002     | HB-002-18 | 85   | 86  | 8.61   | 22.87   | 4SEN  |
| HB-002     | HB-002-19 | 86   |     | 5.89   |         | 4SEN  |
| HB-002     | HB-002-20 | 87   | 88  | 12.37  | 32.98   |       |
| HB-002     | HB-002-21 | 88   |     | 3.42   |         | AGR   |
| HB-002     | HB-002-22 | 89   |     | 1.57   |         | AGR   |

| HB-002   HB-002-23   90   91   1.51   3.94   AGR     HB-002   HB-002-24   91   92   0.68   1.82   AGR     HB-002   HB-002-25   92   93   2.42   6.35   AGR     HB-002   HB-002-26   93   94   1.66   4.38   AGR     HB-002   HB-002-27   94   95   1.05   2.79   AGR     HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-29   96   97   1.04   2.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-43   120   122   8.07   21.48   MAHZA     HB-002   HB-002-44   122   124   7.17   19.26   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-47   128   13.0   28.45   75.78   MAHZA     HB-002   HB-002-48   130   132   18.89   50.48   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-50   134   136   10.91   28.95   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-57   148   150   12.77   34.42   MAHZB   | BHID        | SAMPID    | FROM | то  | %shoil | shoilgt | zone   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------|-----|--------|---------|--------|
| HB-002   HB-002-24   91   92   0.68   1.82   AGR     HB-002   HB-002-25   92   93   2.42   6.35   AGR     HB-002   HB-002-26   93   94   1.66   4.38   AGR     HB-002   HB-002-27   94   95   1.05   2.79   AGR     HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-42   118   120   4.32   11.54   MAHZA     HB-002   HB-002-43   120   122   8.07   21.48   MAHZA     HB-002   HB-002-44   122   124   7.17   19.26   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-48   130   132   18.89   50.48   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-50   134   136   10.91   28.95   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-56   146   148   12.77   34.42   MAHZB     HB-002   HB-002-56   146   148   12.77   34.42   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.6 | <b></b>     |           |      |     |        |         |        |
| HB-002   HB-002-25   92   93   2.42   6.35   AGR     HB-002   HB-002-26   93   94   1.66   4.38   AGR     HB-002   HB-002-27   94   95   1.05   2.79   AGR     HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-42   118   120   4.32   11.54   MAHZA     HB-002   HB-002-43   120   122   8.07   21.48   MAHZA     HB-002   HB-002-44   122   124   7.17   19.26   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-46   126   128   14.66   39.27   MAHZA     HB-002   HB-002-48   130   132   18.89   50.48   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-50   134   136   10.91   28.95   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-56   146   148   12.77   34.42   MAHZB     HB-002   HB-002-56   146   148   12.77   34.42   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48  | <del></del> |           |      |     |        |         |        |
| HB-002   HB-002-26   93   94   1.66   4.38   AGR     HB-002   HB-002-27   94   95   1.05   2.79   AGR     HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-43   120   122   8.07   21.48   MAHZA     HB-002   HB-002-44   122   124   7.17   19.26   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-46   126   128   14.66   39.27   MAHZA     HB-002   HB-002-48   130   132   18.89   50.48   MAHBE     HB-002   HB-002-49   132   134   9.4   24.96   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-57   148   150   12.77   34.42   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.4 |             |           |      |     |        |         |        |
| HB-002   HB-002-27   94   95   1.05   2.79   AGR     HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-29   96   97   1.04   2.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-42   118   120   4.32   11.54   MAHZA     HB-002   HB-002-44   122   124   7.17   19.26   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-46   126   128   14.66   39.27   MAHZA     HB-002   HB-002-47   128   130   28.45   75.78   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZA     HB-002   HB-002-50   134   136   10.91   28.95   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-56   146   148   12.72   34.21   MAHZB     HB-002   HB-002-57   148   150   12.77   34.42   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB                                    |             |           |      |     |        |         |        |
| HB-002   HB-002-28   95   96   0.66   1.76   AGR     HB-002   HB-002-29   96   97   1.04   2.76   AGR     HB-002   HB-002-30   97   98   0.66   1.75   AGR     HB-002   HB-002-31   98   99   3.81   10.18   MAHZA     HB-002   HB-002-32   99   100   4.98   13.32   MAHZA     HB-002   HB-002-33   100   102   8.93   23.92   MAHZA     HB-002   HB-002-34   102   104   4.6   12.3   MAHZA     HB-002   HB-002-35   104   106   7.26   19.29   MAHZA     HB-002   HB-002-36   106   108   12.17   32.78   MAHZA     HB-002   HB-002-37   108   110   11.03   29.71   MAHZA     HB-002   HB-002-38   110   112   4.59   12.18   MAHZA     HB-002   HB-002-39   112   114   6.33   16.83   MAHZA     HB-002   HB-002-40   114   116   3.53   9.38   MAHZA     HB-002   HB-002-41   116   118   3.32   8.75   MAHZA     HB-002   HB-002-42   118   120   4.32   11.54   MAHZA     HB-002   HB-002-43   120   122   8.07   21.48   MAHZA     HB-002   HB-002-45   124   126   13.28   35.38   MAHZA     HB-002   HB-002-46   126   128   14.66   39.27   MAHZA     HB-002   HB-002-48   130   132   18.89   50.48   MAHZA     HB-002   HB-002-49   132   134   9.4   24.96   MAHZB     HB-002   HB-002-50   134   136   10.91   28.95   MAHZB     HB-002   HB-002-51   136   138   15.88   42.65   MAHZB     HB-002   HB-002-55   144   146   5.81   15.5   MAHZB     HB-002   HB-002-57   148   150   12.77   34.42   MAHZB     HB-002   HB-002-58   150   152   5.48   14.61   MAHZB                                                                                           | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-29         96         97         1.04         2.76         AGR           HB-002         HB-002-30         97         98         0.66         1.75         AGR           HB-002         HB-002-31         98         99         3.81         10.18         MAHZA           HB-002         HB-002-32         99         100         4.98         13.32         MAHZA           HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-35         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116 <td><b></b></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b></b>     |           |      |     |        |         |        |
| HB-002         HB-002-30         97         98         0.66         1.75         AGR           HB-002         HB-002-31         98         99         3.81         10.18         MAHZA           HB-002         HB-002-32         99         100         4.98         13.32         MAHZA           HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-31         98         99         3.81         10.18         MAHZA           HB-002         HB-002-32         99         100         4.98         13.32         MAHZA           HB-002         HB-002-33         100         102         8.93         23.92         MAHZA           HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |           |      |     |        |         |        |
| HB-002         HB-002-32         99         100         4.98         13.32         MAHZA           HB-002         HB-002-33         100         102         8.93         23.92         MAHZA           HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-49         114         116         3.53         9.38         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |           |      |     |        |         |        |
| HB-002         HB-002-33         100         102         8.93         23.92         MAHZA           HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |           |      |     |        |         |        |
| HB-002         HB-002-34         102         104         4.6         12.3         MAHZA           HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-35         104         106         7.26         19.29         MAHZA           HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-36         106         108         12.17         32.78         MAHZA           HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-37         108         110         11.03         29.71         MAHZA           HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-38         110         112         4.59         12.18         MAHZA           HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del> |           |      |     |        |         |        |
| HB-002         HB-002-39         112         114         6.33         16.83         MAHZA           HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBE           HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB-002      | HB-002-37 |      |     | 11.03  |         |        |
| HB-002         HB-002-40         114         116         3.53         9.38         MAHZA           HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48         130         132         18.89         50.48         MAHBEI           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HB-002      | HB-002-38 | 110  | 112 | 4.59   | 12.18   | MAHZA  |
| HB-002         HB-002-41         116         118         3.32         8.75         MAHZA           HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBE           HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HB-002      | HB-002-39 | 112  | 114 | 6.33   | 16.83   | MAHZA  |
| HB-002         HB-002-42         118         120         4.32         11.54         MAHZA           HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48         130         132         18.89         50.48         MAHBEI           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53 <td>HB-002</td> <td>HB-002-40</td> <td>114</td> <td>116</td> <td>3.53</td> <td>9.38</td> <td>MAHZA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HB-002      | HB-002-40 | 114  | 116 | 3.53   | 9.38    | MAHZA  |
| HB-002         HB-002-43         120         122         8.07         21.48         MAHZA           HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBE           HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HB-002      | HB-002-41 | 116  | 118 | 3.32   | 8.75    | MAHZA  |
| HB-002         HB-002-44         122         124         7.17         19.26         MAHZA           HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBEI           HB-002         HB-002-48         130         132         18.89         50.48         MAHBEI           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55 <td>HB-002</td> <td>HB-002-42</td> <td>118</td> <td>120</td> <td>4.32</td> <td>11.54</td> <td>MAHZA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB-002      | HB-002-42 | 118  | 120 | 4.32   | 11.54   | MAHZA  |
| HB-002         HB-002-45         124         126         13.28         35.38         MAHZA           HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBE           HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HB-002      | HB-002-43 | 120  | 122 | 8.07   | 21.48   | MAHZA  |
| HB-002         HB-002-46         126         128         14.66         39.27         MAHZA           HB-002         HB-002-47         128         130         28.45         75.78         MAHBE           HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56         146         148         12.72         34.21         MAHZB           HB-002         HB-002-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HB-002      | HB-002-44 | 122  | 124 | 7.17   | 19.26   | MAHZA  |
| HB-002         HB-002-47         128         130         28.45         75.78         MAHBER           HB-002         HB-002-48         130         132         18.89         50.48         MAHBER           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56         146         148         12.72         34.21         MAHZB           HB-002         HB-002-57         148         150         12.77         34.42         MAHZB           HB-002         HB-002-58 <td>HB-002</td> <td>HB-002-45</td> <td>124</td> <td>126</td> <td>13.28</td> <td>35.38</td> <td>MAHZA</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB-002      | HB-002-45 | 124  | 126 | 13.28  | 35.38   | MAHZA  |
| HB-002         HB-002-48         130         132         18.89         50.48         MAHBE           HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56         146         148         12.72         34.21         MAHZB           HB-002         HB-002-57         148         150         12.77         34.42         MAHZB           HB-002         HB-002-58         150         152         5.48         14.61         MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB-002      | HB-002-46 | 126  | 128 | 14.66  | 39.27   | MAHZA  |
| HB-002         HB-002-49         132         134         9.4         24.96         MAHZB           HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56         146         148         12.72         34.21         MAHZB           HB-002         HB-002-57         148         150         12.77         34.42         MAHZB           HB-002         HB-002-58         150         152         5.48         14.61         MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HB-002      | HB-002-47 | 128  | 130 | 28.45  | 75.78   | MAHBED |
| HB-002         HB-002-50         134         136         10.91         28.95         MAHZB           HB-002         HB-002-51         136         138         15.88         42.65         MAHZB           HB-002         HB-002-52         138         140         9.56         25.9         MAHZB           HB-002         HB-002-53         140         142         10.39         27.75         MAHZB           HB-002         HB-002-54         142         144         7.92         20.99         MAHZB           HB-002         HB-002-55         144         146         5.81         15.5         MAHZB           HB-002         HB-002-56         146         148         12.72         34.21         MAHZB           HB-002         HB-002-57         148         150         12.77         34.42         MAHZB           HB-002         HB-002-58         150         152         5.48         14.61         MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HB-002      | HB-002-48 | 130  | 132 | 18.89  | 50.48   | MAHBED |
| HB-002       HB-002-51       136       138       15.88       42.65       MAHZB         HB-002       HB-002-52       138       140       9.56       25.9       MAHZB         HB-002       HB-002-53       140       142       10.39       27.75       MAHZB         HB-002       HB-002-54       142       144       7.92       20.99       MAHZB         HB-002       HB-002-55       144       146       5.81       15.5       MAHZB         HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HB-002      | HB-002-49 | 132  | 134 | 9.4    | 24.96   | MAHZB  |
| HB-002       HB-002-52       138       140       9.56       25.9       MAHZB         HB-002       HB-002-53       140       142       10.39       27.75       MAHZB         HB-002       HB-002-54       142       144       7.92       20.99       MAHZB         HB-002       HB-002-55       144       146       5.81       15.5       MAHZB         HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HB-002      | HB-002-50 | 134  | 136 | 10.91  | 28.95   | MAHZB  |
| HB-002       HB-002-53       140       142       10.39       27.75       MAHZB         HB-002       HB-002-54       142       144       7.92       20.99       MAHZB         HB-002       HB-002-55       144       146       5.81       15.5       MAHZB         HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HB-002      | HB-002-51 | 136  | 138 | 15.88  | 42.65   | MAHZB  |
| HB-002       HB-002-54       142       144       7.92       20.99       MAHZB         HB-002       HB-002-55       144       146       5.81       15.5       MAHZB         HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HB-002      | HB-002-52 | 138  | 140 | 9.56   | 25.9    | MAHZB  |
| HB-002       HB-002-55       144       146       5.81       15.5       MAHZB         HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HB-002      | HB-002-53 | 140  | 142 | 10.39  | 27.75   | MAHZB  |
| HB-002       HB-002-56       146       148       12.72       34.21       MAHZB         HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HB-002      | HB-002-54 | 142  | 144 | 7.92   | 20.99   | MAHZB  |
| HB-002       HB-002-57       148       150       12.77       34.42       MAHZB         HB-002       HB-002-58       150       152       5.48       14.61       MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HB-002      | HB-002-55 | 144  | 146 | 5.81   | 15.5    | MAHZB  |
| HB-002 HB-002-58 150 152 5.48 14.61 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HB-002      | HB-002-56 | 146  | 148 | 12.72  | 34.21   | MAHZB  |
| HB-002 HB-002-58 150 152 5.48 14.61 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |           |      |     |        | 34.42   | MAHZB  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del> |           |      |     |        |         |        |
| 1.15 002 1.15 002 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del> | HB-002-59 |      |     | 5.33   |         |        |
| HB-002 HB-002-60 154 156 5.9 15.55 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |      |     |        |         |        |
| HB-002 HB-002-61 156 158 1.92 5.07 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |           |      |     |        |         |        |
| HB-002 HB-002-62 158 160 4.78 12.58 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |           |      |     |        |         |        |
| HB-002 HB-002-63 160 162 5.92 15.68 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> |           |      |     |        |         |        |
| HB-002 HB-002-64 162 164 3.89 10.32 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> |           |      |     |        |         |        |
| HB-002 HB-002-65 164 166 3.73 9.75 MAHZB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b></b>     |           |      |     |        |         |        |

| BHID   | SAMPID    | FROM | то  | %shoil | shoilgt | zone   |
|--------|-----------|------|-----|--------|---------|--------|
| HB-002 | HB-002-66 | 166  | 168 | 2.1    | 5.57    |        |
| HB-002 | HB-002-67 | 168  | 170 | 1.71   |         | BGR    |
| HB-002 | HB-002-68 | 170  | 172 | 0.81   | 2.16    |        |
| HB-002 | HB-002-69 | 172  | 174 | 0.68   |         | BGR    |
| HB-002 | HB-002-70 | 174  | 176 | 0.84   |         | BGR    |
| HB-002 | HB-002-71 | 176  | 178 | 2.98   |         |        |
| HB-002 | HB-002-72 | 178  | 180 | 4.15   |         |        |
| HB-002 | HB-002-73 | 180  | 182 | 3.41   | 9.07    |        |
| HB-003 | HB-003-1  | 36   | 37  | 3.02   |         | MAHZA  |
| HB-003 | HB-003-2  | 37   | 38  | 2.71   |         | MAHZA  |
| HB-003 | HB-003-3  | 38   | 39  | 4.01   |         | MAHZA  |
| HB-003 | HB-003-4  | 39   | 40  | 9.07   |         | MAHZA  |
| HB-003 | HB-003-5  | 40   | 41  | 9.91   |         | MAHZA  |
| HB-003 | HB-003-6  | 41   | 42  | 9.71   | 26.17   | MAHZA  |
| HB-003 | HB-003-7  | 42   | 43  | 8.62   |         | MAHZA  |
| HB-003 | HB-003-8  | 43   | 44  | 16     | 42.56   | MAHZA  |
| HB-003 | HB-003-9  | 44   | 45  | 10.45  | 27.93   | MAHZA  |
| HB-003 | HB-003-10 | 45   | 46  | 22.65  | 61.27   | MAHBED |
| HB-003 | HB-003-11 | 46   | 47  | 19.18  | 51.66   | MAHBED |
| HB-003 | HB-003-12 | 47   | 48  | 31.21  | 83.22   | MAHBED |
| HB-003 | HB-003-13 | 48   | 49  | 27.36  | 72.87   | MAHBED |
| HB-003 | HB-003-14 | 49   | 50  | 16.97  | 45.46   | MAHZB  |
| HB-003 | HB-003-15 | 50   | 51  | 20.68  | 55.02   | MAHZB  |
| HB-003 | HB-003-16 | 51   | 52  | 14.93  | 39.45   | MAHZB  |
| HB-003 | HB-003-17 | 52   | 53  | 6.37   | 16.74   | MAHZB  |
| HB-003 | HB-003-18 | 53   | 54  | 7.33   | 19.48   | MAHZB  |
| HB-003 | HB-003-19 | 54   | 55  | 12.53  | 33.47   | MAHZB  |
| HB-003 | HB-003-20 | 55   | 56  | 8.58   | 22.78   | MAHZB  |
| HB-003 | HB-003-21 | 56   | 57  | 9.89   | 26.38   | MAHZB  |
| HB-003 | HB-003-22 | 57   | 58  | 16.67  | 44.72   | MAHZB  |
| HB-003 | HB-003-23 | 58   | 59  | 17.87  | 47.61   | MAHZB  |
| HB-003 | HB-003-24 | 59   | 60  | 5.43   | 14.66   | MAHZB  |
| HB-003 | HB-003-25 | 60   | 61  | 15.08  | 40.34   | MAHZB  |
| HB-003 | HB-003-26 | 61   | 62  | 6.8    | 18.13   | MAHZB  |
| HB-003 | HB-003-27 | 62   | 63  | 5.85   | 15.54   | MAHZB  |
| HB-003 | HB-003-28 | 63   | 64  | 10.46  | 27.58   | MAHZB  |
| HB-003 | HB-003-29 | 64   | 65  | 13.77  | 36.35   | MAHZB  |
| HB-003 | HB-003-30 | 65   | 66  | 5.62   | 14.79   | MAHZB  |
| HB-003 | HB-003-31 | 66   | 67  | 6.61   | 17.44   | MAHZB  |
| HB-003 | HB-003-32 | 67   | 68  | 6.24   | 16.56   | MAHZB  |
| HB-003 | HB-003-33 | 68   | 69  | 11.21  | 29.78   | MAHZB  |
| HB-003 | HB-003-34 | 69   | 70  | 13.05  | 34.93   | MAHZB  |
| HB-003 | HB-003-35 | 70   | 71  | 8.94   | 23.77   | MAHZB  |

| Corehole A |           |      |    | a      |         |       |
|------------|-----------|------|----|--------|---------|-------|
| BHID       | SAMPID    | FROM | ТО | %shoil | shoilgt | zone  |
| HB-003     | HB-003-36 | 71   | 72 | 11.15  | 29.77   | MAHZB |
| HB-003     | HB-003-37 | 72   | 73 | 6.8    |         | MAHZB |
| HB-003     | HB-003-38 | 73   | 74 | 4.92   |         | MAHZB |
| HB-003     | HB-003-39 | 74   | 75 | 5.41   | 14.27   | MAHZB |
| HB-003     | HB-003-40 | 75   | 76 | 5.79   | 15.25   | MAHZB |
| HB-003     | HB-003-41 | 76   | 77 | 5.52   | 14.48   | MAHZB |
| HB-003     | HB-003-42 | 77   | 78 | 8.12   | 21.26   | MAHZB |
| HB-003     | HB-003-43 | 78   | 79 | 7.03   | 18.54   | MAHZB |
| HB-003     | HB-003-44 | 79   | 80 | 7.38   | 19.3    | MAHZB |
| HB-003     | HB-003-45 | 80   | 81 | 4.87   | 12.86   | MAHZB |
| HB-003     | HB-003-46 | 81   | 82 | 6.26   | 16.45   | MAHZB |
| HB-003     | HB-003-47 | 82   | 83 | 7.74   | 20.44   | MAHZB |
| HB-003     | HB-003-48 | 83   | 84 | 8.19   | 21.7    | MAHZB |
| HB-003     | HB-003-49 | 84   | 85 | 5.9    | 15.61   | MAHZB |
| HB-003     | HB-003-50 | 85   | 86 | 4.45   | 11.72   | MAHZB |
| HB-003     | HB-003-51 | 86   | 87 | 4.25   | 11.25   | MAHZB |
| HB-003     | HB-003-52 | 87   | 88 | 3.69   | 9.73    | MAHZB |
| HB-003     | HB-003-53 | 88   | 89 | 4.95   | 13.09   | MAHZB |
| HB-003     | HB-003-54 | 89   | 90 | 4.61   | 12.14   | MAHZB |
| HB-003     | HB-003-55 | 90   | 91 | 5.81   | 15.44   | MAHZB |
| HB-003     | HB-003-56 | 91   | 92 | 1.96   | 5.2     |       |
| HB-003     | HB-003-57 | 92   | 93 | 3.1    | 8.16    |       |
| HB-003     | HB-003-58 | 93   | 94 | 1.66   | 4.43    |       |
| HB-004     | HB-004-1  | 45   | 46 | 7.18   | 19.17   | В3    |
| HB-004     | HB-004-2  | 46   | 47 | 6.98   | 18.7    | В3    |
| HB-004     | HB-004-3  | 47   | 48 | 3.46   | 9.13    |       |
| HB-004     | HB-004-4  | 48   | 49 | 2.17   | 5.69    |       |
| HB-004     | HB-004-5  | 49   | 50 | 2.53   | 6.63    |       |
| HB-004     | HB-004-6  | 50   | 51 | 4.23   | 11.12   |       |
| HB-004     | HB-004-7  | 51   | 52 | 2.3    | 6.03    |       |
| HB-004     | HB-004-8  | 52   | 53 | 1.13   | 2.96    |       |
| HB-004     | HB-004-9  | 53   | 54 | 2.93   | 7.69    |       |
| HB-004     | HB-004-10 | 54   | 55 | 2.3    | 6.05    |       |
| HB-004     | HB-004-11 | 55   | 56 | 2.85   | 7.51    |       |
| HB-004     | HB-004-12 | 56   | 57 | 4.68   | 12.34   |       |
| HB-004     | HB-004-13 | 57   | 58 | 2.87   | 7.53    |       |
| HB-004     | HB-004-14 | 58   | 59 | 5.18   | 13.68   |       |
| HB-004     | HB-004-15 | 59   | 60 | 4.07   | 10.71   |       |
| HB-004     | HB-004-16 | 60   | 61 | 4.09   | 10.77   |       |
| HB-004     | HB-004-17 | 61   | 62 | 4.12   | 10.96   |       |
| HB-004     | HB-004-18 | 62   | 63 | 11.23  | 29.77   | 4SEN  |
| HB-004     | HB-004-19 | 63   | 64 | 5.22   | 13.85   | 4SEN  |
| HB-004     | HB-004-20 | 64   | 65 | 6.46   | 17.16   | 4SEN  |

| Corenole A | · ·        |      |     | a      |         |          |
|------------|------------|------|-----|--------|---------|----------|
| BHID       | SAMPID     | FROM | ТО  | %shoil | shoilgt | zone     |
| HB-004     | HB-004-21  | 65   | 66  | 11.05  | 29.39   |          |
| HB-004     | HB-004-22  | 66   | 67  | 2.35   | 6.15    | AGR      |
| HB-004     | HB-004-23  | 67   | 68  | 1.23   | 3.22    | AGR      |
| HB-004     | HB-004-24  | 68   | 69  | 1.96   | 5.17    | AGR      |
| HB-004     | HB-004-25  | 69   | 70  | 2.45   | 6.42    | AGR      |
| HB-004     | HB-004-26  | 70   | 71  | 3.05   | 8.11    | AGR      |
| HB-004     | HB-004-27  | 71   | 72  | 0.96   | 2.55    | AGR      |
| HB-004     | HB-004-28  | 72   | 73  | 0.27   | 0.72    | AGR      |
| HB-004     | HB-004-29  | 73   | 74  | 0.21   | 0.56    | AGR      |
| HB-004     | HB-004-30  | 74   | 75  | 0.78   | 2.08    | AGR      |
| HB-004     | HB-004-31  | 75   | 76  | 4.31   | 11.51   | AGR      |
| HB-004     | HB-004-32  | 76   | 77  | 3.68   | 9.83    | AGR      |
| HB-004     | HB-004-33  | 77   | 78  | 10.28  | 27.49   | MAHZA    |
| HB-004     | HB-004-34  | 78   | 79  | 5.39   | 14.36   | MAHZA    |
| HB-004     | HB-004-35  | 79   | 80  | 4.13   | 10.94   | MAHZA    |
| HB-004     | HB-004-36  | 80   | 81  | 3.91   | 10.43   | MAHZA    |
| HB-004     | HB-004-37  | 81   | 82  | 5.26   | 13.98   | MAHZA    |
| HB-004     | HB-004-38  | 82   | 83  | 8.86   | 23.54   | MAHZA    |
| HB-004     | HB-004-39  | 83   | 84  | 8.91   | 23.73   | MAHZA    |
| HB-004     | HB-004-40  | 84   | 85  | 15.35  | 41.59   | MAHZA    |
| HB-004     | HB-004-41  | 85   | 86  | 12.67  | 33.91   | MAHZA    |
| HB-004     | HB-004-42  | 86   | 87  | 7.02   | 18.83   | MAHZA    |
| HB-004     | HB-004-43  | 87   | 88  | 5.71   | 15.22   | MAHZA    |
| HB-004     | HB-004-44  | 88   | 89  | 3.33   | 8.81    | MAHZA    |
| HB-004     | HB-004-45  | 89   | 90  | 7.22   | 19.26   | MAHZA    |
| HB-004     | HB-004-46  | 90   | 91  | 5.24   | 13.96   | MAHZA    |
| HB-004     | HB-004-47  | 91   | 92  | 2.8    | 7.44    | MAHZA    |
| HB-004     | HB-004-48  | 92   | 93  | 4.31   | 11.47   | MAHZA    |
| HB-004     | HB-004-49  | 93   | 94  | 4.64   | 12.31   | MAHZA    |
| HB-004     | HB-004-50  | 94   | 95  | 3.51   | 9.33    | MAHZA    |
| HB-004     | HB-004-51  | 95   | 96  | 2.73   | 7.28    | MAHZA    |
| HB-004     | HB-004-52  | 96   | 97  | 4.72   | 12.59   | MAHZA    |
| HB-004     | HB-004-53  | 97   | 98  | 3.24   | 8.59    | MAHZA    |
| HB-004     | HB-004-54  | 98   | 99  | 6.11   | 16.24   | MAHZA    |
| HB-004     | HB-004-55  | 99   | 100 | 13.3   | 35.3    | MAHZA    |
| HB-004     | HB-004-56  | 100  | 101 | 6.52   |         | MAHZA    |
| HB-004     | HB-004-57  | 101  | 102 | 7.55   |         | MAHZA    |
| HB-004     | HB-004-58  | 102  | 103 | 8.46   |         | MAHZA    |
| HB-004     | HB-004-59  | 103  | 104 | 17.03  |         | MAHZA    |
| HB-004     | HB-004-60  | 104  | 105 | 10.54  |         | MAHZA    |
| HB-004     | HB-004-61  | 105  | 106 | 17.59  |         | MAHBED   |
| HB-004     | HB-004-62  | 106  | 107 | 24.29  |         | MAHBED   |
| HB-004     | HB-004-63  | 107  | 108 | 26.53  |         | MAHBED   |
| пр-004     | IUD-004-03 | 107  | 108 | 20.53  | /1.04   | INIAURED |

| Corehole |            | EDON4 | то  | 0/ - ! | -l!l -4 |        |
|----------|------------|-------|-----|--------|---------|--------|
| BHID     | SAMPID     | FROM  | TO  | %shoil | shoilgt | zone   |
| HB-004   | HB-004-64  | 108   | 109 | 14.3   |         | MAHZB  |
| HB-004   | HB-004-65  | 109   | 110 | 20.75  |         | MAHZB  |
| HB-004   | HB-004-66  | 110   | 111 | 7.43   |         | MAHZB  |
| HB-004   | HB-004-67  | 111   | 112 | 7.4    |         | MAHZB  |
| HB-004   | HB-004-68  | 112   | 113 | 9.11   |         | MAHZB  |
| HB-004   | HB-004-69  | 113   | 114 | 7.58   | 20.32   | MAHZB  |
| HB-004   | HB-004-70  | 114   | 115 | 19.63  | 52.21   | MAHZB  |
| HB-004   | HB-004-71  | 115   | 116 | 16.03  | 42.89   | MAHZB  |
| HB-004   | HB-004-72  | 116   | 117 | 5.56   | 15.21   | MAHZB  |
| HB-004   | HB-004-73  | 117   | 118 | 15.91  | 42.57   | MAHZB  |
| HB-004   | HB-004-74  | 118   | 119 | 5.5    | 14.72   | MAHZB  |
| HB-004   | HB-004-75  | 119   | 120 | 5.78   | 15.43   | MAHZB  |
| HB-004   | HB-004-76  | 120   | 122 | 14.33  | 38.03   | MAHZB  |
| HB-004   | HB-004-77  | 122   | 124 | 4.39   | 11.64   | MAHZB  |
| HB-004   | HB-004-78  | 124   | 126 | 4.11   | 10.92   | MAHZB  |
| HB-004   | HB-004-79  | 126   | 128 | 7.84   | 21.21   | MAHZB  |
| HB-004   | HB-004-80  | 128   | 130 | 9.95   | 26.67   | MAHZB  |
| HB-004   | HB-004-81  | 130   | 132 | 4.46   | 11.81   | MAHZB  |
| HB-004   | HB-004-82  | 132   | 134 | 5.19   | 13.79   | MAHZB  |
| HB-004   | HB-004-83  | 134   | 136 | 2.5    | 6.58    | MAHZB  |
| HB-004   | HB-004-84  | 136   | 138 | 1.51   | 3.97    | MAHZB  |
| HB-004   | HB-004-85  | 138   | 140 | 4.87   | 12.91   | MAHZB  |
| HB-004   | HB-004-86  | 140   | 141 | 5.72   | 15.14   | MAHZB  |
| HB-005   | HB-005-1   | 32    | 34  | 2      | 5.18    |        |
| HB-005   | HB-005-2   | 34    | 36  | 1.05   | 2.78    |        |
| HB-005   | HB-005-3   | 36    | 38  | 2.12   | 5.52    |        |
| HB-005   | HB-005-4   | 38    | 40  | 0.51   | 1.37    |        |
| HB-005   | HB-005-5   | 40    | 42  | 0.43   | 1.14    |        |
| HB-005   | HB-005-6   | 42    | 44  | 4.51   | 12.02   | MAHZA  |
| HB-005   | HB-005-7   | 44    | 46  | 7.49   | 19.89   | MAHZA  |
| HB-005   | HB-005-8   | 46    | 48  | 4.34   |         | MAHZA  |
| HB-005   | HB-005-9   | 48    | 50  | 7.48   |         | MAHZA  |
| HB-005   | HB-005-10  | 50    | 52  | 11.57  |         | MAHZA  |
| HB-005   | HB-005-11  | 52    | 54  | 10.9   |         | MAHZA  |
| HB-005   | HB-005-12  | 54    | 56  | 4.71   |         | MAHZA  |
| HB-005   | HB-005-13  | 56    | 58  | 5.97   |         | MAHZA  |
| HB-005   | HB-005-14  | 58    | 60  | 3.75   |         | MAHZA  |
| HB-005   | HB-005-15  | 60    | 62  | 3.14   |         | MAHZA  |
| HB-005   | HB-005-16  | 62    | 64  | 8.15   |         | MAHZA  |
| HB-005   | HB-005-17  | 65    | 66  | 7.32   |         | MAHZA  |
| HB-005   | HB-005-18  | 66    | 67  | 7.35   |         | MAHZA  |
| HB-005   | HB-005-19  | 67    | 68  | 13.53  |         | MAHZA  |
| HB-005   | HB-005-20  | 68    | 69  |        |         | MAHBED |
| 505      | .15 505 20 | 50    | 0.5 | 23.03  | 02.00   | ,      |

| BHID    | SAMPID      | FROM | то | %shoil | shoilgt | zone        |
|---------|-------------|------|----|--------|---------|-------------|
| HB-005  | HB-005-21   | 69   | 70 | 20.68  |         | MAHBED      |
| HB-005  | HB-005-22   | 70   | 71 | 11.21  |         | MAHZB       |
| HB-005  | HB-005-23   | 71   | 72 | 17.03  |         | MAHZB       |
| HB-005  | HB-005-24   | 72   | 73 | 19.04  |         | MAHZB       |
| HB-005  | HB-005-25   | 73   | 73 | 17.16  |         | MAHZB       |
| HB-005  | HB-005-26   | 73   | 75 | 5.88   |         | MAHZB       |
| HB-005  | HB-005-27   | 75   | 76 | 15.45  |         | MAHZB       |
| HB-005  | HB-005-28   | 76   | 70 | 5.23   |         | MAHZB       |
| HB-005  | HB-005-29   | 70   | 77 | 5.86   |         | MAHZB       |
| HB-005  | HB-005-30   |      | 79 | 8.77   |         | MAHZB       |
| HB-005  | HB-005-31   | 79   | 80 | 16.48  |         | MAHZB       |
| HB-005  | HB-005-31   | 80   | 81 | 12.02  |         | MAHZB       |
| HB-005  | HB-005-32   | 81   | 82 | 11.77  |         | MAHZB       |
| HB-005  | HB-005-34   | 82   | 83 | 6.86   |         | MAHZB       |
| HB-005  | HB-005-35   | 83   | 84 | 5.48   |         | MAHZB       |
| HB-005  | HB-005-36   | 84   | 85 | 9.27   |         | MAHZB       |
| HB-005  | HB-005-37   | 85   | 86 | 13.63  |         | MAHZB       |
| HB-005  | HB-005-38   | 86   | 87 | 3.64   |         | MAHZB       |
| HB-005  | HB-005-39   | 87   | 88 | 4.91   |         | MAHZB       |
| HB-005  | HB-005-40   | 88   | 89 | 10.83  |         | MAHZB       |
| HB-005  | HB-006-4    | 18   | 19 | 2.98   |         | MAHZA       |
| HB-006  | HB-006-5    | 19   | 20 | 12.08  |         | MAHZA       |
| HB-006  | HB-006-6    | 20   | 21 | 10.81  |         | MAHZA       |
| HB-006  | HB-006-7    | 21   | 22 | 11.48  |         | MAHZA       |
| HB-006  | HB-006-8    | 22   | 23 | 14.22  |         | MAHZA       |
| HB-006  | HB-006-9    | 23   | 24 | 3.68   |         | MAHZA       |
| HB-006  | HB-006-10   | 24   | 25 | 6.37   |         | MAHZA       |
| HB-006  | HB-006-11   | 25   | 26 | 7.86   |         | MAHZA       |
| HB-006  | HB-006-12   | 26   | 27 | 2.38   |         | MAHZA       |
| HB-006  | HB-006-13   |      | 28 |        |         | MAHZA       |
| HB-006  | HB-006-14   | 28   | 29 | 4.68   |         | MAHZA       |
| HB-006  | HB-006-15   | 29   | 30 | 4.56   |         | MAHZA       |
| HB-006  | HB-006-16   | 30   | 31 | 3.3    |         | MAHZA       |
| HB-006  | HB-006-17   | 31   | 32 | 2.56   |         | MAHZA       |
| HB-006  | HB-006-18   | 32   | 33 | 2.84   |         | MAHZA       |
| HB-006  | HB-006-19   | 33   | 34 | 15.9   |         | MAHZA       |
| HB-006  | HB-006-20   | 34   | 35 | 10.19  |         | MAHZA       |
| HB-006  | HB-006-21   | 35   | 36 | 7.23   |         | MAHZA       |
| HB-006  | HB-006-22   | 36   | 37 | 8.21   |         | MAHZA       |
| HB-006  | HB-006-23   | 37   | 38 | 19.2   |         | MAHZA       |
| HB-006  | HB-006-24   | 38   | 39 | 13.17  |         | MAHZA       |
| HB-006  | HB-006-25   | 39   | 40 | 25.85  |         | MAHBED      |
| HB-006  | HB-006-26   | 40   | 41 | 23.45  |         | MAHBED      |
| 1.0 000 | 1.15 000 20 | +0   | 71 | 23.73  | 02.0    | 141/ N 1DLD |

| BHID   | SAMPID    | FROM | то | %shoil | shoilgt | zone   |
|--------|-----------|------|----|--------|---------|--------|
| HB-006 | HB-006-27 | 41   | 42 | 21.35  |         | MAHBED |
| HB-006 | HB-006-28 | 42   | 43 | 27.62  |         | MAHBED |
| HB-006 | HB-006-29 | 43   | 44 | 13.65  |         | MAHZB  |
| HB-006 | HB-006-30 | 43   | 45 | 20.08  |         | MAHZB  |
| HB-006 | HB-006-30 | 45   | 45 | 16.03  |         | MAHZB  |
|        |           |      | 47 |        |         |        |
| HB-006 | HB-006-32 | 46   |    | 8.36   |         | MAHZB  |
| HB-006 | HB-006-33 | 47   | 48 | 6.07   |         | MAHZB  |
| HB-006 | HB-006-34 | 48   | 49 | 21.42  |         | MAHZB  |
| HB-006 | HB-006-35 | 49   | 50 | 8.98   |         | MAHZB  |
| HB-006 | HB-006-36 | 50   | 51 | 6.05   |         | MAHZB  |
| HB-006 | HB-006-37 | 51   | 52 | 16.91  |         | MAHZB  |
| HB-006 | HB-006-38 | 52   | 53 | 5.95   |         | MAHZB  |
| HB-006 | HB-006-39 | 53   | 54 | 8.94   |         | MAHZB  |
| HB-006 | HB-006-40 | 54   | 55 | 11.65  |         | MAHZB  |
| HB-006 | HB-006-41 | 55   | 56 | 4.87   |         | MAHZB  |
| HB-006 | HB-006-42 | 56   | 57 | 3.71   |         | MAHZB  |
| HB-006 | HB-006-43 | 57   | 58 | 10.46  |         | MAHZB  |
| HB-006 | HB-006-44 | 58   | 59 | 9.05   |         | MAHZB  |
| HB-006 | HB-006-45 | 59   | 60 | 4.99   |         | MAHZB  |
| HB-006 | HB-006-46 | 60   | 61 | 7.32   | 19.54   | MAHZB  |
| HB-006 | HB-006-47 | 61   | 62 | 13.38  |         | MAHZB  |
| HB-006 | HB-006-48 | 62   | 63 | 7.18   | 19.19   | MAHZB  |
| HB-006 | HB-006-49 | 63   | 64 | 14.21  | 38.07   | MAHZB  |
| HB-006 | HB-006-50 | 64   | 65 | 2.99   | 7.93    | MAHZB  |
| HB-006 | HB-006-51 | 65   | 66 | 3.34   | 8.83    | MAHZB  |
| HB-006 | HB-006-52 | 66   | 67 | 6.86   | 18.16   | MAHZB  |
| HB-006 | HB-006-53 | 67   | 68 | 7.59   | 19.96   | MAHZB  |
| HB-006 | HB-006-54 | 68   | 69 | 0.17   | 0.45    | MAHZB  |
| HB-006 | HB-006-55 | 69   | 70 | 2.13   | 5.6     | MAHZB  |
| HB-006 | HB-006-56 | 70   | 71 | 3.13   | 8.26    | MAHZB  |
| HB-006 | HB-006-57 | 71   | 72 | 1.95   | 5.16    | MAHZB  |
| HB-006 | HB-006-58 | 72   | 73 | 2.25   | 5.98    | MAHZB  |
| HB-006 | HB-006-59 | 73   | 74 | 8.51   | 22.5    | MAHZB  |
| HB-006 | HB-006-60 | 74   | 75 | 0.84   | 2.22    | MAHZB  |
| HB-006 | HB-006-61 | 75   | 76 | 8.3    | 22.06   | MAHZB  |
| HB-006 | HB-006-62 | 76   | 77 | 5.22   | 13.65   | MAHZB  |
| HB-006 | HB-006-63 | 77   | 78 | 1.24   | 3.28    |        |
| HB-006 | HB-006-64 | 78   | 79 | 1.27   | 3.37    |        |
| HB-006 | HB-006-65 | 79   | 80 | 3.48   | 9.01    |        |
| HB-006 | HB-006-66 | 80   | 81 | 1.04   | 2.75    |        |
| HB-006 | HB-006-67 | 81   | 82 | 1.3    | 3.42    |        |
| HB-006 | HB-006-68 | 82   | 83 | 0.24   | 0.64    |        |
| HB-006 | HB-006-69 | 83   | 84 | 1.17   | 3.1     |        |

| BHID    | SAMPID     | FROM | то  | %shoil | shoilgt | zone  |
|---------|------------|------|-----|--------|---------|-------|
| HB-006  | HB-006-70  | 84   | 85  | 0.17   | 0.46    | 20110 |
| HB-006  | HB-006-71  | 85   | 86  | 2.17   | 5.7     |       |
| HB-006  | HB-006-71  | 86   | 87  | 1.51   | 3.97    |       |
| HB-006  |            | 87   | 88  | 0.82   | 2.18    |       |
|         | HB-006-73  |      |     |        |         |       |
| HB-006  | HB-006-74  | 88   | 89  | 3.21   | 8.59    |       |
| HB-006  | HB-006-75  | 89   | 90  | 3.54   | 9.41    |       |
| HB-006  | HB-006-76  | 90   | 91  | 2.03   | 5.41    |       |
| HB-006  | HB-006-77  | 91   | 92  | 4.64   | 12.47   |       |
| HB-006  | HB-006-78  | 92   | 93  | 1.82   | 4.83    |       |
| HB-006  | HB-006-79  | 93   | 94  | 2.96   |         |       |
| HB-006  | HB-006-80  | 94   | 95  | 2.17   | 5.75    |       |
| HB-006  | HB-006-82  | 96   | 97  | 0.95   | 2.52    |       |
| HB-006  | HB-006-83  | 97   | 98  | 2.16   | 5.8     |       |
| HB-006  | HB-006-84  | 98   | 99  | 1.64   | 4.36    |       |
| HB-006  | HB-006-85  | 99   | 100 | 1.65   | 4.47    |       |
| HB-006  | HB-006-86  | 100  | 101 | 1.72   | 4.66    |       |
| HB-006  | HB-006-87  | 101  | 102 | 1.39   | 3.69    |       |
| HB-006  | HB-006-88  | 102  | 103 | 0.86   | 2.28    |       |
| HB-006  | HB-006-89  | 103  | 104 | 3.1    | 8.38    |       |
| HB-006  | HB-006-90  | 104  | 105 | 1.65   | 4.38    |       |
| HB-006  | HB-006-91  | 105  | 106 | 0.98   | 2.59    |       |
| HB-006  | HB-006-92  | 106  | 107 | 3.21   | 8.49    |       |
| HB-006  | HB-006-93  | 107  | 108 | 4.06   | 10.78   |       |
| HB-006  | HB-006-94  | 108  | 109 | 1.11   | 2.95    |       |
| HB-006  | HB-006-95  | 109  | 110 | 5.55   | 14.66   |       |
| HB-006  | HB-006-96  | 110  | 111 | 0.33   | 0.88    |       |
| HB-006  | HB-006-97  | 111  | 112 | 6.52   | 17.23   |       |
| HB-006  | HB-006-98  | 112  | 113 | 1.26   | 3.31    |       |
| HB-006  | HB-006-99  | 113  | 114 | 3.2    | 8.4     |       |
| HB-006  | HB-006-10  | 114  | 115 | 2.56   | 6.69    |       |
| HB-006  | HB-006-10  | 115  | 116 | 2.5    | 6.53    |       |
| HB-007  | HB-007-1   | 122  | 124 | 2      | 5.26    |       |
| HB-007  | HB-007-2   | 124  | 126 | 5.48   |         |       |
| HB-007  | HB-007-3   | 126  | 128 | 2.99   | 7.9     |       |
| HB-007  | HB-007-4   | 128  | 130 | 8.93   | 23.51   | B3    |
| HB-007  | HB-007-5   | 130  | 132 | 2.14   | 5.62    |       |
| HB-007  | HB-007-6   | 132  | 134 | 3.98   |         |       |
| HB-007  | HB-007-7   | 134  | 136 | 6.01   | 15.95   |       |
| HB-007  | HB-007-8   | 136  | 138 | 1.5    | 3.98    |       |
| HB-007  | HB-007-9   | 138  | 140 | 2.77   | 7.33    |       |
| HB-007  | HB-007-10  | 140  | 142 | 5      | 13.29   |       |
| HB-007  | HB-007-10  | 140  | 144 | 3.47   | 9.12    |       |
| HB-007  | HB-007-11  | 144  | 144 | 4.07   | 10.69   |       |
| 110-007 | 110-007-12 | 144  | 140 | 4.07   | 10.09   |       |

| Corehole |             | EDON4 | ТО  | 0/ - ! | -l!l -4 |              |
|----------|-------------|-------|-----|--------|---------|--------------|
| BHID     | SAMPID      | FROM  | TO  | %shoil | shoilgt | zone         |
| HB-007   | HB-007-13   | 146   | 148 | 3.52   | 9.21    |              |
| HB-007   | HB-007-14   | 148   | 150 | 3.77   | 9.95    |              |
| HB-007   | HB-007-15   | 150   | 152 | 4.26   | 11.3    |              |
| HB-007   | HB-007-16   | 152   | 154 | 1.82   | 4.77    |              |
| HB-007   | HB-007-17   | 154   | 156 | 3.5    | 9.24    |              |
| HB-007   | HB-007-18   | 156   | 158 | 3.15   | 8.36    |              |
| HB-007   | HB-007-19   | 158   | 160 | 5.58   | 14.89   |              |
| HB-007   | HB-007-20   | 160   | 162 | 4.63   | 12.26   |              |
| HB-007   | HB-007-21   | 162   | 164 | 2.33   | 6.11    |              |
| HB-007   | HB-007-22   | 164   | 166 | 2.84   | 7.44    |              |
| HB-007   | HB-007-23   | 166   | 168 | 2.76   | 7.27    |              |
| HB-007   | HB-007-24   | 168   | 170 | 3.6    | 9.51    |              |
| HB-007   | HB-007-25   | 170   | 172 | 5.35   | 14.12   |              |
| HB-007   | HB-007-26   | 172   | 174 | 4.34   | 11.47   |              |
| HB-007   | HB-007-27   | 174   | 176 | 7.83   | 20.73   | 4SEN         |
| HB-007   | HB-007-28   | 176   | 178 | 6.16   | 16.4    | 4SEN         |
| HB-007   | HB-007-29   | 178   | 180 | 5.62   | 14.92   |              |
| HB-007   | HB-007-30   | 180   | 182 | 0.37   | 0.97    |              |
| HB-007   | HB-007-31   | 182   | 184 | 1.43   | 3.79    |              |
| HB-007   | HB-007-32   | 184   | 186 | 2.09   | 5.51    |              |
| HB-007   | HB-007-33   | 186   | 188 | 0.82   | 2.18    |              |
| HB-007   | HB-007-34   | 188   | 190 | 2.5    | 6.56    |              |
| HB-007   | HB-007-35   | 190   | 192 | 10.72  | 28.74   | MAHZA        |
| HB-007   | HB-007-36   | 192   | 194 | 7.23   | 19.15   | MAHZA        |
| HB-007   | HB-007-37   | 194   | 196 | 3.5    | 9.3     | MAHZA        |
| HB-007   | HB-007-38   | 196   | 198 | 7.45   | 19.87   | MAHZA        |
| HB-007   | HB-007-39   | 198   | 200 | 3.23   | 8.61    | MAHZA        |
| HB-007   | HB-007-40   | 200   | 202 | 3.53   | 9.36    | MAHZA        |
| HB-007   | HB-007-41   | 202   | 204 | 3.34   | 8.82    | MAHZA        |
| HB-007   | HB-007-42   | 204   | 206 | 6.07   | 16.11   | MAHZA        |
| HB-007   | HB-007-43   | 206   |     |        | 10.95   | MAHZA        |
| HB-007   | HB-007-44   | 208   | 210 | 7.98   |         | MAHZA        |
| HB-007   | HB-007-1    | 210   | 211 | 9.3    | 24.84   | MAHZA        |
| HB-007   | HB-007-2    | 211   | 212 | 6.26   | 16.66   | MAHZA        |
| HB-007   | HB-007-3    | 212   | 213 | 6.53   |         | MAHZA        |
| HB-007   | HB-007-4    | 213   | 214 | 7.19   |         | MAHZA        |
| HB-007   | HB-007-5    | 214   | 215 | 11.77  |         | MAHZA        |
| HB-007   | HB-007-6    | 215   | 216 | 15.65  |         | MAHZA        |
| HB-007   | HB-007-7    | 216   |     | 21.65  |         | MAHBED       |
| HB-007   | HB-007-8    | 217   | 218 | 18.15  |         | MAHBED       |
| HB-007   | HB-007-9    | 218   | 219 | 26.06  |         | MAHBED       |
| HB-007   | HB-007-10   | 219   | 220 | 10     |         | MAHZB        |
| HB-007   | HB-007-11   | 220   | 221 | 17.1   |         | MAHZB        |
| 110 007  | 1.10.007.11 | 220   |     | 1/.1   | TU.JJ   | 1417 11 1210 |

| BHID   | SAMPID    | FROM | ТО  | %shoil | shoilgt | zone   |
|--------|-----------|------|-----|--------|---------|--------|
| HB-007 | HB-007-12 | 221  | 222 | 13.7   |         | MAHZB  |
| HB-007 | HB-007-13 | 222  | 223 | 6.93   |         | MAHZB  |
| HB-007 | HB-007-14 | 223  | 224 | 5.86   |         | MAHZB  |
| HB-007 | HB-007-15 | 224  | 225 | 4.43   |         | MAHZB  |
| HB-007 | HB-007-16 | 225  | 226 | 18.58  |         | MAHZB  |
| HB-007 | HB-007-17 | 226  | 227 | 17.22  |         | MAHZB  |
| HB-007 | HB-007-18 | 227  | 228 | 9.1    |         | MAHZB  |
| HB-007 | HB-007-19 | 228  | 229 | 6.81   |         | MAHZB  |
| HB-007 | HB-007-20 | 229  | 230 | 6.33   |         | MAHZB  |
| HB-007 | HB-007-21 | 230  | 231 | 5.05   |         | MAHZB  |
| HB-007 | HB-007-22 | 231  | 232 | 4.65   |         | MAHZB  |
| HB-007 | HB-007-23 | 232  | 233 | 15.33  |         | MAHZB  |
| HB-007 | HB-007-24 | 233  | 234 | 5.71   |         | MAHZB  |
| HB-007 | HB-007-25 | 234  | 235 | 3.47   |         | MAHZB  |
| HB-007 | HB-007-26 | 235  | 236 | 5.55   |         | MAHZB  |
| HB-007 | HB-007-27 | 236  | 237 | 3.53   |         | MAHZB  |
| HB-007 | HB-007-28 | 237  | 238 | 5.84   |         | MAHZB  |
| HB-007 | HB-007-29 | 238  | 239 | 5.38   |         | MAHZB  |
| HB-007 | HB-007-30 | 239  | 240 | 7.82   |         | MAHZB  |
| HB-007 | HB-007-45 | 240  | 242 | 9.42   |         | MAHZB  |
| HB-007 | HB-007-46 | 242  | 244 | 3.49   |         | MAHZB  |
| HB-007 | HB-007-47 | 244  | 246 | 3.82   |         | MAHZB  |
| HB-007 | HB-007-48 | 246  | 248 | 2.01   |         | MAHZB  |
| HB-007 | HB-007-49 | 248  | 250 | 2.72   |         | MAHZB  |
| HB-007 | HB-007-50 | 250  | 252 | 3.69   |         | MAHZB  |
| HB-007 | HB-007-51 | 252  | 254 | 4.16   |         | MAHZB  |
| HB-007 | HB-007-52 | 254  | 256 | 1.47   |         | BGR    |
| HB-007 | HB-007-53 | 256  | 258 | 0.99   |         | BGR    |
| HB-007 | HB-007-54 | 258  | 260 | 1.14   | 3.03    | BGR    |
| HB-007 | HB-007-55 | 260  | 262 | 3.57   | 9.4     | BGR    |
| HB-007 | HB-007-56 | 262  | 264 | 0.89   | 2.37    | BGR    |
| HB-007 | HB-007-57 | 264  | 266 | 3.16   | 8.33    | BGR    |
| HB-007 | HB-007-58 | 266  | 268 | 1.52   | 4.01    | BGR    |
| HB-007 | HB-007-59 | 268  | 270 | 2.65   | 7.09    | BGR    |
| HB-008 | HB-008-1  | 26   | 28  | 3.23   | 8.59    | MAHZA  |
| HB-008 | HB-008-2  | 28   | 30  | 3.47   | 9.28    | MAHZA  |
| HB-008 | HB-008-3  | 30   | 31  | 9.27   | 24.81   | MAHZA  |
| HB-008 | HB-008-4  | 31   | 32  | 9.06   |         | MAHZA  |
| HB-008 | HB-008-5  | 32   | 33  | 5.85   | 15.64   | MAHZA  |
| HB-008 | HB-008-6  | 33   | 34  | 7.1    | 19.15   | MAHZA  |
| HB-008 | HB-008-7  | 34   | 35  | 13.19  | 35.2    | MAHZA  |
| HB-008 | HB-008-8  | 35   | 36  | 27.23  | 73.07   | MAHBED |
| HB-008 | HB-008-9  | 36   | 37  | 11.73  | 31.41   | MAHBED |

| BHID         SAMPID         FROM         TO         %shoil         shoilgt         zone           HB-008         HB-008-10         37         38         25.56         68.37         MAHI           HB-008         HB-008-11         38         39         16.56         44.18         MAHZ           HB-008         HB-008-12         39         40         21.26         56.98         MAHZ           HB-008         HB-008-13         40         41         18.52         49.52         MAHZ           HB-008         HB-008-14         41         42         13.55         36.44         MAHZ           HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50 <t< th=""><th></th></t<> |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| HB-008         HB-008-11         38         39         16.56         44.18         MAHZ           HB-008         HB-008-12         39         40         21.26         56.98         MAHZ           HB-008         HB-008-13         40         41         18.52         49.52         MAHZ           HB-008         HB-008-14         41         42         13.55         36.44         MAHZ           HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-29         46         47                   | RED |
| HB-008         HB-008-12         39         40         21.26         56.98         MAHZ           HB-008         HB-008-13         40         41         18.52         49.52         MAHZ           HB-008         HB-008-14         41         42         13.55         36.44         MAHZ           HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48 <t< td=""><td></td></t<> |     |
| HB-008         HB-008-13         40         41         18.52         49.52         MAHZ           HB-008         HB-008-14         41         42         13.55         36.44         MAHZ           HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51                            |     |
| HB-008         HB-008-14         41         42         13.55         36.44         MAHZ           HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         5                   |     |
| HB-008         HB-008-15         42         43         20.05         53.05         MAHZ           HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-27         54         55<                   |     |
| HB-008         HB-008-16         43         44         7.92         20.9         MAHZ           HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55<                   |     |
| HB-008         HB-008-17         44         45         7.68         20.45         MAHZ           HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56<                   |     |
| HB-008         HB-008-18         45         46         7.01         18.55         MAHZ           HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-30         57         58 </td <td></td>      |     |
| HB-008         HB-008-19         46         47         17.79         47.87         MAHZ           HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-31         58         59<                   |     |
| HB-008         HB-008-20         47         48         20.51         54.86         MAHZ           HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59<                   |     |
| HB-008         HB-008-21         48         49         11.89         32.16         MAHZ           HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-33         60         61<                   |     |
| HB-008         HB-008-22         49         50         8.15         22.14         MAHZ           HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61 </td <td></td>      |     |
| HB-008         HB-008-23         50         51         5.68         15.17         MAHZ           HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62 </td <td></td>      |     |
| HB-008         HB-008-24         51         52         7.33         19.53         MAHZ           HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63 </td <td></td>      |     |
| HB-008         HB-008-25         52         53         3.42         9.05         MAHZ           HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64 </td <td></td>      |     |
| HB-008         HB-008-26         53         54         12.71         33.62         MAHZ           HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65 <td></td>            |     |
| HB-008         HB-008-27         54         55         5.08         13.6         MAHZ           HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67                        |     |
| HB-008         HB-008-28         55         56         3.63         9.64         MAHZ           HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67         5.05         13.36         MAHZ                                                                                | ĽB  |
| HB-008         HB-008-29         56         57         11.87         32.24         MAHZ           HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67         5.05         13.36         MAHZ                                                                                                                                                                                | ĽB  |
| HB-008         HB-008-30         57         58         10.33         27.71         MAHZ           HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67         5.05         13.36         MAHZ                                                                                                                                                                                                                                                                                  | ľB  |
| HB-008         HB-008-31         58         59         10.72         28.97         MAHZ           HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67         5.05         13.36         MAHZ                                                                                                                                                                                                                                                                                                                                                                                    | ľB  |
| HB-008         HB-008-32         59         60         7.91         21.28         MAHZ           HB-008         HB-008-33         60         61         3.97         10.52         MAHZ           HB-008         HB-008-34         61         62         8.27         22.31         MAHZ           HB-008         HB-008-35         62         63         3.87         10.29         MAHZ           HB-008         HB-008-36         63         64         2.9         7.68         MAHZ           HB-008         HB-008-37         64         65         3.38         8.95         MAHZ           HB-008         HB-008-39         66         67         5.05         13.36         MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ĽB  |
| HB-008       HB-008-33       60       61       3.97       10.52       MAHZ         HB-008       HB-008-34       61       62       8.27       22.31       MAHZ         HB-008       HB-008-35       62       63       3.87       10.29       MAHZ         HB-008       HB-008-36       63       64       2.9       7.68       MAHZ         HB-008       HB-008-37       64       65       3.38       8.95       MAHZ         HB-008       HB-008-39       66       67       5.05       13.36       MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ß.  |
| HB-008       HB-008-34       61       62       8.27       22.31       MAHZ         HB-008       HB-008-35       62       63       3.87       10.29       MAHZ         HB-008       HB-008-36       63       64       2.9       7.68       MAHZ         HB-008       HB-008-37       64       65       3.38       8.95       MAHZ         HB-008       HB-008-39       66       67       5.05       13.36       MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 'B  |
| HB-008       HB-008-35       62       63       3.87       10.29       MAHZ         HB-008       HB-008-36       63       64       2.9       7.68       MAHZ         HB-008       HB-008-37       64       65       3.38       8.95       MAHZ         HB-008       HB-008-39       66       67       5.05       13.36       MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 'B  |
| HB-008       HB-008-36       63       64       2.9       7.68       MAHZ         HB-008       HB-008-37       64       65       3.38       8.95       MAHZ         HB-008       HB-008-39       66       67       5.05       13.36       MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 'B  |
| HB-008       HB-008-37       64       65       3.38       8.95       MAHZ         HB-008       HB-008-39       66       67       5.05       13.36       MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 'B  |
| HB-008 HB-008-39 66 67 5.05 13.36 MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĽB  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĽB  |
| HB-008 HB-008-40 67 68 1.91 5.05 MAH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ĽB  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ĽB  |
| HB-008 HB-008-41 68 69 1.1 2.94 MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 'B  |
| HB-008 HB-008-42 69 70 7.35 19.48 MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 'B  |
| HB-008 HB-008-43 70 71 4.1 10.82 MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ľB  |
| HB-008 HB-008-44 71 72 2.21 5.91 MAHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ľB  |
| HB-008 HB-008-45 72 73 5.29 13.97 MAH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ĽB  |
| HB-008 HB-008-46 73 74 0.71 1.9 MAH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| HB-008 HB-008-47 74 75 9.35 24.89 MAH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
| HB-008 HB-008-48 75 76 1.58 4.1 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| HB-008 HB-008-49 76 77 2.07 5.46 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| HB-008 HB-008-50 77 78 1.15 3.08 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| HB-008 HB-008-51 78 79 2.33 6.15 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| HB-008 HB-008-52 79 80 1.41 3.76 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| HB-008 HB-008-53 80 82 0.99 2.63 BGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |

| BHID   | SAMPID    | FROM     | то       | %shoil     | shoilgt    | zone           |
|--------|-----------|----------|----------|------------|------------|----------------|
| HB-008 | HB-008-54 | 82       | 84       | 2.15       |            | BGR            |
| HB-008 | HB-008-55 | 84       | 86       | 0.54       |            | BGR            |
| HB-008 | HB-008-56 | 86       | 88       | 1.48       |            | BGR            |
| HB-008 | HB-008-57 | 88       | 90       | 3.13       | 8.39       | DGIN           |
| HB-008 | HB-008-58 | 90       | 92       | 2.92       | 7.85       |                |
| HB-008 | HB-008-59 | 92       | 94       | 2.31       | 6.18       |                |
| HB-008 | HB-008-60 | 94       | 96       | 2.67       | 7.12       |                |
| HB-008 | HB-008-61 | 96       | 98       | 1.8        | 4.8        |                |
| HB-008 | HB-008-62 | 98       | 100      | 2.45       | 6.57       |                |
| HB-008 | HB-008-63 | 100      | 100      | 2.43       | 6.63       |                |
| HB-008 | HB-008-64 | 100      | 102      | 1.66       | 4.41       |                |
| HB-009 | HB-009-1  | 30       | 32       | 6.7        |            | 4SEN           |
| HB-009 | HB-009-1  | 32       | 34       | 4.4        |            | 4SEN           |
| HB-009 | HB-009-3  | 34       | 36       | 5          |            | 4SEN           |
| HB-009 | HB-009-4  | 36       | 38       | 7.5        |            | 4SEN           |
| НВ-009 | HB-009-4  | 38       | 40       | 1.1        | 20.1       | 43EN           |
| НВ-009 | HB-009-6  | 40       | 40       | 1.4        | 3.8        |                |
| HB-009 | HB-009-7  | 40       | 44       | 1.4        | 3.4        |                |
|        |           | 44       | 44       | 0.6        |            |                |
| HB-009 | HB-009-8  |          | 48       |            | 1.6<br>1.6 |                |
| HB-009 | HB-009-9  | 46       | 50       | 0.6        |            | N 4 A L L 7 A  |
| HB-009 | HB-009-10 | 48<br>50 | 50       | 4.6<br>6.8 |            | MAHZA<br>MAHZA |
| HB-009 | HB-009-11 |          |          |            |            |                |
| HB-009 | HB-009-12 | 52       | 54       | 7.3        |            | MAHZA          |
| HB-009 | HB-009-13 | 54       | 56       | 10.5       |            | MAHZA          |
| HB-009 | HB-009-14 | 56<br>58 | 58       | 7.2        |            | MAHZA          |
| HB-009 | HB-009-15 |          | 60       | 8.4        |            | MAHZA          |
| HB-009 | HB-009-16 | 60       | 62       | 5.9        |            | MAHZA          |
| HB-009 | HB-009-17 | 62       | 64       | 4.7        |            | MAHZA          |
| HB-009 | HB-009-18 | 64<br>66 | 66<br>68 | 4.2<br>2.7 |            | MAHZA          |
| HB-009 | HB-009-19 |          |          |            |            | MAHZA          |
| HB-009 | HB-009-20 | 68       | 70       | 8          |            | MAHZA          |
| HB-009 | HB-009-21 | 70       | 71       | 6.2        |            | MAHZA          |
| HB-009 | HB-009-22 | 71       | 72       | 8.6        |            | MAHZA          |
| HB-009 | HB-009-23 | 72       | 73       | 10.1       |            | MAHZA          |
| HB-009 | HB-009-24 | 73       | 74       | 12.9       |            | MAHZA          |
| HB-009 | HB-009-25 | 74       | 75<br>76 | 16.8       |            | MAHZA          |
| HB-009 | HB-009-26 | 75<br>76 | 76       | 16.5       |            | MAHZA          |
| HB-009 | HB-009-27 | 76       | 77       | 19         |            | MAHBED         |
| HB-009 | HB-009-28 | 77       | 78       | 24         |            | MAHBED         |
| HB-009 | HB-009-29 | 78       | 79       | 28         |            | MAHBED         |
| HB-009 | HB-009-30 | 79       | 80       | 21.5       |            | MAHBED         |
| HB-009 | HB-009-31 | 80       | 81       | 15.5       |            | MAHZB          |
| HB-009 | HB-009-32 | 81       | 82       | 7.2        | 19         | MAHZB          |

| BHID   | SAMPID    | FROM | ТО  | %shoil | shoilgt | zone       |
|--------|-----------|------|-----|--------|---------|------------|
| HB-009 | HB-009-33 | 82   | 83  | 7.1    |         | MAHZB      |
| HB-009 | HB-009-34 | 83   | 84  | 6.2    |         | MAHZB      |
|        | HB-009-35 |      | 85  |        |         |            |
| HB-009 |           | 84   |     | 13.6   |         | MAHZB      |
| HB-009 | HB-009-36 |      | 86  | 6.6    |         | MAHZB      |
| HB-009 | HB-009-37 | 86   | 87  | 5.9    |         | MAHZB      |
| HB-009 | HB-009-38 | 87   | 88  | 14.6   |         | MAHZB      |
| HB-009 | HB-009-39 | 88   | 89  | 15.1   |         | MAHZB      |
| HB-009 | HB-009-40 | 89   | 90  | 7.4    |         | MAHZB      |
| HB-009 | HB-009-41 | 90   | 91  | 9.3    |         | MAHZB      |
| HB-009 | HB-009-42 | 91   | 92  | 6.1    |         | MAHZB      |
| HB-009 | HB-009-43 | 92   | 93  | 9.31   |         | MAHZB      |
| HB-009 | HB-009-44 | 93   | 94  | 12.39  | 32.67   | MAHZB      |
| HB-009 | HB-009-45 | 94   | 95  | 8.82   | 23.42   | MAHZB      |
| HB-009 | HB-009-46 | 95   | 96  | 3.58   | 9.51    | MAHZB      |
| HB-009 | HB-009-47 | 96   | 97  | 3.01   | 7.99    | MAHZB      |
| HB-009 | HB-009-48 | 97   | 98  | 13.41  | 35.9    | MAHZB      |
| HB-009 | HB-009-49 | 98   | 99  | 9.53   | 25.43   | MAHZB      |
| HB-009 | HB-009-50 | 99   | 100 | 8.31   | 22.33   | MAHZB      |
| HB-009 | HB-009-51 | 100  | 101 | 8.66   | 23.45   | MAHZB      |
| HB-009 | HB-009-52 | 101  | 102 | 6      | 16.02   | MAHZB      |
| HB-009 | HB-009-53 | 102  | 103 | 9.94   | 26.82   | MAHZB      |
| HB-009 | HB-009-54 | 103  | 104 | 2.69   | 7.08    | MAHZB      |
| HB-009 | HB-009-55 | 104  | 105 | 2.67   | 7.03    | MAHZB      |
| HB-009 | HB-009-56 |      | 106 | 7.35   |         | MAHZB      |
| HB-009 | HB-009-57 | 106  | 107 | 4.78   |         | MAHZB      |
| HB-009 | HB-009-58 | 107  | 108 | 1.44   |         | MAHZB      |
| HB-009 | HB-009-59 | 108  | 109 | 2.9    | 7.66    | MAHZB      |
| HB-009 | HB-009-60 | 109  | 110 | 3.65   |         | MAHZB      |
| HB-009 | HB-009-61 | 110  | 111 | 2.07   |         | MAHZB      |
| HB-009 | HB-009-62 | 111  |     | 5.17   |         | MAHZB      |
| HB-009 | HB-009-63 | 112  | 113 | 9.11   |         | MAHZB      |
| HB-009 | HB-009-64 | 113  | 114 | 7.91   |         | MAHZB      |
| HB-009 | HB-009-65 |      | 115 | 1.84   |         | MAHZB      |
| HB-009 | HB-009-66 |      | 116 | 3.14   |         | MAHZB      |
| HB-009 | HB-009-67 | 116  | 117 | 0.72   |         | MAHZB      |
| HB-009 | HB-009-68 |      | 118 | 7.06   |         | MAHZB      |
| HB-009 | HB-009-69 |      | 119 | 6.12   |         | MAHZB      |
| HB-009 | HB-009-70 |      | 120 | 0.12   |         | BGR        |
| HB-009 | HB-009-71 | 120  | 121 | 1.2    |         | BGR        |
| HB-009 | HB-009-71 | 120  | 121 | 2.17   | 5.73    |            |
| HB-009 | HB-009-72 | 121  | 123 | 1.27   |         | BGR        |
|        |           |      |     |        |         |            |
| HB-009 | HB-009-74 | 123  | 124 | 0.88   |         | BGR<br>BGR |
| HB-009 | HB-009-75 | 124  | 125 | 0.49   | 1.3     | BGR        |

| COLEURE | · · · · · · · · · · · · · · · · · · · | EDON4 | ТО     | %shoil | ماد ماد |        |
|---------|---------------------------------------|-------|--------|--------|---------|--------|
| BHID    | SAMPID                                | FROM  | TO 126 |        | shoilgt | zone   |
| HB-009  | HB-009-76                             | 125   | 126    | 0.46   |         | BGR    |
| HB-009  | HB-009-77                             | 126   | 127    | 0.65   |         | BGR    |
| HB-009  | HB-009-78                             | 127   | 128    | 0.5    |         | BGR    |
| HB-009  | HB-009-79                             | 128   | 129    | 0.92   | 2.41    | BGR    |
| HB-009  | HB-009-80                             | 129   | 130    | 2.99   | 7.96    | BGR    |
| HB-009  | HB-009-81                             | 130   | 131    | 2.47   | 6.54    | BGR    |
| HB-009  | HB-009-82                             | 131   | 132    | 3.07   | 8.26    | BGR    |
| HB-009  | HB-009-83                             | 132   | 133    | 5.05   | 13.61   | BGR    |
| HB-009  | HB-009-84                             | 133   | 134    | 3.6    | 9.57    | BGR    |
| HB-009  | HB-009-85                             | 134   | 135    | 2.24   | 5.98    | BGR    |
| HB-009  | HB-009-86                             | 135   | 136    | 0.36   | 0.96    | BGR    |
| HB-009  | HB-009-87                             | 136   | 137    | 1.77   | 4.76    | BGR    |
| HB-009  | HB-009-88                             | 137   | 138    | 1.96   | 5.24    | BGR    |
| HB-009  | HB-009-89                             | 138   | 139    | 2.72   | 7.26    | BGR    |
| HB-009  | HB-009-90                             | 139   | 140    | 1.92   | 5.14    | BGR    |
| U026    | 591397                                | 150   | 152    | 0.9    | 2.4     |        |
| U026    | 591398                                | 152   | 153.4  | 2.1    | 5.5     |        |
| U026    | 591399                                | 153.4 | 155    | 5.3    | 13.8    | MAHZA  |
| U026    | 591400                                | 155   | 156    | 7      | 18.3    | MAHZA  |
| U026    | 591401                                | 156   | 157    | 9.2    | 24.1    | MAHZA  |
| U026    | 591402                                | 157   | 158    | 6.6    | 17.4    | MAHZA  |
| U026    | 591403                                | 158   | 159    | 4.4    | 11.3    | MAHZA  |
| U026    | 591404                                | 159   | 160.2  | 6.4    | 16.6    | MAHZA  |
| U026    | 591405                                | 160.2 | 161.5  | 9.9    | 26      | MAHZA  |
| U026    | 591406                                | 161.5 | 162.5  | 11.2   | 29.6    | MAHZA  |
| U026    | 591407                                | 162.5 | 163.5  | 17.3   | 45.8    | MAHZA  |
| U026    | 591408                                | 163.5 | 164.5  | 8.6    | 22.8    | MAHZA  |
| U026    | 591409                                | 164.5 | 165.5  | 6.8    | 17.7    | MAHZA  |
| U026    | 591410                                | 165.5 | 166.5  | 4      | 10.4    | MAHZA  |
| U026    | 591411                                | 166.5 | 167.5  | 6.3    | 16.4    | MAHZA  |
| U026    | 591412                                | 167.5 | 168.5  | 6.3    | 16.4    | MAHZA  |
| U026    | 591413                                | 168.5 | 170    | 4.2    | 10.8    | MAHZA  |
| U026    | 591414                                | 170   | 170.5  | 4.2    | 11      | MAHZA  |
| U026    | 591415                                | 170.5 | 172    | 3.6    | 9.3     | MAHZA  |
| U026    | 591416                                | 172   | 173    | 3.3    | 8.7     | MAHZA  |
| U026    | 591417                                | 173   | 174    | 5.3    |         | MAHZA  |
| U026    | 591418                                | 174   | 175.4  | 14     |         | MAHZA  |
| U026    | 591419                                | 175.4 | 176.4  | 7.8    |         | MAHZA  |
| U026    | 591420                                | 176.4 | 177.5  | 6.6    |         | MAHZA  |
| U026    | 591421                                | 177.5 | 178.5  | 11.9   |         | MAHZA  |
| U026    | 591422                                | 178.5 | 179.5  | 14     |         | MAHZA  |
| U026    | 591423                                | 179.5 | 180.5  | 23.2   |         | MAHBED |
| U026    | 591424                                | 180.5 | 181.5  | 21.7   |         | MAHBED |
| 30-0    | 331,24                                | 100.5 | 101.0  | 21.7   | 57.5    |        |

| BHID | SAMPID | FROM  | то    | %shoil | shoilgt | zone   |
|------|--------|-------|-------|--------|---------|--------|
| U026 | 591425 | 181.5 | 182.5 | 30     |         | MAHBED |
| U026 | 591425 | 181.5 | 183.5 | 25     |         | MAHBED |
| U026 | 591427 | 183.5 | 184.4 | 14.6   |         | MAHBED |
| U026 | 591427 | 184.4 | 185.4 |        |         | MAHBED |
|      |        |       |       | 23.5   |         |        |
| U026 | 591429 | 185.4 | 186.4 | 8.7    |         | MAHZB  |
| U026 | 591430 | 186.4 | 187.5 | 20.2   |         | MAHZB  |
| U026 | 591431 | 187.5 | 188.5 | 6.9    |         | MAHZB  |
| U026 | 591432 | 188.5 | 189.5 | 24.3   |         | MAHZB  |
| U026 | 591433 | 189.5 | 190.8 | 18.3   |         | MAHZB  |
| U026 | 591434 | 190.8 | 192   | 7.8    |         | MAHZB  |
| U026 | 591435 | 192   | 192.8 | 19.7   |         | MAHZB  |
| U026 | 591436 | 192.8 | 194   | 6.1    |         | MAHZB  |
| U026 | 591437 | 194   | 194.9 | 5.8    |         | MAHZB  |
| U026 | 591438 | 194.9 | 196   | 18.8   |         | MAHZB  |
| U026 | 591439 | 196   | 197   | 4.3    |         | MAHZB  |
| U026 | 591440 | 197   | 198   | 3.8    |         | MAHZB  |
| U026 | 591441 | 198   | 199.2 | 6.8    |         | MAHZB  |
| U026 | 591442 | 199.2 | 200.2 | 11.2   |         | MAHZB  |
| U026 | 591443 | 200.2 | 201   | 13.7   |         | MAHZB  |
| U026 | 591444 | 201   | 202   | 9.5    |         | MAHZB  |
| U026 | 591445 | 202   | 203   | 8.2    |         | MAHZB  |
| U026 | 591446 | 203   | 204   | 11.3   |         | MAHZB  |
| U026 | 591447 | 204   | 205   | 7.3    |         | MAHZB  |
| U026 | 591448 | 205   | 206   | 3.5    | 9.2     | MAHZB  |
| U026 | 591449 | 206   | 207   | 3.3    | 8.6     | MAHZB  |
| U026 | 591450 | 207   | 208   | 5.3    | 13.9    | MAHZB  |
| U026 | 591451 | 208   | 209.2 | 8.3    | 21.4    | MAHZB  |
| U026 | 591452 | 209.2 | 210.2 | 3.5    | 9       | MAHZB  |
| U026 | 591453 | 210.2 | 211.8 | 1.8    | 4.7     | MAHZB  |
| U026 | 591454 | 211.8 | 213   | 4.5    | 11.8    | MAHZB  |
| U026 | 591455 | 213   | 214   | 3.1    | 8.1     | MAHZB  |
| U026 | 591456 | 214   | 215   | 9.9    | 25.8    | MAHZB  |
| U026 | 591457 | 215   | 216.2 | 2.3    | 6.1     | MAHZB  |
| U026 | 591458 | 216.2 | 217.2 | 8.6    | 22.5    | MAHZB  |
| U026 | 591459 | 217.2 | 218.8 | 1.4    | 3.6     | MAHZB  |
| U026 | 591460 | 218.8 | 219.8 | 4.4    | 11.4    | MAHZB  |
| U026 | 591461 | 219.8 | 221.5 | 1.1    | 2.9     |        |
| U026 | 591462 | 221.5 | 223   | 2.7    | 6.9     |        |
| U026 | 591463 | 223   | 224.9 | 2      | 5.1     |        |
| U026 | 591464 | 224.9 | 226.7 | 1.8    | 4.7     |        |
| U026 | 591465 | 226.7 | 228.4 | 1      | 2.7     |        |
| U026 | 591466 | 228.4 | 230   | 4.5    | 11.6    |        |
| U026 | 591467 | 230   | 231.7 | 0.6    | 1.5     |        |

| BHID | SAMPID | FROM  | то    | %shoil | shoilgt | zone |
|------|--------|-------|-------|--------|---------|------|
| U026 | 591468 | 231.7 | 233.1 | 2.2    | 5.6     |      |
| U026 | 591469 | 233.1 | 234   | 8.4    | 21.9    |      |
| U026 | 591470 | 234   | 235   | 2.8    | 7.4     |      |
| U026 | 591471 | 235   | 236   | 3.6    | 9.6     |      |
| U026 | 591472 | 236   | 238   | 4      | 10.6    |      |
| U026 | 591473 | 238   | 240   | 3.6    | 9.4     |      |
| U026 | 591474 | 240   | 242   | 1.8    | 4.8     |      |
| U026 | 591475 | 242   | 243.5 | 2.3    | 6.1     |      |
| U026 | 591476 | 243.5 | 244.6 | 2.8    | 7.2     |      |
| U026 | 591477 | 244.6 | 245.6 | 2.1    | 5.6     |      |
| U026 | 591478 | 245.6 | 246.7 | 2.5    | 6.5     |      |
| U026 | 591479 | 246.7 | 248   | 2.5    | 6.5     |      |
| U026 | 591480 | 248   | 250   | 1.8    | 4.7     |      |
| U026 | 591481 | 250   | 251.7 | 5.5    | 14.5    |      |
| U026 | 591482 | 251.7 | 253.6 | 5.2    | 13.6    |      |
| U026 | 591483 | 253.6 | 255.2 | 3.9    | 10.2    |      |
| U026 | 591484 | 255.2 | 256.2 | 6.2    | 16.1    |      |
| U026 | 591485 | 256.2 | 258   | 4.2    | 11      |      |
| U026 | 591486 | 258   | 260   | 1      | 2.6     |      |
| U026 | 591487 | 260   | 261.3 | 0.6    | 1.6     |      |
| U026 | 591488 | 261.3 | 263.6 | 3.5    | 9.1     |      |
| U026 | 591489 | 263.6 | 264.8 | 0.4    | 1.2     |      |
| U026 | 591490 | 264.8 | 266.1 | 2.8    | 7.3     |      |
| U026 | 591491 | 266.1 | 268   | 3      | 7.9     |      |
| U027 | 591493 | 30    | 32    | 3.8    | 9.9     |      |
| U027 | 591494 | 32    | 33.5  | 3.6    | 9.3     |      |
| U027 | 591495 | 33.5  | 35.4  | 4.7    | 12.2    |      |
| U027 | 591496 | 35.4  | 37.4  | 3.1    | 8.1     |      |
| U027 | 591497 | 37.4  | 39.2  | 5.2    | 13.4    |      |
| U027 | 591498 | 39.2  | 41    | 3.9    | 9.9     |      |
| U027 | 591499 | 41    | 43    | 3.8    | 9.8     |      |
| U027 | 591500 | 43    | 45    | 3.7    | 9.6     |      |
| U027 | 591501 | 45    | 47    | 3.4    | 8.9     |      |
| U027 | 591502 | 47    | 49    | 3.6    | 9.2     |      |
| U027 | 591503 | 49    | 51    | 1.8    | 4.6     |      |
| U027 | 591504 | 51    | 53    | 3.6    | 9.3     |      |
| U027 | 591505 | 53    | 55    | 3.4    | 8.8     |      |
| U027 | 591506 | 55    | 56    | 4.4    | 11.3    |      |
| U027 | 591507 | 56    | 58    | 5      | 12.8    |      |
| U027 | 591508 | 58    | 59.5  | 5.3    | 13.8    |      |
| U027 | 591509 | 59.5  | 61.5  | 2.8    | 7.3     |      |
| U027 | 591510 | 61.5  | 63.5  | 3.8    | 9.7     |      |
| U027 | 591511 | 63.5  | 65    | 2.4    | 6.3     |      |

| BHID | SAMPID | FROM  | то    | %shoil | shoilgt | zone  |
|------|--------|-------|-------|--------|---------|-------|
| U027 | 591512 | 65    | 66    | 2.9    | 7.6     |       |
| U027 | 591513 | 66    | 67.7  | 2.4    | 6.2     |       |
| U027 | 591514 | 67.7  | 69.5  | 4.3    | 11.2    |       |
| U027 | 591515 | 69.5  | 71.4  | 3.6    | 9.4     |       |
| U027 | 591516 | 71.4  | 72.4  | 14.6   | 37.7    | 4SEN  |
| U027 | 591517 | 72.4  | 73.7  | 4.2    |         | 4SEN  |
| U027 | 591518 | 73.7  | 75    | 4.5    |         | 4SEN  |
| U027 | 591519 | 75    | 76.3  | 5.3    |         | 4SEN  |
| U027 | 591520 | 76.3  | 77    | 15     | 38.8    | 4SEN  |
| U027 | 591521 | 77    | 78    | 5.3    | 13.8    | 4SEN  |
| U027 | 591522 | 78    | 79.3  | 5.1    |         | 4SEN  |
| U027 | 591523 | 79.3  | 80    | 14.9   | 39.1    | 4SEN  |
| U027 | 591524 | 80    | 81    | 5.6    | 14.5    | 4SEN  |
| U027 | 591525 | 81    | 82.9  | 1.8    | 4.6     | AGR   |
| U027 | 591526 | 82.9  | 84.4  | 1.2    | 3.2     | AGR   |
| U027 | 591527 | 84.4  | 86.2  | 2      | 5.1     | AGR   |
| U027 | 591528 | 86.2  | 88    | 1      | 2.6     | AGR   |
| U027 | 591529 | 88    | 89.9  | 0.8    | 2       | AGR   |
| U027 | 591530 | 89.9  | 91    | 5.2    | 13.6    | MAHZA |
| U027 | 591531 | 91    | 92    | 4.6    | 12      | MAHZA |
| U027 | 591532 | 92    | 92.8  | 14.6   | 38.2    | MAHZA |
| U027 | 591533 | 92.8  | 93.8  | 6.2    | 16.1    | MAHZA |
| U027 | 591534 | 93.8  | 94.8  | 5.1    | 13.3    | MAHZA |
| U027 | 591535 | 94.8  | 96.2  | 3.5    | 9.1     | MAHZA |
| U027 | 591536 | 96.2  | 97.2  | 6.9    | 17.8    | MAHZA |
| U027 | 591537 | 97.2  | 98.2  | 12.5   | 32.3    | MAHZA |
| U027 | 591538 | 98.2  | 99.2  | 8.9    | 23.2    | MAHZA |
| U027 | 591539 | 99.2  | 100.3 | 17     | 45.2    | MAHZA |
| U027 | 591540 | 100.3 | 101.3 | 15.7   | 41.2    | MAHZA |
| U027 | 591541 | 101.3 | 102.3 | 8.1    | 21.5    | MAHZA |
| U027 | 591542 | 102.3 | 104.3 | 5.5    | 14.2    | MAHZA |
| U027 | 591543 | 104.3 | 106   | 6.4    | 16.5    | MAHZA |
| U027 | 591544 | 106   | 108   | 4.6    |         | MAHZA |
| U027 | 591545 | 108   | 109.2 | 3.8    | 9.9     | MAHZA |
| U027 | 591546 | 109.2 | 110.2 | 3      | 7.6     | MAHZA |
| U027 | 591547 | 110.2 | 111.5 | 3.3    | 8.5     | MAHZA |
| U027 | 591548 | 111.5 | 112.5 | 4.1    | 10.8    | MAHZA |
| U027 | 591549 | 112.5 | 113.6 | 16.3   |         | MAHZA |
| U027 | 591550 | 113.6 | 114.6 | 8.6    |         | MAHZA |
| U027 | 591551 | 114.6 | 115.6 | 7.2    |         | MAHZA |
| U027 | 591552 | 115.6 | 116.6 | 13.9   |         | MAHZA |
| U027 | 591553 | 116.6 | 117.6 | 14.4   |         | MAHZA |
| U027 | 591554 | 117.6 | 118.6 | 10.9   | 28.6    | MAHZA |

| BHID | SAMPID | FROM  | то    | %shoil | shoilgt | zone   |
|------|--------|-------|-------|--------|---------|--------|
| U027 | 591555 | 118.6 | 119.6 | 18.5   |         | MAHZA  |
| U027 | 591556 | 119.6 | 120.6 | 26.4   |         | MAHBED |
| U027 | 591557 | 120.6 | 120.6 | 28.6   |         | MAHBED |
| U027 |        | 120.6 | 121.8 | 18.1   |         | MAHBED |
|      | 591558 |       |       |        |         |        |
| U027 | 591559 | 122.8 | 123.9 | 23.1   |         | MAHBED |
| U027 | 591560 | 123.9 | 124.9 | 7.8    |         | MAHZB  |
| U027 | 591561 | 124.9 | 126.3 | 6.9    |         | MAHZB  |
| U027 | 591562 | 126.3 | 127.3 | 12.4   |         | MAHZB  |
| U027 | 591563 | 127.3 | 128.5 | 5.9    |         | MAHZB  |
| U027 | 591564 | 128.5 | 129.7 | 7      |         | MAHZB  |
| U027 | 591565 | 129.7 | 131.2 | 19.3   |         | MAHZB  |
| U027 | 591566 | 131.2 | 132.8 | 7.2    |         | MAHZB  |
| U027 | 591567 | 132.8 | 133.8 | 12.5   |         | MAHZB  |
| U027 | 591568 | 133.8 | 135   | 5.5    |         | MAHZB  |
| U027 | 591569 | 135   | 136   | 5.7    |         | MAHZB  |
| U027 | 591570 | 136   | 137   | 14     |         | MAHZB  |
| U027 | 591571 | 137   | 138   | 3.7    |         | MAHZB  |
| U027 | 591572 | 138   | 139   | 4.7    |         | MAHZB  |
| U027 | 591573 | 139   | 140   | 5.2    |         | MAHZB  |
| U027 | 591574 | 140   | 141   | 12.5   |         | MAHZB  |
| U027 | 591575 | 141   | 142   | 10.3   |         | MAHZB  |
| U027 | 591576 | 142   | 143   | 8.2    | 21.5    | MAHZB  |
| U027 | 591577 | 143   | 144   | 10.7   |         | MAHZB  |
| U027 | 591578 | 144   | 145   | 5.4    | 14.2    | MAHZB  |
| U027 | 591579 | 145   | 146   | 3.4    |         | MAHZB  |
| U027 | 591580 | 146   | 147.5 | 4.1    | 10.8    | MAHZB  |
| U027 | 591581 | 147.5 | 148.8 | 7.1    | 18.4    | MAHZB  |
| U027 | 591582 | 148.8 | 150   | 2.5    | 6.4     | MAHZB  |
| U027 | 591583 | 150   | 151.2 | 2      |         | MAHZB  |
| U027 | 591584 | 151.2 | 153   | 3.4    | 8.8     | MAHZB  |
| U027 | 591585 | 153   | 154   | 11.8   | 30.7    | MAHZB  |
| U027 | 591586 | 154   | 155.6 | 2.6    | 6.9     | MAHZB  |
| U027 | 591587 | 155.6 | 156.8 | 8.7    | 22.5    | MAHZB  |
| U027 | 591588 | 156.8 | 157.8 | 1      | 2.5     | BGR    |
| U027 | 591589 | 157.8 | 158.8 | 4.3    | 11.2    | BGR    |
| U027 | 591590 | 158.8 | 160.4 | 1.7    | 4.3     | BGR    |
| U027 | 591591 | 160.4 | 162   | 1.7    | 4.4     | BGR    |
| U027 | 591592 | 162   | 163.3 | 1.9    | 5       | BGR    |
| U027 | 591593 | 163.3 | 164.6 | 6.6    | 17.5    | BGR    |
| U027 | 591594 | 164.6 | 165.7 | 0.9    | 2.4     | BGR    |
| U027 | 591595 | 165.7 | 166.6 | 6.5    | 16.9    |        |
| U027 | 591596 | 166.6 | 167.8 | 2.7    | 7.1     |        |
| U027 | 591597 | 167.8 | 168.8 | 5.7    | 15.3    |        |

| BHID         | SAMPID  | FROM  | то         | %shoil      | shoilgt | zone           |
|--------------|---------|-------|------------|-------------|---------|----------------|
| U027         | 591598  | 168.8 | 170        | 2.5         | 6.6     | 20110          |
| U027         | 591599  | 170   | 171        | 2.5         | 6.6     |                |
| U027         | 591600  | 171   | 172        | 1.5         | 4       |                |
| U027         | 591601  | 171   | 172        | 2.4         | 6.3     |                |
| U027         | 591602  | 172   | 173        | 1.4         | 3.8     |                |
| U027         | 591603  | 173   | 174        | 1.4         | 4.6     |                |
| U027         | 591604  | 174   | 175        | 0.9         | 2.3     |                |
| U027         | 591604  | 176   | 176        | 1.8         | 4.6     |                |
| U027         | 591605  | 176   | 177        | 5.8         | 15.3    |                |
| U040         | 575283  |       | 5          |             |         | MAHZA          |
| U040         | 575284  | 5     | 10         | 6.6<br>4.5  |         | MAHZA          |
| U040         | -       | 10    | 13         | 5.4         |         | MAHZA          |
| U040         | 575285  | 13    | 13.5       | 2.5         |         | MAHZA          |
|              | 575286  |       | 15.5       |             |         | MAHZA          |
| U040         | 575287  | 13.5  |            | 3.9         |         |                |
| U040<br>U040 | 575288  | 15.5  | 17<br>20.5 | 12.6<br>7.6 |         | MAHZA<br>MAHZA |
|              | 575289  | 17    |            |             |         | MAHZA          |
| U040         | 575290  | 20.5  | 26         | 18          |         |                |
| U040         | 575291  | 26    | 26.5       | 11.6        |         | MAHZA          |
| U040         | 575292  | 26.5  | 28         | 21.8        |         | MAHBED         |
| U040         | 575293  | 28    | 30.5       | 7.7         |         | MAHZB          |
| U040         | 575294  | 30.5  | 31         | 14.6        |         | MAHZB          |
| U040         | 575295  | 31    | 32         | 6.2         |         | MAHZB          |
| U040         | 575296  | 32    | 33.5       | 19.6        |         | MAHZB          |
| U040         | 575297  | 33.5  | 34.5       | 5.6         |         | MAHZB          |
| U040         | 575298  | 34.5  | 35         | 16.1        |         | MAHZB          |
| U040         | 575299  | 35    | 37         | 6.4         |         | MAHZB          |
| U040         | 575300  | 37    | 38         | 17.3        |         | MAHZB          |
| U040         | 575301  | 38    | 40.5       | 5.2         |         | MAHZB          |
| U040         | 575302  | 40.5  | 41.5       | 16.2        |         | MAHZB          |
| U040         | 575303  | 41.5  | 44         |             |         | MAHZB          |
| U040         | 575304  | 44    | 48         | 5           |         | MAHZB          |
| U040         | 575305  | 48    | 48.5       | 11.2        |         | MAHZB          |
| U040         | 575306  | 48.5  | 52         | 2.5         |         | MAHZB          |
| U040         | 575307  | 52    | 53         | 12.5        |         | MAHZB          |
| U040         | 575308  | 53    | 54         | 2.6         |         | MAHZB          |
| U040         | 575309  | 54    | 55         | 8.4         |         | MAHZB          |
| U040         | 575310  | 55    | 57.5       | 2.4         | 6.3     |                |
| U040         | 1E+10   | 57.5  | 59         |             |         |                |
| U040         | 575311  | 59    | 62.2       | 1.7         | 4.4     |                |
| U090         | 4100298 | 20.5  | 21         | 2.3         | 6.1     |                |
| U090         | 4100299 | 21    | 22         | 4.3         | 11.3    |                |
| U090         | 4100300 | 22    | 23         | 3.5         | 9.1     |                |
| U090         | 4100301 | 23    | 24         | 3           | 7.9     |                |

| BHID | SAMPID  | FROM     | то       | %shoil | shoilgt | zone  |
|------|---------|----------|----------|--------|---------|-------|
| U090 | 4100302 | 24       | 25       | 8.3    |         | 4SEN  |
| U090 | 4100303 | 25       | 26       | 6.6    |         | 4SEN  |
| U090 | 4100304 | 26       | 27       | 5.2    |         | 4SEN  |
| U090 | 4100305 | 27       | 28       | 4.8    |         | 4SEN  |
| U090 | 4100306 | 28       | 29       | 4.5    |         | 4SEN  |
| U090 | 4100307 | 29       | 30       | 10.3   |         | 4SEN  |
| U090 | 4100307 | 30       | 31       | 5.3    |         | 4SEN  |
| U090 | 4100308 | 31       | 32       | 6.3    |         | 4SEN  |
| U090 | 4100303 | 32       | 33       | 12.4   |         | 4SEN  |
| U090 | 4100310 | 33       | 34       | 3.9    |         | 4SEN  |
| U090 | 4100311 | 34       | 35       | 2.1    |         | AGR   |
| U090 | 4100312 | 35       | 36       | 2.1    |         | AGR   |
| U090 | 4100313 | 36       | 37       | 1.5    |         | AGR   |
| U090 | 4100314 | 37       | 38       | 1.1    |         | AGR   |
| U090 |         | 38       | 39       | 2.6    |         | AGR   |
| U090 | 4100316 |          |          | 1.2    |         | AGR   |
|      | 4100317 | 39       | 40<br>41 | 1.1    |         | AGR   |
| U090 | 4100318 | 40<br>41 | 41       | 0.6    |         | AGR   |
| U090 | 4100319 |          |          |        |         |       |
| U090 | 4100320 | 42       | 43       | 0.6    |         | AGR   |
| U090 | 4100321 | 43       | 44       | 1.3    |         | AGR   |
| U090 | 4100322 | 44       | 45       | 5.3    |         | MAHZA |
| U090 | 4100323 | 45       | 46       | 4.7    |         | MAHZA |
| U090 | 4100324 | 46       | 47       | 12     |         | MAHZA |
| U090 | 4100325 | 47       | 48       | 4.5    |         | MAHZA |
| U090 | 4100326 | 48       | 49       | 4.4    |         | MAHZA |
| U090 | 4100327 | 49       | 50       | 3.5    |         | MAHZA |
| U090 | 4100328 | 50       | 51       | 5.7    |         | MAHZA |
| U090 | 4100329 | 51       | 52       | 10.4   |         | MAHZA |
| U090 | 4100330 | 52       | 53       | 8.4    |         | MAHZA |
| U090 | 4100331 | 53       | 54       |        |         | MAHZA |
| U090 | 4100332 | 54       | 55       | 16.2   |         | MAHZA |
| U090 | 4100333 | 55       | 56       | 8.1    |         | MAHZA |
| U090 | 4100334 | 56       | 57       | 6.5    |         | MAHZA |
| U090 | 4100335 | 57       | 58       | 4.3    |         | MAHZA |
| U090 | 4100336 | 58       | 59       | 6.8    |         | MAHZA |
| U090 | 4100337 | 59       | 60       | 6.9    |         | MAHZA |
| U090 | 4100338 | 60       | 61       | 3.8    |         | MAHZA |
| U090 | 4100339 | 61       | 62       | 4.6    | 12.2    | MAHZA |
| U090 | 4100340 | 62       | 63       | 3.8    |         | MAHZA |
| U090 | 4100341 | 63       | 64       | 3.6    | 9.5     | MAHZA |
| U090 | 4100342 | 64       | 65       | 3.9    | 10.2    | MAHZA |
| U090 | 4100343 | 65       | 66       | 6.6    | 17.4    | MAHZA |
| U090 | 4100344 | 66       | 67       | 17.1   | 45      | MAHZA |

| BHID | SAMPID    | FROM | то  | %shoil | shoilgt | 7000   |
|------|-----------|------|-----|--------|---------|--------|
|      |           |      |     |        |         | zone   |
| U090 | 4100345   | 67   | 68  | 7.3    |         | MAHZA  |
| U090 | 4100346   | 68   | 69  | 7.2    |         | MAHZA  |
| U090 | 4100347   | 69   | 70  | 9      |         | MAHZA  |
| U090 | 4100348   | 70   | 71  | 15     |         | MAHZA  |
| U090 | 4100349   | 71   | 72  | 24.3   |         | MAHBED |
| U090 | 4100350   | 72   | 73  | 19     |         | MAHBED |
| U090 | 4100351   | 73   | 74  | 26.6   |         | MAHBED |
| U090 | 4100352   | 74   | 75  | 23.1   |         | MAHBED |
| U090 | 4100353   | 75   | 76  | 18.3   |         | MAHZB  |
| U090 | 4100354   | 76   | 77  | 17     | 45.1    | MAHZB  |
| U090 | 4100355   | 77   | 78  | 17.5   | 45.7    | MAHZB  |
| U090 | 4100356   | 78   | 79  | 14.9   | 39      | MAHZB  |
| U090 | 4100357   | 79   | 80  | 8.5    | 22.3    | MAHZB  |
| U090 | 4100358   | 80   | 81  | 5.7    | 15      | MAHZB  |
| U090 | 4100359   | 81   | 82  | 6.3    | 16.7    | MAHZB  |
| U090 | 4100360   | 82   | 83  | 17.5   | 46.7    | MAHZB  |
| U090 | 4100361   | 83   | 84  | 15.4   | 41      | MAHZB  |
| U090 | 4100362   | 84   | 85  | 6.3    | 16.9    | MAHZB  |
| U090 | 4100363   | 85   | 86  | 14.6   | 38.8    | MAHZB  |
| U090 | 4100364   | 86   | 87  | 6.7    | 17.8    | MAHZB  |
| U090 | 4100365   | 87   | 88  | 6.8    | 17.7    | MAHZB  |
| U090 | 4100366   | 88   | 89  | 18.3   | 47.9    | MAHZB  |
| U090 | 4100367   | 89   | 90  | 4.4    | 11.5    | MAHZB  |
| U090 | 4100368   | 90   | 91  | 4.2    | 11      | MAHZB  |
| U090 | 4100369   | 91   | 92  | 9.9    | 26.4    | MAHZB  |
| U090 | 4100370   | 92   | 93  | 11.6   | 31.1    | MAHZB  |
| U090 | 4100371   | 93   | 94  | 8      | 21.4    | MAHZB  |
| U090 | 4100372   | 94   | 95  | 11.9   | 31.8    | MAHZB  |
| U090 | 4100373   | 95   | 96  | 7.3    | 19.5    | MAHZB  |
| U090 | 4100374   | 96   | 97  | 4.2    | 11      | MAHZB  |
| U090 | 4100375   | 97   | 98  | 3.5    | 9.2     | MAHZB  |
| U090 | 4100376   | 98   | 99  | 4.8    | 12.6    | MAHZB  |
| U090 | 4100377   | 99   | 100 | 7.7    | 20.2    | MAHZB  |
| U090 | 4100378   | 100  | 101 | 2.7    | 7.1     | BGR    |
| U090 | 4100379   | 101  | 102 | 1.9    |         | BGR    |
| U090 | 4100380   | 102  | 103 | 1.5    |         | BGR    |
| U090 | 4100381   | 103  | 104 | 4      |         | BGR    |
| U090 | 4100382   | 104  | 105 | 3.6    |         | BGR    |
| U090 | 4100383   | 105  | 106 | 9.2    |         | BGR    |
| U090 | 4100384   | 106  | 107 | 2.2    |         | BGR    |
| U090 | 4100385   | 107  | 108 | 5.4    | 14.2    |        |
| U090 | 4100386   | 108  | 109 | 3.6    | 9.4     |        |
| U090 | 4100387   | 109  | 110 | 2.9    | 7.5     |        |
| 3030 | T -100307 | 109  | 110 | 2.5    | 7.3     |        |

| BHID | SAMPID | FROM | то  | %shoil | shoilgt | zone  |
|------|--------|------|-----|--------|---------|-------|
| U134 | 735399 | 80   | 81  | 2.8    | 7.2     |       |
| U134 | 735400 | 81   | 82  | 4.3    | 11.1    |       |
| U134 | 735401 | 82   | 83  | 2.7    | 7       |       |
| U134 | 735402 | 83   | 84  | 2.4    | 6.2     |       |
| U134 | 735403 | 84   | 85  | 2.9    | 7.5     |       |
| U134 | 735404 | 85   | 86  | 1.9    | 4.9     |       |
| U134 | 735405 | 86   | 87  | 4.7    | 12.2    |       |
| U134 | 735406 | 87   | 88  | 3.3    | 8.6     |       |
| U134 | 735407 | 88   | 89  | 3.3    | 8.6     |       |
| U134 | 735408 | 89   | 90  | 12.1   |         | 4SEN  |
| U134 | 735409 | 90   | 91  | 4.2    |         | 4SEN  |
| U134 | 735410 | 91   | 92  | 4.6    |         | 4SEN  |
| U134 | 735411 | 92   | 93  | 4.6    |         | 4SEN  |
| U134 | 735412 | 93   | 94  | 9.4    |         | 4SEN  |
| U134 | 735413 | 94   | 95  | 6.7    |         | 4SEN  |
| U134 | 735414 | 95   | 96  | 5.3    |         | 4SEN  |
| U134 | 735415 | 96   | 97  | 13.8   |         | 4SEN  |
| U134 | 735416 | 97   | 98  | 3.6    |         | AGR   |
| U134 | 735417 | 98   | 99  | 2.9    |         | AGR   |
| U134 | 735418 | 99   | 100 | 2.4    |         | AGR   |
| U134 | 735419 | 100  | 101 | 2.4    |         | AGR   |
| U134 | 735420 | 101  | 102 | 3.1    |         | AGR   |
| U134 | 735421 | 102  | 103 | 3.3    |         | AGR   |
| U134 | 735422 | 103  | 104 | 1.5    |         | AGR   |
| U134 | 735423 | 104  | 105 | 0.9    | 2.3     | AGR   |
| U134 | 735424 | 105  | 106 | 1      | 2.6     | AGR   |
| U134 | 735425 | 106  | 107 | 1.6    | 4.2     | AGR   |
| U134 | 735426 | 107  | 108 | 3.6    | 9.5     | AGR   |
| U134 | 735427 | 108  | 109 | 5.6    | 14.8    | MAHZA |
| U134 | 735428 | 109  | 110 | 6      | 15.8    | MAHZA |
| U134 | 735429 | 110  | 111 | 11.9   | 31.5    | MAHZA |
| U134 | 735430 | 111  | 112 | 5.2    | 13.6    | MAHZA |
| U134 | 735431 | 112  | 113 | 5.8    | 15.3    | MAHZA |
| U134 | 735432 | 113  | 114 | 4.4    | 11.5    | MAHZA |
| U134 | 735433 | 114  | 115 | 7.7    | 20.2    | MAHZA |
| U134 | 735434 | 115  | 116 | 12.4   | 32.5    | MAHZA |
| U134 | 735435 | 116  | 117 | 8.3    | 21.8    | MAHZA |
| U134 | 735436 | 117  | 118 | 16.3   | 43.6    | MAHZA |
| U134 | 735437 | 118  | 119 | 15.8   | 42.1    | MAHZA |
| U134 | 735438 | 119  | 120 | 16.4   | 43.3    | MAHZA |
| U134 | 735439 | 120  | 121 | 8.6    | 22.9    | MAHZA |
| U134 | 735440 | 121  | 122 | 6.3    | 16.4    | MAHZA |
| U134 | 735441 | 122  | 123 | 4.1    | 10.6    | MAHZA |

| BHID | SAMPID | FROM           | то             | %shoil      | shoilgt | zone   |
|------|--------|----------------|----------------|-------------|---------|--------|
| U134 | 735442 | 123            | 124.1          | 5.3         |         | MAHZA  |
| U134 | 735443 | 124.1          | 125.2          |             |         | MAHZA  |
| U134 | 735444 | 125.2          | 126.3          | 4.1         |         | MAHZA  |
| U134 | 735445 | 126.3          | 120.3          | 4.1         |         | MAHZA  |
| U134 | 735446 | 120.3          | 128.3          | 4.3         |         | MAHZA  |
| U134 | 735447 | 127.3          | 129.3          |             |         | MAHZA  |
| U134 | 735448 | 129.3          | 130.3          |             |         | MAHZA  |
| U134 | 735449 | 130.3          | 130.3          |             |         | MAHZA  |
| U134 | 735450 |                |                | 4.4         |         | MAHZA  |
| U134 |        | 131.3          | 132.3          |             |         | MAHZA  |
| U134 | 735451 | 132.3<br>133.3 | 133.3<br>134.4 | 5.9<br>14.2 |         | MAHZA  |
|      | 735452 |                |                |             |         |        |
| U134 | 735453 | 134.4          | 135.4          |             |         | MAHZA  |
| U134 | 735454 | 135.4          | 136.5          |             |         | MAHZA  |
| U134 | 735455 | 136.5          | 137.6          |             |         | MAHZA  |
| U134 | 735456 | 137.6<br>138.8 |                |             |         | MAHBED |
| U134 | 735457 |                | 139.8          |             |         | MAHBED |
| U134 | 735458 | 139.8          |                |             |         | MAHBED |
| U134 | 735459 | 140.8          | 141.8          |             |         | MAHBED |
| U134 | 735460 | 141.8          | 142.3          | 11.9        |         | MAHZB  |
| U134 | 735461 | 142.3          | 143.4          | 23.4        |         | MAHZB  |
| U134 | 735462 | 143.4          | 144.8          |             |         | MAHZB  |
| U134 | 735463 | 144.8          | 146            |             |         | MAHZB  |
| U134 | 735464 | 146            |                | 6.5         |         | MAHZB  |
| U134 | 735465 | 147.1          | 148.2          | 19.3        |         | MAHZB  |
| U134 | 735466 | 148.2          | 149.2          |             |         | MAHZB  |
| U134 | 735467 | 149.2          | 150.2          | 6.8         |         | MAHZB  |
| U134 | 735468 | 150.2          | 151.5          |             |         | MAHZB  |
| U134 | 735469 | 151.5          | 152.6          |             |         | MAHZB  |
| U134 | 735470 | 152.6          | 153.8          |             |         | MAHZB  |
| U134 | 735471 | 153.8          |                |             |         | MAHZB  |
| U134 | 735472 | 155.1          | 156.3          | 4.5         |         | MAHZB  |
| U134 | 735473 | 156.3          | 157.4          | 4           |         | MAHZB  |
| U134 | 735474 | 157.4          | 158.4          | 5.6         |         | MAHZB  |
| U134 | 735475 | 158.4          | 159.4          | 13.6        | 35.7    | MAHZB  |
| U134 | 1E+10  | 159.4          | 159.7          |             |         | MAHZB  |
| U134 | 735476 | 159.7          | 160.7          | 10.6        |         | MAHZB  |
| U134 | 735477 | 160.7          | 161.7          | 8.1         |         | MAHZB  |
| U134 | 735478 | 161.7          | 162.9          | 12          |         | MAHZB  |
| U134 | 735479 | 162.9          | 164.1          | 6           |         | MAHZB  |
| U134 | 735480 | 164.1          | 165.2          | 3.2         |         | MAHZB  |
| U134 | 735481 | 165.2          | 166.4          | 4.3         |         | MAHZB  |
| U134 | 735482 | 166.4          | 167.4          | 8.8         |         | MAHZB  |
| U134 | 735483 | 167.4          | 168.5          | 3.1         | 8       | MAHZB  |

| BHID | SAMPID | FROM  | ТО    | %shoil | shoilgt | zone   |
|------|--------|-------|-------|--------|---------|--------|
| U134 | 735484 | 168.5 | 169.5 | 1.7    |         | MAHZB  |
| U134 | 735485 | 169.5 | 170.5 | 1.8    |         | MAHZB  |
| U134 | 735486 | 170.5 | 171.5 | 5.1    |         | MAHZB  |
| U134 | 735487 | 171.5 | 172.5 | 3      |         | MAHZB  |
| U134 | 735488 | 172.5 | 173.5 | 3.6    |         | MAHZB  |
| U134 | 735489 | 173.5 | 174.5 | 10.3   |         | MAHZB  |
| U134 | 735490 | 174.5 | 175.8 | 2.7    |         | MAHZB  |
| U134 | 735491 | 175.8 | 177.1 | 7.4    |         | MAHZB  |
| U134 | 735492 | 177.1 | 178.3 | 1.5    | 3.9     |        |
| U134 | 735493 | 178.3 | 179.4 | 4.5    | 11.7    |        |
| U134 | 735494 | 179.4 | 180.4 | 3.6    | 9.3     |        |
| U134 | 735495 | 180.4 | 181.5 | 2.9    | 7.5     |        |
| U134 | 735496 | 181.5 | 182.6 | 1.5    | 3.9     |        |
| U134 | 735497 | 182.6 | 183.6 | 1.7    | 4.4     |        |
| U134 | 735498 | 183.6 | 184.6 | 1.9    | 4.9     |        |
| U135 | 735294 | 277.7 | 279   | 6.9    |         | MAHZA  |
| U135 | 735295 | 279   | 280   | 5.5    | 14.4    | MAHZA  |
| U135 | 735296 | 280   | 281   | 4.3    | 11.2    | MAHZA  |
| U135 | 735297 | 281   | 282   | 3.5    | 9.1     | MAHZA  |
| U135 | 735298 | 282   | 283   | 5.7    | 14.8    | MAHZA  |
| U135 | 735299 | 283   | 284   | 9.3    | 24.2    | MAHZA  |
| U135 | 735300 | 284   | 285   | 9.2    | 24.2    | MAHZA  |
| U135 | 735301 | 285   | 286   | 16.2   | 42.9    | MAHZA  |
| U135 | 735302 | 286   | 287   | 7.4    | 19.6    | MAHZA  |
| U135 | 735303 | 287   | 288   | 6.4    | 16.8    | MAHZA  |
| U135 | 735304 | 288   | 289   | 3.8    | 9.9     | MAHZA  |
| U135 | 735305 | 289   | 290   | 7      | 18.3    | MAHZA  |
| U135 | 735306 | 290   | 291   | 5.4    | 14.1    | MAHZA  |
| U135 | 735307 | 291   | 292   | 4.1    | 10.7    | MAHZA  |
| U135 | 735308 | 292   | 293   | 3.5    | 9.1     | MAHZA  |
| U135 | 735309 | 293   | 294   | 3.5    | 9.1     | MAHZA  |
| U135 | 735310 | 294   | 295.1 | 3.2    | 8.4     | MAHZA  |
| U135 | 735311 | 295.1 | 296.2 | 5.1    | 13.4    | MAHZA  |
| U135 | 735312 | 296.2 | 297.2 | 15.4   | 40.2    | MAHZA  |
| U135 | 735313 | 297.2 | 298.3 | 7.4    | 19.6    | MAHZA  |
| U135 | 735314 | 298.3 | 299.4 | 6.3    | 16.6    | MAHZA  |
| U135 | 735315 | 299.4 | 300.5 | 11.4   | 29.9    | MAHZA  |
| U135 | 735316 | 300.5 | 301.6 | 12     | 31.5    | MAHZA  |
| U135 | 735317 | 301.6 | 302.6 | 19.9   | 52.8    | MAHBED |
| U135 | 735318 | 302.6 | 303.6 | 28.1   | 74.3    | MAHBED |
| U135 | 735319 | 303.6 | 304.6 | 23.4   | 62.2    | MAHBED |
| U135 | 735320 | 304.6 | 305.1 | 12.9   | 34.3    | MAHZB  |
| U135 | 735321 | 305.1 | 306.1 | 22     | 58      | MAHZB  |

| BHID         | SAMPID           | FROM           | то             | %shoil     | shoilgt | zone           |
|--------------|------------------|----------------|----------------|------------|---------|----------------|
| U135         | 735322           | 306.1          | 307.1          | 9          |         | MAHZB          |
| U135         | 735323           | 307.1          | 308.1          | 6.7        |         | MAHZB          |
| U135         | 735324           | 308.1          | 309            | 18.2       |         | MAHZB          |
| U135         | 735325           | 309            | 310            | 5.7        |         | MAHZB          |
| U135         | 735326           | 310            | 311            | 5.9        |         | MAHZB          |
| U135         | 735327           | 311            | 312            | 9.6        |         | MAHZB          |
| U135         | 735327           | 312            | 313            | 18.4       |         | MAHZB          |
| U135         | 735328           | 313            | 314            | 11.9       |         | MAHZB          |
| U135         | 735323           | 314            | 315.1          | 11.6       |         | MAHZB          |
| U135         | 735331           | 315.1          | 316.1          | 6.3        |         | MAHZB          |
| U135         | 735331           | 316.1          | 317.2          | 5.3        |         | MAHZB          |
| U135         | 735333           | 317.2          | 318.2          | 16         |         | MAHZB          |
| U135         | 735334           | 318.2          | 319.2          | 4.2        |         | MAHZB          |
| U135         | 735334           | 319.2          | 320.3          | 5.9        |         | MAHZB          |
| U135         | 735336           | 320.3          | 320.3          | 12.9       |         | MAHZB          |
| U135         | 735337           | 320.3          | 321.3          | 12.6       |         | MAHZB          |
| U135         | 735337           | 321.3          | 323.3          | 7.5        |         | MAHZB          |
| U135         | 735339           | 323.3          | 324.3          | 11         |         | MAHZB          |
| U135         | 735340           | 323.3          | 325.4          | 5.8        |         | MAHZB          |
| U135         | 735340           | 325.4          | 326.5          | 3.7        |         | MAHZB          |
| U135         | 735341           | 326.5          | 327.5          | 5.1        |         | MAHZB          |
|              | 735342           |                |                | 6.6        |         | MAHZB          |
| U135         |                  | 327.5          | 328.6          |            |         | MAHZB          |
| U135<br>U135 | 735344<br>735345 | 328.6<br>329.7 | 329.7<br>330.7 | 2.7        |         | MAHZB          |
|              |                  |                |                |            |         |                |
| U135         | 735346           | 330.7          | 331.8          | 3.8        |         | MAHZB<br>MAHZB |
| U135         | 735347           | 331.8          | 332.8          | 9.3        |         |                |
| U135<br>U135 | 735348           | 332.8          | 333.8          | 2.6        |         | MAHZB          |
| U135         | 735349<br>735350 | 333.8<br>334.8 | 334.8<br>335.8 | 6.1<br>6.7 |         | MAHZB<br>MAHZB |
| U135         | 735350           | 335.8          |                |            |         | BGR            |
|              |                  |                | 336.8          |            |         |                |
| U135         | 735352           | 336.8          | 337.9          | 3.3        |         | BGR            |
| U135         | 735353           | 337.9          | 339            | 4.6        |         | BGR            |
| U135         | 735354<br>735355 | 339            | 340            | 3<br>1.7   |         | BGR            |
| U135         |                  | 340            | 341            |            |         | BGR            |
| U135         | 735356           | 341            | 342            | 2          |         | BGR            |
| U135         | 735357           | 342            | 343            | 1.9        |         | BGR            |
| U135         | 735358           | 343            | 344            | 1          |         | BGR            |
| U135         | 735359           | 344            | 345            | 0.8        |         | BGR            |
| U135         | 735360           | 345            | 346            | 2.1        |         | BGR            |
| U135         | 735361           | 346            | 347            | 1          |         | BGR            |
| U135         | 735362           | 347            | 348            | 0.3        |         | BGR            |
| U135         | 735363           | 348            | 348.9          | 1.4        |         | BGR            |
| U135         | 735364           | 348.9          | 350            | 0.6        | 1.6     | BGR            |

| BHID | SAMPID | FROM  | то    | %shoil | shoilgt | zone  |
|------|--------|-------|-------|--------|---------|-------|
| U135 | 735365 | 350   | 351.2 | 3.1    |         | BGR   |
| U135 | 735366 | 351.7 | 353   | 2.4    |         | BGR   |
| U135 | 735367 | 353   | 354   | 6.2    | 16.4    | Ben   |
| U135 | 735368 | 354   | 355   | 4.7    | 12.4    |       |
| U135 | 735369 | 355   | 356   | 2.3    | 6       |       |
| U135 | 735370 | 356   | 357   | 4.3    | 11.4    |       |
| U135 | 735371 | 357   | 358   | 3.6    | 9.6     |       |
| U135 | 735371 | 358   | 359   | 1.2    | 3.1     |       |
| U135 | 735372 | 359   | 360   | 3      | 7.9     |       |
| U135 | 735374 | 360   | 361   | 2.2    | 5.8     |       |
| U135 | 735375 | 361   | 362   | 2.8    | 7.4     |       |
| U135 | 735376 | 362   | 363   | 2.2    | 5.8     |       |
| U135 | 735377 | 363   | 364   | 2.4    | 6.4     |       |
| U135 | 735378 | 364   | 365   | 2.4    | 6.3     |       |
| U135 | 735379 | 365   | 366   | 1.4    | 3.6     |       |
| U135 | 735380 | 366   | 367   | 3.1    | 8.1     |       |
| U135 | 735381 | 367   | 368   | 6.6    | 17.4    |       |
| U135 | 735382 | 368   | 369   | 4.7    | 12.3    |       |
| U135 | 735383 | 369   | 370   | 2      | 5.2     |       |
| U135 | 735384 | 370   | 371   | 3.2    | 8.4     |       |
| U135 | 735385 | 371   | 371.8 | 4.4    | 11.4    |       |
| U135 | 735386 | 371.8 | 373.1 | 2.1    | 5.4     |       |
| U135 | 735387 | 373.1 | 374.4 | 1.2    | 3.1     |       |
| U135 | 735392 | 380.4 | 381.4 | 1.2    | 3.1     |       |
| U135 | 735393 | 381.4 | 382.7 | 5.5    | 14.3    |       |
| U135 | 735394 | 382.7 | 384   | 4.2    | 10.9    |       |
| U135 | 735395 | 384   | 386   | 4.4    | 11.4    |       |
| U135 | 735396 | 386   | 388   | 3.1    | 8       |       |
| U135 | 735397 | 388   | 390   | 3.3    | 8.5     |       |
| U135 | 735398 | 390   | 392   | 2.5    | 6.5     |       |
| U141 | 735594 | 59.4  | 60.3  | 6.6    | 17.2    | 4SEN  |
| U141 | 735595 | 60.3  | 61    | 2.3    | 6       | AGR   |
| U141 | 735596 | 61    | 62    | 1.7    | 4.4     | AGR   |
| U141 | 735597 | 62    | 63    | 1.3    | 3.4     | AGR   |
| U141 | 735598 | 63    | 64    | 1      | 2.6     | AGR   |
| U141 | 735599 | 64    | 65    | 2.5    | 6.4     | AGR   |
| U141 | 735600 | 65    | 66    | 1.1    | 2.9     | AGR   |
| U141 | 735601 | 66    | 67    | 1      | 2.6     | AGR   |
| U141 | 735602 | 67    | 68    | 0.6    | 1.6     | AGR   |
| U141 | 735603 | 68    | 69    | 0.7    | 1.8     | AGR   |
| U141 | 735604 | 69    | 70    | 2.7    | 7.1     | AGR   |
| U141 | 735605 | 70    | 71    | 4.5    | 11.7    | MAHZA |
| U141 | 735606 | 71    | 72    | 8.1    | 21.4    | MAHZA |

| BHID | SAMPID | FROM | то  | %shoil     | shoilgt | zone           |
|------|--------|------|-----|------------|---------|----------------|
| U141 | 735607 | 72   | 73  | 9.4        |         | MAHZA          |
| U141 | 735608 | 73   | 74  | 4.9        |         | MAHZA          |
| U141 | 735609 | 73   | 75  | 4.5        |         | MAHZA          |
| U141 | 735610 | 75   | 76  | 3.1        |         | MAHZA          |
| U141 | 735611 | 76   | 70  | 8.2        |         | MAHZA          |
| U141 | 735612 | 70   | 77  | 11.9       |         | MAHZA          |
| U141 | 735613 | 77   | 78  | 8.9        |         | MAHZA          |
| U141 | 735613 | 78   | 80  | 13.3       |         | MAHZA          |
| U141 | 735614 | 80   | 81  | 17.8       |         | MAHZA          |
| U141 | 735616 | 81   | 82  | 10.8       |         | MAHZA          |
| U141 | 735617 | 82   | 83  | 6.6        |         | MAHZA          |
| U141 | 1      | 83   | 84  | 5.5        |         | MAHZA          |
| U141 | 735618 | 84   | 85  | 3.3        |         | MAHZA          |
|      | 735619 |      |     | -          |         |                |
| U141 | 735620 | 85   | 86  | 7.9        |         | MAHZA<br>MAHZA |
| U141 | 735621 | 86   | 87  | 5.8<br>3.8 |         |                |
| U141 | 735622 | 87   | 88  |            |         | MAHZA          |
| U141 | 735623 | 88   | 89  | 4.2        |         | MAHZA          |
| U141 | 735624 | 89   | 90  | 3.3        |         | MAHZA          |
| U141 | 735625 | 90   | 91  | 3.6        |         | MAHZA          |
| U141 | 735626 | 91   | 92  | 2.8        |         | MAHZA          |
| U141 | 735627 | 92   | 93  | 7.1        |         | MAHZA          |
| U141 | 735628 | 93   | 94  | 16.6       |         | MAHZA          |
| U141 | 735629 | 94   | 95  | 7.8        |         | MAHZA          |
| U141 | 735630 | 95   | 96  | 6.6        |         | MAHZA          |
| U141 | 735631 | 96   | 97  | 10.8       |         | MAHZA          |
| U141 | 735632 | 97   | 98  | 13.9       |         | MAHZA          |
| U141 | 735633 | 98   | 99  | 23.6       |         | MAHBED         |
| U141 | 735634 | 99   | 100 | 25.1       |         | MAHBED         |
| U141 | 735635 | 100  | 101 | 30         |         | MAHBED         |
| U141 | 735636 | 101  | 102 | 25.1       |         | MAHBED         |
| U141 | 735637 | 102  | 103 | 16.3       |         | MAHBED         |
| U141 | 735638 | 103  | 104 | 21.7       |         | MAHBED         |
| U141 | 735639 | 104  | 105 | 8.8        |         | MAHZB          |
| U141 | 735640 | 105  | 106 | 6.2        |         | MAHZB          |
| U141 | 735641 | 106  | 107 | 14         |         | MAHZB          |
| U141 | 735642 | 107  | 108 | 8.2        |         | MAHZB          |
| U141 | 735643 | 108  | 109 | 6.4        |         | MAHZB          |
| U141 | 735644 | 109  | 110 | 19.1       |         | MAHZB          |
| U141 | 735645 | 110  | 111 | 18.8       |         | MAHZB          |
| U141 | 735646 | 111  | 112 | 6.9        |         | MAHZB          |
| U141 | 735647 | 112  | 113 | 7.3        |         | MAHZB          |
| U141 | 735648 | 113  | 114 | 12.1       |         | MAHZB          |
| U141 | 735649 | 114  | 115 | 6.1        | 16      | MAHZB          |

| BHID         | SAMPID             | FROM     | то         | %shoil     | shoilgt | zone           |
|--------------|--------------------|----------|------------|------------|---------|----------------|
| U141         | 735650             | 115      | 115.9      | 4.9        |         | MAHZB          |
| U141         | 1E+10              | 115.9    | 116.3      | 1.5        | 12.0    | MAHZB          |
| U141         | 735651             | 116.3    | 117        | 11         | 28.7    | MAHZB          |
| U141         | 735652             | 110.3    | 118        | 15         |         | MAHZB          |
| U141         | 735653             | 118      | 119        | 4          |         | MAHZB          |
| U141         | 735654             | 119      | 120        | 4          |         | MAHZB          |
| U141         | 735655             | 120      | 120        | 5.6        |         | MAHZB          |
| U141         | 735656             | 120      | 122        | 3.0        |         | MAHZB          |
| U141         | 735657             | 122      | 123        | 13.1       |         | MAHZB          |
| U141         | 735658             | 123      | 124        | 8.1        |         | MAHZB          |
| U141         | 735659             | 123      | 125        | 11.2       |         | MAHZB          |
| U141         | 735660             | 125      | 126        | 8.1        |         | MAHZB          |
| U141         | 735661             | 126      | 127        | 4.6        |         | MAHZB          |
| U141         | 735662             | 120      | 127        | 3.3        |         | MAHZB          |
| U141         | 735663             | 127      | 128        | 4.4        |         | MAHZB          |
| U141         | 735664             | 128      | 130        | 11         |         | MAHZB          |
| U141         |                    | 130      | 131        | 3.6        | 9.4     | IVIANZD        |
| U141         | 735665<br>735666   | 131      | 131        | 2.4        | 6.2     |                |
|              |                    |          |            |            |         |                |
| U141         | 735667             | 132      | 133        | 1.4        | 3.6     |                |
| U141<br>U141 | 735668             | 133      | 134        | 3.6        | 9.5     |                |
|              | 735669             | 134      | 135        | -          | 10.6    |                |
| U141         | 735670             | 135      | 136.3      | 2.3        | 6       | N 4 A L L 7 D  |
| U142         | 4100388            | 0        | 2          | 4.4        |         | MAHZB          |
| U142         | 4100389            |          | 4          | 16.8       |         | MAHZB          |
| U142         | 4100390            | 4        | 6<br>8     | 10.8       |         | MAHZB          |
| U142         | 4100391            | 6<br>8   |            | 11         |         | MAHZB<br>MAHZB |
| U142         | 4100392            | 10       | 10<br>12   | 5.8        |         |                |
| U142<br>U142 | 4100393            | 10       | 14         | 7.2<br>6.9 |         | MAHZB          |
| U142         | 4100394<br>4100395 | 14       |            |            |         | MAHZB<br>MAHZB |
|              | 1                  |          |            |            |         |                |
| U142         | 4100396            | 16       | 18         | 5.1        |         | MAHZB          |
| U142         | 4100397            | 18       | 20         | 2.3        |         | MAHZB          |
| U142         | 4100398<br>4100399 | 20<br>21 | 21<br>21.6 | 2.2<br>4.1 |         | MAHZB          |
| U142         |                    |          |            |            |         | MAHZB          |
| U142         | 4100400            | 21.6     | 22.1       | 1.8        |         | MAHZB          |
| U142         | 4100401            | 22.1     | 22.6       | 3.1        |         | MAHZB          |
| U142         | 4100402            | 22.6     | 23.1       | 13.5       |         | MAHZB          |
| U142         | 4100403            | 23.1     | 24         | 3.2        |         | MAHZB          |
| U142         | 4100404            | 24       | 25.1       | 4.9        |         | MAHZB          |
| U142         | 4100405            | 25.1     | 25.4       | 10.6       |         | MAHZB          |
| U142         | 4100406            | 25.4     | 26         | 1.2        | 3.1     |                |
| U142         | 4100407            | 26       | 27         | 1.5        | 3.8     |                |
| U142         | 4100408            | 27       | 27.5       | 4.7        | 12.5    |                |

| Corehole |         | 50004 | <b>TO</b> | 0/ .11 | .1 1    |      |
|----------|---------|-------|-----------|--------|---------|------|
| BHID     | SAMPID  | FROM  | ТО        | %shoil | shoilgt | zone |
| U142     | 4100409 | 27.5  | 28        | 3.7    | 9.6     |      |
| U142     | 4100410 | 28    | 29        | 4.2    | 10.8    |      |
| U142     | 4100411 | 29    | 30        | 2.5    | 6.7     |      |
| U142     | 4100412 | 30    | 30.4      | 0.6    | 1.6     |      |
| U142     | 4100413 | 30.4  | 31        | 1.6    | 4.2     |      |
| U142     | 4100414 | 31    | 32        | 1.6    | 4.3     |      |
| U142     | 4100415 | 32    | 32.5      | 1.4    | 3.7     |      |
| U142     | 4100416 | 32.5  | 32.7      | 4      | 10.6    |      |
| U142     | 4100417 | 32.7  | 33.4      | 0.5    | 1.3     |      |
| U142     | 4100418 | 33.4  | 33.8      | 3.1    | 8.1     |      |
| U142     | 4100419 | 33.8  | 34.6      | 0.4    | 1.1     |      |
| U142     | 4100420 | 34.6  | 35.5      | 0.9    | 2.4     |      |
| U142     | 4100421 | 35.5  | 36        | 2.8    | 7.4     |      |
| U142     | 4100422 | 36    | 37        | 2.6    | 7       |      |
| U142     | 4100423 | 37    | 38        | 3.9    | 10.5    |      |
| U142     | 4100424 | 38    | 38.5      | 5.1    | 13.8    |      |
| U142     | 4100425 | 38.5  | 39        | 3.9    | 10.4    |      |
| U142     | 4100426 | 39    | 40        | 2.2    | 5.9     |      |
| U142     | 4100427 | 40    | 41        | 2.5    | 6.6     |      |
| U142     | 4100428 | 41    | 42        | 1.1    | 2.9     |      |
| U142     | 4100429 | 42    | 43        | 1.9    | 5       |      |
| U142     | 4100430 | 43    | 44        | 2.2    | 5.9     |      |
| U142     | 4100431 | 44    | 45        | 1.4    | 3.8     |      |
| U142     | 4100432 | 45    | 46        | 1.7    | 4.5     |      |
| U142     | 4100433 | 46    | 47        | 1      | 2.6     |      |
| U142     | 4100434 | 47    | 48        | 2.8    | 7.4     |      |
| U142     | 4100435 | 48    | 49        | 2.8    | 7.4     |      |
| U142     | 4100436 | 49    | 50        | 0.5    | 1.3     |      |
| U142     | 4100437 | 50    | 51        | 3      | 7.8     |      |
| U142     | 4100438 | 51    | 52        | 2.8    | 7.2     |      |
| U142     | 4100439 | 52    | 53        | 6.9    | 17.9    |      |
| U142     | 4100440 | 53    | 54        | 3.8    | 10      |      |
| U142     | 4100441 | 54    | 55        | 3      | 7.9     |      |
| U142     | 4100442 | 55    | 56        | 7.3    | 19.1    |      |
| U142     | 4100443 | 56    | 57        | 8.4    | 21.9    |      |
| U142     | 4100444 | 57    | 58        | 6.5    | 17      |      |
| U142     | 4100445 | 58    | 59        | 7.9    | 20.5    |      |
| U142     | 4100446 | 59    | 60        | 6.5    | 16.8    |      |
| U142     | 4100447 | 60    | 61        | 2.3    | 6.1     |      |
| U142     | 4100448 | 61    | 62        | 3.5    | 9.1     |      |
| U142     | 4100449 | 62    | 63        | 2      | 5.1     |      |
| U142     | 4100443 | 63    | 64        | 1.5    | 3.8     |      |
| U142     | 4100450 | 64    | 65        | 2.1    | 5.4     |      |
| 0142     | 4100451 | 04    | 05        | 2.1    | 5.4     |      |

| Corehole A | ,       | FDOM  | то    | 0/ ala a:I | ah ailat |      |
|------------|---------|-------|-------|------------|----------|------|
| BHID       | SAMPID  | FROM  |       | %shoil     | shoilgt  | zone |
| U142       | 4100452 | 65    | 66    |            | 1.6      |      |
| U142       | 4100453 | 66    | 67    | 5.3        | 13.9     |      |
| U142       | 4100454 | 67    | 68    | 7.8        | 20.5     |      |
| U142       | 4100455 | 68    | 69    | 8.5        | 22.1     |      |
| U142       | 4100456 |       | 69.6  | 5.6        |          |      |
| U142       | 4100457 | 69.6  | 71    | 0.1        | 0.2      |      |
| U142       | 4100458 | 71    | 72    | 6.2        | 16.4     |      |
| U142       | 4100459 | 72    | 73    | 3.6        | 9.5      |      |
| U142       | 4100460 | 73    | 74    | 0.1        | 0.2      |      |
| U142       | 4100461 | 74    | 75    | 0          | 0        |      |
| U142       | 4100462 | 75    | 76    | 0          | 0        |      |
| U142       | 4100463 | 76    | 77    | 0          | 0        |      |
| U142       | 4100464 | 77    | 78    | 0          | 0        |      |
| U142       | 4100465 | 78    | 79.3  | 0          | 0        |      |
| U142       | 4100466 | 79.3  | 80    | 4.1        | 10.8     |      |
| U142       | 4100467 | 80    | 81    | 7.8        | 20.5     |      |
| U142       | 4100468 | 81    | 82    | 7.3        | 19.2     |      |
| U142       | 4100469 | 82    | 83    | 7.1        | 18.8     |      |
| U142       | 4100470 | 83    | 84    | 3          | 7.8      |      |
| U142       | 4100471 | 84    | 85.5  | 0          | 0        |      |
| U142       | 4100472 | 85.5  | 87    | 0          | 0        |      |
| U142       | 4100473 | 87    | 88.5  | 0          | 0        |      |
| U142       | 4100474 | 88.5  | 90    | 0          | 0        |      |
| U142       | 4100475 | 90    | 91.5  | 0          | 0        |      |
| U142       | 4100476 | 91.5  | 93    | 0          | 0        |      |
| U142       | 4100477 | 93    | 94.5  | 0          | 0        |      |
| U142       | 4100478 | 94.5  | 96    | 0          | 0        |      |
| U142       | 4100479 | 96    | 97.5  | 0          | 0        |      |
| U142       | 4100480 | 97.5  | 99    | 0          | 0        |      |
| U142       | 4100481 | 99    | 100   | 0          | 0        |      |
| U143       | 4100482 | 138.5 |       |            | 10.8     |      |
| U143       | 4100483 | 139   | 140.5 | 2.8        | 7.3      |      |
| U143       | 4100484 | 140.5 |       | 2.9        | 7.7      |      |
| U143       | 4100485 |       | 143.5 |            | 5.7      |      |
| U143       | 4100486 |       | 145   | 4.2        | 11.1     |      |
| U143       | 4100487 | 145   | 146.5 | 3.1        | 8.1      |      |
| U143       | 4100488 |       | 147.5 | 11.6       |          | 4SEN |
| U143       | 4100489 | 147.5 | 149   | 3.7        |          | 4SEN |
| U143       | 4100490 |       | 150.5 |            |          | 4SEN |
| U143       | 4100491 | 150.5 | 150.5 | 7.5        |          | 4SEN |
| U143       | 4100491 | 150.5 | 153   | 4.5        |          | 4SEN |
| U143       | 4100493 | 153   | 154   | 11         |          | 4SEN |
| U143       | 4100493 |       | 155.5 |            |          | AGR  |
| 0143       | 4100494 | 154   | 133.3 | 2.1        | 5.4      | AUN  |

| BHID | SAMPID  | FROM         | то         | %shoil | shoilgt | zone   |
|------|---------|--------------|------------|--------|---------|--------|
| U143 | 4100495 | 155.5        | 157        | 1.6    |         | AGR    |
| U143 | 4100493 |              | 158.5      | 2      |         | AGR    |
| U143 | 4100496 | 157<br>158.5 |            | 1.9    |         | AGR    |
| U143 | 4100497 |              | 160<br>161 | 1.7    |         |        |
|      |         | 160          |            |        |         | AGR    |
| U143 | 4100499 | 161          | 162.5      | 0.6    |         | AGR    |
| U143 | 4100500 | 162.5        | 164        | 1.6    |         | AGR    |
| U143 | 4100501 | 164          | 165.5      | 5      |         | AGR    |
| U143 | 4100502 | 165.5        | 167        | 8.4    |         | MAHZA  |
| U143 | 4100503 | 167          | 168.5      | 4.8    |         | MAHZA  |
| U143 | 4100504 | 168.5        | 170        | 4.1    |         | MAHZA  |
| U143 | 4100505 | 170          | 171.5      | 8.6    |         | MAHZA  |
| U143 | 4100506 | 171.5        | 173        | 9      |         | MAHZA  |
| U143 | 4100507 | 173          | 174        | 16     |         | MAHZA  |
| U143 | 4100508 | 174          | 175.5      | 7      |         | MAHZA  |
| U143 | 4100509 | 175.5        | 177        | 5.2    | 13.5    | MAHZA  |
| U143 | 4100510 | 177          | 178.5      | 7      |         | MAHZA  |
| U143 | 4100511 | 178.5        | 180        | 4.3    | 11.2    | MAHZA  |
| U143 | 4100512 | 180          | 181.5      | 4.6    | 11.9    | MAHZA  |
| U143 | 4100513 | 181.5        | 183        | 3.6    | 9.5     | MAHZA  |
| U143 | 4100514 | 183          | 184        | 3.7    | 9.6     | MAHZA  |
| U143 | 4100515 | 184          | 185        | 4.1    | 10.9    | MAHZA  |
| U143 | 4100516 | 185          | 186        | 15.6   | 40.9    | MAHZA  |
| U143 | 4100517 | 186          | 187.5      | 8.3    | 22.1    | MAHZA  |
| U143 | 4100518 | 187.5        | 189        | 7      | 18.6    | MAHZA  |
| U143 | 4100519 | 189          | 190        | 13.2   | 34.9    | MAHZA  |
| U143 | 4100520 | 190          | 191        | 12.8   | 33.4    | MAHZA  |
| U143 | 4100521 | 191          | 192        | 11.3   | 30.1    | MAHZA  |
| U143 | 4100522 | 192          | 193.5      | 21.7   | 57.7    | MAHBED |
| U143 | 4100523 | 193.5        | 195        | 3.5    | 9.1     | MAHBED |
| U143 | 4100524 | 195          | 196        | 15.4   | 50      | MAHBED |
| U143 | 4100525 | 196          | 197        | 19.2   | 50.2    | MAHBED |
| U143 | 4100526 | 197          | 198.5      | 6.9    | 17.9    | MAHZB  |
| U143 | 4100527 | 198.5        | 200        | 11.1   | 29      | MAHZB  |
| U143 | 4100528 | 200          | 201.5      | 13.2   | 35      | MAHZB  |
| U143 | 4100529 | 201.5        | 203        | 12.2   | 32.3    | MAHZB  |
| U143 | 4100530 | 203          | 204.5      | 10.7   |         | MAHZB  |
| U143 | 4100531 | 204.5        | 206        | 5.4    | 14.1    | MAHZB  |
| U143 | 4100532 | 206          | 207        | 10.5   |         | MAHZB  |
| U143 | 4100533 | 207          | 208        | 9.5    |         | MAHZB  |
| U143 | 4100534 | 208          | 209.5      | 4.1    |         | MAHZB  |
| U143 | 4100535 | 209.5        | 211        | 11.3   |         | MAHZB  |
| U143 | 4100536 | 211          | 212.5      | 8.7    |         | MAHZB  |
|      |         |              |            |        |         |        |
| U143 | 4100537 | 212.5        | 214        | 8.5    | 22.3    | MAHZB  |

| BHID | SAMPID  | FROM         | то    | %shoil | shoilgt | zone  |
|------|---------|--------------|-------|--------|---------|-------|
| U143 | 4100538 | 214          | 215.5 | 5.7    |         | MAHZB |
| U143 | 4100538 | 215.5        | 213.3 | 4.2    |         | MAHZB |
|      |         |              |       |        |         |       |
| U143 | 4100540 | 217<br>218.5 | 218.5 | 6.7    |         | MAHZB |
| U143 | 4100541 |              | 220   | 2.6    |         | MAHZB |
| U143 | 4100542 | 220          | 221.5 | 2      |         | MAHZB |
| U143 | 4100543 | 221.5        | 222.5 | 3.6    |         | MAHZB |
| U143 | 4100544 | 222.5        | 224   | 7.5    |         | MAHZB |
| U143 | 4100545 | 224          | 225.5 | 2.4    |         | MAHZB |
| U143 | 4100546 | 225.5        | 227   | 6.6    |         | MAHZB |
| U143 | 4100547 | 227          | 228   | 0.8    |         | BGR   |
| U143 | 4100548 | 228          | 229   | 3.3    |         | BGR   |
| U143 | 4100549 | 229          | 230.5 | 4.8    |         | BGR   |
| U143 | 4100550 | 230.5        | 232   | 1.5    |         | BGR   |
| U143 | 4100551 | 232          | 233.5 | 1.9    | 5       | BGR   |
| U143 | 4100552 | 233.5        | 235   | 1.6    | 4.2     | BGR   |
| U143 | 4100553 | 235          | 236   | 4.1    | 10.6    | BGR   |
| U143 | 4100554 | 236          | 237.5 | 0.8    | 2       | BGR   |
| U143 | 4100555 | 237.5        | 239   | 4.3    | 11.1    | BGR   |
| U143 | 4100556 | 239          | 240.5 | 2.7    | 7       | BGR   |
| U143 | 4100557 | 240.5        | 242   | 5.9    | 15.7    | BGR   |
| U143 | 4100558 | 242          | 243.5 | 2.4    | 6.4     | BGR   |
| U143 | 4100559 | 243.5        | 245   | 2.9    | 7.6     | BGR   |
| U143 | 4100560 | 245          | 246.5 | 1.7    | 4.4     | BGR   |
| U143 | 4100561 | 246.5        | 248   | 2.1    | 5.3     | BGR   |
| U143 | 4100562 | 248          | 249.5 | 2.8    | 7.3     | BGR   |
| U143 | 4100563 | 249.5        | 251   | 1.8    | 4.9     | BGR   |
| U143 | 4100564 | 251          | 252   | 1.8    | 4       | BGR   |
| U143 | 4100565 | 252          | 253   | 1      | 2.6     | BGR   |
| U143 | 4100566 | 253          | 254.5 | 4.3    | 11.3    | BGR   |
| U143 | 4100567 | 254.5        | 256   | 2.7    | 7.2     | BGR   |
| U143 | 4100568 | 256          | 257   | 2.1    | 5.5     | BGR   |
| U143 | 4100569 | 257          | 258.5 | 2.3    |         | BGR   |
| U143 | 4100570 | 258.5        | 260   | 5.7    | 15      |       |
| U143 | 4100571 | 260          | 261   | 6.2    | 16.2    |       |
| U143 | 4100572 | 261          | 262   | 1.7    | 4.5     |       |
| U143 | 4100573 | 262          | 263   | 2.4    | 6.3     |       |
| U143 | 4100574 | 263          | 264   | 1.3    | 3.5     |       |
| U143 | 4100575 | 264          | 265.5 | 4.6    | 11.9    |       |
| U143 | 4100576 | 265.5        | 266.5 | 4.3    | 11.3    |       |
| U143 | 4100579 | 269          | 270   | 0.9    | 2.4     |       |
| U143 | 4100575 | 270          | 271.5 | 8      | 20.9    |       |
| U143 | 4100580 | 271.5        | 271.3 | 11.8   | 30.8    |       |
| U143 | 4100581 | 271.3        | 274.5 | 6.6    | 17.3    |       |
| 0143 | 4100382 | 2/3          | 2/4.5 | 0.6    | 17.3    |       |

| BHID | SAMPID  | FROM  | то    | %shoil | shoilgt | zone   |
|------|---------|-------|-------|--------|---------|--------|
| U143 | 4100583 | 274.5 | 276   | 7      | 18.4    |        |
| U143 | 4100584 | 276   | 277.5 | 6      | 15.7    |        |
| U143 | 4100585 | 277.5 | 279   | 5.4    | 14.1    |        |
| U143 | 4100586 | 279   | 280   | 7.3    | 18.8    |        |
| U143 | 4100587 | 280   | 281   | 3.9    | 10.2    |        |
| U143 | 4100588 | 281   | 282   | 3.8    | 9.8     |        |
| U143 | 4100589 | 282   | 283.5 | 4.7    | 12.2    |        |
| U143 | 4100590 | 283.5 | 285   | 6.9    | 18.2    |        |
| U143 | 4100591 | 285   | 286.5 | 0.7    | 1.9     |        |
| U143 | 4100592 | 286.5 | 288   | 0.7    | 1.7     |        |
| U144 | 4100607 | 269.4 | 270.9 | 3.2    | 8.3     |        |
| U144 | 4100608 | 270.9 | 271.6 | 1.6    | 4.2     |        |
| U144 | 4100609 | 271.6 | 273   | 1.1    | 2.8     |        |
| U144 | 4100610 | 273   | 274.5 | 2.1    | 5.4     |        |
| U144 | 4100611 | 274.5 | 275.5 | 1.2    | 3.1     |        |
| U144 | 4100612 | 275.5 | 276.4 | 1.2    | 3.1     |        |
| U144 | 4100613 | 276.4 | 277.3 | 0.8    | 2.1     |        |
| U144 | 4100614 | 277.3 | 278.5 | 0.7    | 1.9     |        |
| U144 | 4100615 | 278.5 | 280.3 | 3      | 7.8     |        |
| U144 | 4100616 | 280.3 | 281   | 8.4    | 22.3    | MAHZA  |
| U144 | 4100617 | 281   | 282.5 | 4.9    | 12.9    | MAHZA  |
| U144 | 4100618 | 282.5 | 284   | 3.6    | 9.5     | MAHZA  |
| U144 | 4100619 | 284   | 285.5 | 9      | 23.7    | MAHZA  |
| U144 | 4100620 | 285.5 | 287.2 | 12     | 32.3    | MAHZA  |
| U144 | 4100621 | 287.2 | 287.8 | 7.6    | 19.4    | MAHZA  |
| U144 | 4100622 | 287.8 | 288.5 | 16.4   | 43.8    | MAHZA  |
| U144 | 4100623 | 288.5 | 289.5 | 7.2    | 19      | MAHZA  |
| U144 | 4100624 | 289.5 | 291.3 | 5.7    | 14.9    | MAHZA  |
| U144 | 4100625 | 291.3 | 292.1 | 4.2    | 10.5    | MAHZA  |
| U144 | 4100626 | 292.1 | 293.5 | 4.5    | 11.8    | MAHZA  |
| U144 | 4100627 | 293.5 | 295   | 4.1    | 10.8    | MAHZA  |
| U144 | 4100628 | 295   | 296   | 3.2    | 8.5     | MAHZA  |
| U144 | 4100629 | 296   | 296.7 | 2.6    | 6.9     | MAHZA  |
| U144 | 4100630 | 296.7 | 298.5 | 4.2    | 11      | MAHZA  |
| U144 | 4100631 | 298.5 | 299.5 | 16.2   | 42.6    | MAHZA  |
| U144 | 4100632 | 299.5 | 300.5 | 7.1    | 18.9    | MAHZA  |
| U144 | 4100633 | 300.5 | 302   | 8.6    | 23      | MAHZA  |
| U144 | 4100634 | 302   | 303   | 12.8   | 33.8    | MAHZA  |
| U144 | 4100635 | 303   | 304.5 | 17.4   | 46.9    | MAHZA  |
| U144 | 4100636 | 304.5 | 306   | 28.2   | 75.6    | MAHBED |
| U144 | 4100637 | 306   | 307   | 24.3   | 64.3    | MAHBED |
| U144 | 4100638 | 307   | 308.2 | 17.2   | 45.2    | MAHZB  |
| U144 | 4100639 | 308.2 | 309   | 13     | 34.9    | MAHZB  |

| BHID | SAMPID  | FROM  | то    | %shoil | shoilgt | zone  |
|------|---------|-------|-------|--------|---------|-------|
| U144 | 4100640 | 309   | 310.5 | 7.7    |         | MAHZB |
| U144 | 4100641 | 310.5 | 312   | 11.6   |         | MAHZB |
| U144 | 4100642 | 310.3 | 313.5 | 9.5    |         | MAHZB |
| U144 | 4100643 | 313.5 | 315.5 | 17.1   |         | MAHZB |
| U144 |         | 315.5 | 316.2 |        |         | MAHZB |
| -    | 4100644 |       |       | 8.3    |         |       |
| U144 | 4100645 | 316.2 | 317.1 | 12.3   |         | MAHZB |
| U144 | 4100646 | 317.1 | 318.5 | 8.6    |         | MAHZB |
| U144 | 4100647 | 318.5 | 319.5 | 5.2    |         | MAHZB |
| U144 | 4100648 | 319.5 | 321   | 14     |         | MAHZB |
| U144 | 4100649 | 321   | 322.5 | 3.5    |         | MAHZB |
| U144 | 4100650 | 322.5 | 324   | 5.6    |         | MAHZB |
| U144 | 4100651 | 324   | 325.6 | 13.3   |         | MAHZB |
| U144 | 4100652 | 325.6 | 326.2 | 11.3   |         | MAHZB |
| U144 | 4100653 | 326.2 | 327.5 | 8.4    |         | MAHZB |
| U144 | 4100654 | 327.5 | 329   | 10.8   | 28.8    | MAHZB |
| U144 | 4100655 | 329   | 330   | 4.7    | 12.4    | MAHZB |
| U144 | 4100656 | 330   | 331   | 3.8    | 10.1    | MAHZB |
| U144 | 4100657 | 331   | 332.5 | 6.4    | 16.7    | MAHZB |
| U144 | 4100658 | 332.5 | 334   | 2      | 5.3     | MAHZB |
| U144 | 4100659 | 334   | 335.5 | 2.2    | 5.8     | MAHZB |
| U144 | 4100660 | 335.5 | 337   | 7      | 18.5    | MAHZB |
| U144 | 4100661 | 337   | 337.5 | 3.9    | 10.3    |       |
| U144 | 4100662 | 337.5 | 339   | 3.7    | 9.8     |       |
| U144 | 4100663 | 339   | 340.5 | 3.9    | 10.3    |       |
| U144 | 4100664 | 340.5 | 342   | 1.5    | 4       |       |
| U144 | 4100665 | 342   | 343.5 | 4.4    | 11.4    |       |
| U144 | 4100666 | 343.5 | 345   | 2.3    | 6       |       |
| U144 | 4100667 | 345   | 346.5 | 1.5    | 3.8     |       |
| U144 | 4100668 | 346.5 | 348   | 2.1    | 5.5     |       |
| U144 | 4100669 | 348   | 348.5 | 1.7    | 4.4     |       |
| U144 | 4100670 | 348.5 | 349.4 | 1.8    | 4.8     |       |
| U144 | 4100671 | 349.4 | 351   | 1.8    | 4.8     |       |
| U144 | 4100672 | 351   | 352   | 5      | 13.3    |       |
| U144 | 4100673 | 352   | 353   | 0.5    | 1.4     |       |
| U144 | 4100674 | 353   | 354.5 | 1.1    | 2.8     |       |
| U144 | 4100675 | 354.5 | 355.6 | 1.9    | 4.9     |       |
| U144 | 4100676 | 355.6 | 356.4 | 1.2    | 3.2     |       |
| U144 | 4100677 | 356.4 | 358   | 3.5    | 9.3     |       |
| U144 | 4100678 | 358   | 359.5 | 3.6    | 9.6     |       |
| U144 | 4100679 | 359.5 | 361   | 4.9    | 12.9    |       |
| U144 | 4100680 | 361   | 362.5 | 3.4    | 8.9     |       |
| U144 | 4100680 | 362.5 | 364   | 2.3    | 6.9     |       |
| U144 | 4100681 | 364   | 365.5 | 2.3    | 5.7     |       |
| 0144 | 4100082 | 304   | 303.5 | 2.2    | 5.7     |       |

| shoilgt<br>6.2 | zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9.2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 10.4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13.1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 19.7           | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19.4           | В3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10.7           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6.8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.3            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12.9           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8.4            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7.9            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 29.3           | 4SEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 9.2<br>10.4<br>3.8<br>4.6<br>0.1<br>7.3<br>13.2<br>1.1<br>5.7<br>3<br>2.7<br>13.1<br>8.6<br>12.4<br>0.8<br>1.1<br>0.3<br>19.7<br>19.4<br>10.7<br>7<br>7.4<br>8.3<br>7.1<br>6.8<br>7.3<br>5.7<br>12.9<br>8.4<br>7.9<br>29.3<br>13.8<br>11.5<br>12.9<br>13.9<br>13.9<br>14.9<br>15.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16 |

| BHID | SAMPID  | FROM | то  | %shoil | shoilgt | zone   |
|------|---------|------|-----|--------|---------|--------|
| U153 | 4101190 | 59   | 60  | 5      |         | 4SEN   |
| U153 | 4101191 | 60   | 61  | 13.3   |         | 4SEN   |
| U153 | 4101192 | 61   | 62  | 4.5    |         | 4SEN   |
| U153 | 4101193 | 62   | 63  | 1.8    |         | AGR    |
| U153 | 4101194 | 63   | 64  | 1.5    |         | AGR    |
| U153 | 4101195 | 64   | 65  | 0.9    |         | AGR    |
| U153 | 4101196 | 65   | 66  | 2.2    |         | AGR    |
| U153 | 4101197 | 66   | 67  | 1.3    |         | AGR    |
| U153 | 4101198 | 67   | 68  | 1.3    |         | AGR    |
| U153 | 4101199 | 68   | 69  | 0.8    |         | AGR    |
| U153 | 4101200 | 69   | 70  | 0.7    |         | AGR    |
| U153 | 4101201 | 70   | 71  | 0.7    |         | AGR    |
| U153 | 4101202 | 71   | 72  | 1.9    |         | AGR    |
| U153 | 4101203 | 72   | 73  | 6.3    |         | MAHZA  |
| U153 | 4101204 | 73   | 74  | 3.8    |         | MAHZA  |
| U153 | 4101205 | 74   | 75  | 10.7   |         | MAHZA  |
| U153 | 4101206 | 75   | 76  | 5.2    |         | MAHZA  |
| U153 | 4101207 | 76   | 77  | 4.8    |         | MAHZA  |
| U153 | 4101208 | 77   | 78  | 5      |         | MAHZA  |
| U153 | 4101209 | 78   | 79  | 11.5   |         | MAHZA  |
| U153 | 4101210 | 79   | 80  | 8.1    |         | MAHZA  |
| U153 | 4101211 | 80   | 81  | 15.8   | 41.2    | MAHZA  |
| U153 | 4101212 | 81   | 82  | 13.4   | 34.8    | MAHZA  |
| U153 | 4101213 | 82   | 83  | 7.2    | 18.8    | MAHZA  |
| U153 | 4101214 | 83   | 84  | 5.9    | 15.4    | MAHZA  |
| U153 | 4101215 | 84   | 85  | 3.7    | 9.5     | MAHZA  |
| U153 | 4101216 | 85   | 86  | 7.4    | 19.3    | MAHZA  |
| U153 | 4101217 | 86   | 87  | 5.7    | 14.7    | MAHZA  |
| U153 | 4101218 | 87   | 88  | 4      | 10.4    | MAHZA  |
| U153 | 4101219 | 88   | 89  | 4.4    | 11.4    | MAHZA  |
| U153 | 4101220 | 89   | 90  | 4.3    | 11      | MAHZA  |
| U153 | 4101221 | 90   | 91  | 3.5    | 9       | MAHZA  |
| U153 | 4101222 | 91   | 92  | 2.6    | 6.7     | MAHZA  |
| U153 | 4101223 | 92   | 93  | 5.6    | 14.4    | MAHZA  |
| U153 | 4101224 | 93   | 94  | 14     | 36.2    | MAHZA  |
| U153 | 4101225 | 94   | 95  | 7.2    | 18.5    | MAHZA  |
| U153 | 4101226 | 95   | 96  | 6.5    | 16.9    | MAHZA  |
| U153 | 4101227 | 96   | 97  | 7.8    | 20      | MAHZA  |
| U153 | 4101228 | 97   | 98  | 11.6   | 30.1    | MAHZA  |
| U153 | 4101229 | 98   | 99  | 22.1   | 57.3    | MAHBED |
| U153 | 4101230 | 99   | 100 | 17.1   | 44.3    | MAHBED |
| U153 | 4101231 | 100  | 101 | 29.3   | 76.1    | MAHBED |
| U153 | 4101232 | 101  | 102 | 21.5   | 56      | MAHBED |

| BHID | SAMPID  | FROM | ТО  | %shoil | shoilgt | zone  |
|------|---------|------|-----|--------|---------|-------|
| U153 | 4101233 | 102  | 103 | 13.8   |         | MAHZB |
| U153 | 4101233 | 103  | 103 | 17.8   |         | MAHZB |
| U153 | 4101234 | 103  | 104 | 7.2    |         | MAHZB |
| U153 |         | 104  | 105 | 6.8    |         | MAHZB |
|      | 4101236 |      |     |        |         |       |
| U153 | 4101237 | 106  | 107 | 15.4   |         | MAHZB |
| U153 | 4101238 | 107  | 108 | 6.2    |         | MAHZB |
| U153 | 4101239 | 108  | 109 | 5.8    |         | MAHZB |
| U153 | 4101240 | 109  | 110 | 16.9   |         | MAHZB |
| U153 | 4101241 | 110  | 111 | 17.1   |         | MAHZB |
| U153 | 4101242 | 111  | 112 | 7.6    |         | MAHZB |
| U153 | 4101243 | 112  | 113 | 13.3   |         | MAHZB |
| U153 | 4101244 | 113  | 114 | 5.9    |         | MAHZB |
| U153 | 4101245 | 114  | 115 | 4.9    |         | MAHZB |
| U153 | 4101246 | 115  | 116 | 16.1   |         | MAHZB |
| U153 | 4101247 | 116  | 117 | 7.9    |         | MAHZB |
| U153 | 4101248 | 117  | 118 | 2.4    | 6.4     | MAHZB |
| U153 | 4101249 | 118  | 119 | 3.7    | 9.6     | MAHZB |
| U153 | 4101250 | 119  | 120 | 5.4    | 14      | MAHZB |
| U153 | 4101251 | 120  | 121 | 8.1    | 21.2    | MAHZB |
| U153 | 4101252 | 121  | 122 | 9.7    | 25.3    | MAHZB |
| U153 | 4101253 | 122  | 123 | 10.5   | 27.4    | MAHZB |
| U153 | 4101254 | 123  | 124 | 5.3    | 13.7    | MAHZB |
| U153 | 4101255 | 124  | 125 | 3.8    | 9.9     | MAHZB |
| U153 | 4101256 | 125  | 126 | 4.5    | 11.7    | MAHZB |
| U153 | 4101257 | 126  | 127 | 7.5    | 19.4    | MAHZB |
| U153 | 4101258 | 127  | 128 | 3.1    | 8       | MAHZB |
| U153 | 4101259 | 128  | 129 | 1.7    | 4.3     | MAHZB |
| U153 | 4101260 | 129  | 130 | 1.7    | 4.4     | MAHZB |
| U153 | 4101261 | 130  | 131 | 4.3    | 11.1    | MAHZB |
| U153 | 4101262 | 131  | 132 | 1.3    | 3.5     | MAHZB |
| U153 | 4101263 | 132  | 133 | 9.5    | 24.5    | MAHZB |
| U153 | 4101264 | 133  | 134 | 2.7    | 7       | MAHZB |
| U153 | 4101265 | 134  | 135 | 8      | 20.6    | MAHZB |
| U153 | 4101266 | 135  | 136 | 1.5    | 3.8     |       |
| U153 | 4101267 | 136  | 137 | 2.6    | 6.7     |       |
| U153 | 4101268 |      | 138 | 2.1    | 5.4     |       |
| U153 | 4101269 | 138  | 139 | 1.5    | 3.9     |       |
| U153 | 4101270 | 139  | 140 | 0.9    | 2.4     |       |
| U153 | 4101271 | 140  | 141 | 1.2    | 3.2     |       |
| U153 | 4101272 | 141  | 142 | 1.6    | 4.1     |       |
| U153 | 4101273 | 142  | 143 | 1.3    | 3.3     |       |
| U153 | 4101274 | 143  | 144 | 0.4    | 1       |       |
|      | 4101756 |      |     |        | 3.5     |       |
| U177 | 4101756 | 10   | 11  | 1.4    | 3.5     |       |

| BHID | SAMPID  | FROM | то | %shoil | shoilgt | zone   |
|------|---------|------|----|--------|---------|--------|
| U177 | 4101757 | 11   | 12 | 2      | 5.1     |        |
| U177 | 4101758 | 12   | 13 | 1.1    | 2.8     |        |
| U177 | 4101759 | 13   | 14 | 0.7    | 1.7     |        |
| U177 | 4101760 | 14   | 15 | 0.5    | 1.3     |        |
| U177 | 4101761 | 15   | 16 | 0.6    | 1.5     |        |
| U177 | 4101762 | 16   | 17 | 3.3    | 8.7     |        |
| U177 | 4101763 | 17   | 18 | 4.6    |         | MAHZA  |
| U177 | 4101764 | 18   | 19 | 11.2   |         | MAHZA  |
| U177 | 4101765 | 19   | 20 | 7      |         | MAHZA  |
| U177 | 4101766 | 20   | 21 | 4.4    |         | MAHZA  |
| U177 | 4101767 | 21   | 22 | 4      |         | MAHZA  |
| U177 | 4101768 | 22   | 23 | 5.9    |         | MAHZA  |
| U177 | 4101769 | 23   | 24 | 9.7    |         | MAHZA  |
| U177 | 4101770 | 24   | 25 | 6.9    |         | MAHZA  |
| U177 | 4101771 | 25   | 26 | 10.3   |         | MAHZA  |
| U177 | 4101772 | 26   | 27 | 17.3   |         | MAHZA  |
| U177 | 4101773 | 27   | 28 | 14.2   |         | MAHZA  |
| U177 | 4101774 | 28   | 29 | 6.9    |         | MAHZA  |
| U177 | 4101775 | 29   | 30 | 5.8    |         | MAHZA  |
| U177 | 4101776 | 30   | 31 | 3.8    |         | MAHZA  |
| U177 | 4101777 | 31   | 32 | 7.1    |         | MAHZA  |
| U177 | 4101778 | 32   | 33 | 6.2    | 16.4    | MAHZA  |
| U177 | 4101779 | 33   | 34 | 3.6    | 9.5     | MAHZA  |
| U177 | 4101780 | 34   | 35 | 4.3    |         | MAHZA  |
| U177 | 4101781 | 35   | 36 | 2.7    | 7.2     | MAHZA  |
| U177 | 4101782 | 36   | 37 | 3.6    | 9.6     | MAHZA  |
| U177 | 4101783 | 37   | 38 | 2.9    | 7.8     | MAHZA  |
| U177 | 4101784 | 38   | 39 | 4.3    | 11.4    | MAHZA  |
| U177 | 4101785 | 39   | 40 | 4.2    | 11.2    | MAHZA  |
| U177 | 4101786 | 40   | 41 | 10.4   | 27.2    | MAHZA  |
| U177 | 4101787 | 41   | 42 | 12.6   | 33      | MAHZA  |
| U177 | 4101788 | 42   | 43 | 7.7    | 20.6    | MAHZA  |
| U177 | 4101789 | 43   | 44 | 9      | 23.9    | MAHZA  |
| U177 | 4101790 | 44   | 45 | 14.5   | 38.1    | MAHZA  |
| U177 | 4101791 | 45   | 46 | 12.7   | 33.6    | MAHZA  |
| U177 | 4101792 | 46   | 47 | 18.4   | 49      | MAHZA  |
| U177 | 4101793 | 47   | 48 | 17.8   | 47.1    | MAHZA  |
| U177 | 4101794 | 48   | 49 | 23.1   | 61.3    | MAHBED |
| U177 | 4101795 | 49   | 50 | 27.3   | 72.9    | MAHBED |
| U177 | 4101796 | 50   | 51 | 19.4   | 51.3    | MAHBED |
| U177 | 4101797 | 51   | 52 | 7.7    | 20.2    | MAHZB  |
| U177 | 4101798 | 52   | 53 | 6.8    | 17.8    | MAHZB  |
| U177 | 4101799 | 53   | 54 | 14.3   | 37.1    | MAHZB  |

| BHID | SAMPID  | FROM | то | %shoil | shoilgt | zone  |
|------|---------|------|----|--------|---------|-------|
| U177 | 4101800 | 54   | 55 | 5.5    |         | MAHZB |
| U177 | 4101801 | 55   |    | 12.3   |         | MAHZB |
| U177 | 4101801 | 56   |    | 18.5   |         | MAHZB |
| U177 | 4101802 | 57   | 58 | 10.8   |         | MAHZB |
| U177 | 4101803 |      | 59 | 13.6   |         | MAHZB |
|      | 1       |      |    |        |         |       |
| U177 | 4101805 | 59   | 60 | 7.2    |         | MAHZB |
| U177 | 4101806 |      | 61 | 4.6    |         | MAHZB |
| U177 | 4101807 | 61   | 62 | 6      |         | MAHZB |
| U177 | 4101808 |      | 63 | 16.1   |         | MAHZB |
| U177 | 4101809 | 63   | 64 | 4.9    |         | MAHZB |
| U177 | 4101810 | 64   | 65 | 3.4    |         | MAHZB |
| U177 | 4101811 | 65   | 66 | 6.2    |         | MAHZB |
| U177 | 4101812 | 66   |    | 14     |         | MAHZB |
| U177 | 4101813 | 67   | 68 | 11.1   |         | MAHZB |
| U177 | 4101814 | 68   | 69 | 8      |         | MAHZB |
| U177 | 4101815 | 69   | 70 | 10.5   |         | MAHZB |
| U177 | 4101816 | 70   | 71 | 5.9    |         | MAHZB |
| U177 | 4101817 | 71   | 72 | 3.6    | 9.5     | MAHZB |
| U177 | 4101818 | 72   | 73 | 3.7    | 9.8     | MAHZB |
| U177 | 4101819 | 73   | 74 | 5.7    | 14.9    | MAHZB |
| U177 | 4101820 | 74   | 75 | 6.7    | 17.4    | MAHZB |
| U177 | 4101821 | 75   | 76 | 2.9    | 7.5     | MAHZB |
| U177 | 4101822 | 76   | 77 | 1.4    | 3.6     | MAHZB |
| U177 | 4101823 | 77   | 78 | 2.9    | 7.6     | MAHZB |
| U177 | 4101824 | 78   | 79 | 4.2    | 11.1    | MAHZB |
| U177 | 4101825 | 79   | 80 | 3.6    | 9.4     | MAHZB |
| U177 | 4101826 | 80   | 81 | 10     | 26.2    | MAHZB |
| U177 | 4101827 | 81   | 82 | 2.5    | 6.7     | MAHZB |
| U177 | 4101828 | 82   | 83 | 5.1    | 13.5    | MAHZB |
| U177 | 4101829 | 83   | 84 | 6.4    | 16.8    | MAHZB |
| U177 | 4101830 | 84   | 85 | 1.8    | 4.6     |       |
| U177 | 4101831 | 85   | 86 | 4.2    | 10.9    |       |
| U177 | 4101832 | 86   | 87 | 2      | 5.3     |       |
| U177 | 4101833 | 87   | 88 | 3      | 7.9     |       |
| U177 | 4101834 | 88   |    | 1.6    | 4.3     |       |
| U177 | 4101835 |      | 90 | 2.1    | 5.5     |       |
| U177 | 4101836 |      |    | 6.1    | 16      |       |
| U177 | 4101837 | 91   | 92 | 1.2    | 3.2     |       |
| U177 | 4101838 |      | 93 | 1.3    | 3.4     |       |
| U177 | 4101839 | 93   | 94 | 3.8    | 9.9     |       |
| U177 | 4101840 | 94   | 95 | 2.5    | 6.7     |       |
| U177 | 4101841 | 95   |    | 6.1    | 16.3    |       |
| U177 | 4101842 | 96   |    | 2.5    | 6.6     |       |
| 01// | 4101842 | 96   | 97 | 2.5    | 0.6     |       |

| BHID | SAMPID  | FROM | то  | %shoil      | shoilgt | zone   |
|------|---------|------|-----|-------------|---------|--------|
| U177 | 4101843 | 97   | 98  | 3.3         | 8.6     |        |
| U177 | 4101844 | 98   | 99  | 0.9         | 2.4     |        |
| U177 | 4101845 | 99   | 100 | <del></del> |         |        |
| U178 | 4101846 | 30   | 31  | 1.8         | 4.7     |        |
| U178 | 4101847 | 31   | 32  | 5.3         |         | MAHZA  |
| U178 | 4101848 | 32   | 33  | 4.9         |         | MAHZA  |
| U178 | 4101849 | 33   | 34  | 12.9        |         | MAHZA  |
| U178 | 4101850 | 34   | 35  | 5.4         |         | MAHZA  |
| U178 | 4101851 | 35   | 36  | 4.8         |         | MAHZA  |
| U178 | 4101852 | 36   | 37  | 3.7         |         | MAHZA  |
| U178 | 4101853 | 37   | 38  | 6.2         |         | MAHZA  |
| U178 | 4101854 | 38   | 39  | 10          |         | MAHZA  |
| U178 | 4101855 | 39   | 40  | 10.7        |         | MAHZA  |
| U178 | 4101856 | 40   | 41  | 9.2         |         | MAHZA  |
| U178 | 4101857 | 41   | 42  | 17.3        |         | MAHZA  |
| U178 | 4101858 | 42   | 43  | 16          |         | MAHZA  |
| U178 | 4101859 | 43   | 44  | 8.1         |         | MAHZA  |
| U178 | 4101860 | 44   | 45  | 6.6         |         | MAHZA  |
| U178 | 4101861 | 45   | 46  | 4.3         |         | MAHZA  |
| U178 | 4101862 | 46   | 47  | 5.2         |         | MAHZA  |
| U178 | 4101863 | 47   | 48  | 8.3         |         | MAHZA  |
| U178 | 4101864 | 48   | 49  | 4.7         |         | MAHZA  |
| U178 | 4101865 | 49   | 50  | 4.6         |         | MAHZA  |
| U178 | 4101866 | 50   | 51  | 2.9         |         | MAHZA  |
| U178 | 4101867 | 51   | 52  | 3           |         | MAHZA  |
| U178 | 4101868 | 52   | 53  | 3           |         | MAHZA  |
| U178 | 4101869 | 53   | 54  | 6.7         |         | MAHZA  |
| U178 | 4101870 | 54   | 55  | 15.3        | 40.3    | MAHZA  |
| U178 | 4101871 | 55   | 56  | 7.9         | 21      | MAHZA  |
| U178 | 4101872 | 56   |     | 8.9         | 23.6    | MAHZA  |
| U178 | 4101873 | 57   | 58  | 12.5        | 32.8    | MAHZA  |
| U178 | 4101874 | 58   | 59  | 15.7        | 41.7    | MAHZA  |
| U178 | 4101875 | 59   | 60  | 22.4        | 59.7    | MAHBED |
| U178 | 4101876 | 60   | 61  | 25.6        | 67.9    | MAHBED |
| U178 | 4101877 | 61   | 62  | 25.4        |         | MAHBED |
| U178 | 4101878 | 62   | 63  | 17.6        | 47      | MAHZB  |
| U178 | 4101879 | 63   | 64  | 17.6        | 46.2    | MAHZB  |
| U178 | 4101880 | 64   | 65  | 6.6         | 17.2    | MAHZB  |
| U178 | 4101881 | 65   | 66  | 11.2        | 29.4    | MAHZB  |
| U178 | 4101882 | 66   | 67  | 8.5         | 22.4    | MAHZB  |
| U178 | 4101883 | 67   | 68  | 10.1        | 26.7    | MAHZB  |
| U178 | 4101884 | 68   | 69  | 19.1        | 50.6    | MAHZB  |
| U178 | 4101885 | 69   | 70  | 9.1         | 24.3    | MAHZB  |

| BHID | SAMPID  | FROM | ТО  | %shoil | shoilgt | zone  |
|------|---------|------|-----|--------|---------|-------|
| U178 | 4101886 | 70   | 71  | 12     |         | MAHZB |
| U178 | 4101887 | 71   | 72  | 5.5    |         | MAHZB |
| U178 | 4101888 | 72   | 73  | 5.9    |         | MAHZB |
| U178 | 4101889 | 72   | 73  | 13.9   |         | MAHZB |
| U178 | 4101889 | 73   | 75  | 5.5    |         | MAHZB |
|      |         |      |     |        |         |       |
| U178 | 4101891 | 75   | 76  | 3.4    |         | MAHZB |
| U178 | 4101892 | 76   | 77  | 4      |         | MAHZB |
| U178 | 4101893 | 77   | 78  | 5.4    |         | MAHZB |
| U178 | 4101894 | 78   | 79  | 8      |         | MAHZB |
| U178 | 4101895 | 79   | 80  | 6.4    |         | MAHZB |
| U178 | 4101896 | 80   | 81  | 8.3    |         | MAHZB |
| U178 | 4101897 | 81   | 82  | 10     |         | MAHZB |
| U178 | 4101898 | 82   | 83  | 5.4    |         | MAHZB |
| U178 | 4101899 | 83   | 84  | 3.5    |         | MAHZB |
| U178 | 4101900 | 84   | 85  | 4.1    | 10.6    | MAHZB |
| U178 | 4101901 | 85   | 86  | 8.7    | 22.6    | MAHZB |
| U178 | 4101902 | 86   | 87  | 3.5    | 9.3     | MAHZB |
| U178 | 4101903 | 87   | 88  | 2.4    | 6.2     | MAHZB |
| U178 | 4101904 | 88   | 89  | 1.6    | 4.2     | MAHZB |
| U178 | 4101905 | 89   | 90  | 3.2    | 8.5     | MAHZB |
| U178 | 4101906 | 90   | 91  | 2.8    | 7.4     | MAHZB |
| U178 | 4101907 | 91   | 92  | 8.1    | 21.2    | MAHZB |
| U178 | 4101908 | 92   | 93  | 6.6    | 17.3    | MAHZB |
| U178 | 4101909 | 93   | 94  | 2.4    | 6.4     | MAHZB |
| U178 | 4101910 | 94   | 95  | 9.1    | 23.7    | MAHZB |
| U178 | 4101911 | 95   | 96  | 1.3    | 3.4     |       |
| U178 | 4101912 | 96   | 97  | 3.8    | 9.9     |       |
| U178 | 4101913 | 97   | 98  | 0.6    | 1.5     |       |
| U178 | 4101914 | 98   | 99  | 2.1    | 5.6     |       |
| U178 | 4101915 | 99   | 100 | 1.5    | 4       |       |
| U178 | 4101916 | 100  | 101 | 2.4    | 6.2     |       |
| U178 | 4101917 | 101  | 102 | 0.8    | 2       |       |
| U178 | 4101918 |      | 103 | 4.6    | 12.1    |       |
| U178 | 4101919 | 103  | 104 | 2.6    | 6.9     |       |
| U178 | 4101920 | 104  | 105 | 6.8    | 18.2    |       |
| U178 | 4101921 | 105  | 106 | 3      | 7.9     |       |
| U178 | 4101922 | 106  | 107 | 2.1    | 5.5     |       |
| U178 | 4101923 | 107  | 108 | 1.4    | 3.6     |       |
| U178 | 4101924 | 108  | 109 | 2.2    | 5.7     |       |
| U178 | 4101925 | 109  | 110 | 1.5    | 3.9     |       |
| U178 | 4101926 |      | 111 | 1.2    | 3.2     |       |
| U178 | 4101927 | 111  | 112 | 2.2    | 5.8     |       |
| U178 | 4101927 |      | 113 | 4.8    | 12.6    |       |
| 01/0 | 4101928 | 112  | 113 | 4.8    | 12.6    |       |

| BHID | SAMPID  | FROM | ТО  | %shoil | shoilgt | zone   |
|------|---------|------|-----|--------|---------|--------|
| U178 | 4101929 | 113  | 114 | 3.2    | 8.6     |        |
| U178 | 4101930 | 114  | 115 | 0.4    | 0.9     |        |
| U178 | 4101931 | 115  | 116 | 0.9    | 2.2     |        |
| U178 | 4101932 | 116  | 117 | 0.7    | 1.9     |        |
| U178 | 4101933 | 117  | 118 | 0.8    | 2.2     |        |
| U178 | 4101934 | 118  | 119 | 8      | 21      |        |
| U178 | 4101935 | 119  | 120 | 8.3    | 21.6    |        |
| U178 | 4101936 | 120  | 121 | 2.3    | 6       |        |
| U178 | 4101937 | 121  | 122 | 1.5    | 3.8     |        |
| U178 | 4101938 | 122  | 123 | 0      | 0       |        |
| U178 | 4101939 | 123  | 124 | 0      | 0       |        |
| U178 | 4101940 | 124  | 125 | 3.3    | 8.7     |        |
| U178 | 4101941 | 125  | 126 | 0.8    | 2.2     |        |
| U178 | 4101942 | 126  | 127 | 4      | 10.4    |        |
| U178 | 4101943 | 127  | 128 | 1.1    | 2.8     |        |
| U179 | 4101944 | 20   | 21  | 3.4    |         | MAHZA  |
| U179 | 4101945 | 21   | 22  | 4      |         | MAHZA  |
| U179 | 4101946 | 22   | 23  | 7.6    |         | MAHZA  |
| U179 | 4101947 | 23   | 24  | 16.1   |         | MAHZA  |
| U179 | 4101948 | 24   | 25  | 7.4    |         | MAHZA  |
| U179 | 4101949 | 25   | 26  | 7.8    |         | MAHZA  |
| U179 | 4101950 | 26   | 27  | 11.8   |         | MAHZA  |
| U179 | 4101951 | 27   | 28  | 13.9   |         | MAHZA  |
| U179 | 4101952 | 28   | 29  | 27.9   |         | MAHBED |
| U179 | 4101953 | 29   | 30  | 23.3   |         | MAHBED |
| U179 | 4101954 | 30   | 31  | 16.1   |         | MAHZB  |
| U179 | 4101955 | 31   | 32  | 12.7   | 33.6    | MAHZB  |
| U179 | 4101956 | 32   | 33  | 9.4    |         | MAHZB  |
| U179 | 4101957 | 33   | 34  | 7.5    | 19.6    | MAHZB  |
| U179 | 4101958 | 34   | 35  |        |         | MAHZB  |
| U179 | 4101959 | 35   | 36  | 12     | 31.5    | MAHZB  |
| U179 | 4101960 | 36   | 37  | 15.5   | 41.2    | MAHZB  |
| U179 | 4101961 | 37   | 38  | 17.9   | 47.2    | MAHZB  |
| U179 | 4101962 | 38   | 39  | 18.2   | 48.3    | MAHZB  |
| U179 | 4101963 | 39   | 40  | 22.2   | 58.9    | MAHZB  |
| U179 | 4101964 | 40   | 41  | 10.4   |         | MAHZB  |
| U179 | 4101965 | 41   | 42  | 8.2    | 21.7    | MAHZB  |
| U179 | 4101966 | 42   | 43  | 5.2    | 13.8    | MAHZB  |
| U179 | 4101967 | 43   | 44  | 14.5   |         | MAHZB  |
| U179 | 4101968 | 44   | 45  | 7.5    | 19.6    | MAHZB  |
| U179 | 4101969 | 45   | 46  | 3.2    | 8.3     | MAHZB  |
| U179 | 4101970 | 46   | 47  | 3.8    | 10      | MAHZB  |
| U179 | 4101971 | 47   | 48  | 8.8    | 23.2    | MAHZB  |

| Corehole A |         |      |    | a      |         | <u> </u> |
|------------|---------|------|----|--------|---------|----------|
| BHID       | SAMPID  | FROM | ТО | %shoil | shoilgt | zone     |
| U179       | 4101972 | 48   | 49 | 7.8    |         | MAHZB    |
| U179       | 4101973 | 49   | 50 | 8.2    |         | MAHZB    |
| U179       | 4101974 | 50   | 51 | 8.1    |         | MAHZB    |
| U179       | 4101975 | 51   | 52 | 9.6    |         | MAHZB    |
| U179       | 4101976 | 52   | 53 | 5      |         | MAHZB    |
| U179       | 4101977 | 53   | 54 | 3.7    | 9.6     | MAHZB    |
| U179       | 4101978 | 54   | 55 | 4.1    | 10.7    | MAHZB    |
| U179       | 4101979 | 55   | 56 | 8.9    | 23      | MAHZB    |
| U179       | 4101980 | 56   | 57 | 3.3    | 8.5     | MAHZB    |
| U179       | 4101981 | 57   | 58 | 1.9    | 4.9     | MAHZB    |
| U179       | 4101982 | 58   | 59 | 2      | 5.1     | MAHZB    |
| U179       | 4101983 | 59   | 60 | 4.3    | 11.4    | MAHZB    |
| U179       | 4101984 | 60   | 61 | 2.1    | 5.4     | MAHZB    |
| U179       | 4101985 | 61   | 62 | 11.3   | 29.4    | MAHZB    |
| U179       | 4101986 | 62   | 63 | 2.9    | 7.6     | MAHZB    |
| U179       | 4101987 | 63   | 64 | 4      | 10.5    | MAHZB    |
| U179       | 4101988 | 64   | 65 | 6.4    | 16.8    | MAHZB    |
| U179       | 4101989 | 65   | 66 | 1.4    | 3.7     |          |
| U179       | 4101990 | 66   | 67 | 4.3    | 11.2    |          |
| U179       | 4101991 | 67   | 68 | 3.8    | 9.9     |          |
| U179       | 4101992 | 68   | 69 | 0.9    | 2.4     |          |
| U179       | 4101993 | 69   | 70 | 1.8    | 4.6     |          |
| U179       | 4101994 | 70   | 71 | 1.1    | 3       |          |
| U179       | 4101995 | 71   | 72 | 0.6    | 1.6     |          |
| U179       | 4101996 | 72   | 73 | 0.8    | 2       |          |
| U179       | 4101997 | 73   | 74 | 4.3    | 11.3    |          |
| U179       | 4101998 | 74   | 75 | 2.6    | 6.9     |          |
| U179       | 4101999 | 75   | 76 | 5.2    | 14      |          |
| U179       | 4102000 | 76   | 77 | 3.8    | 10.1    |          |
| U179       | 4102001 | 77   | 78 | 3.6    | 9.5     |          |
| U179       | 4102002 | 78   | 79 | 1.1    | 2.8     |          |
| U179       | 4102003 | 79   | 80 | 1.7    | 4.3     |          |
| U179       | 4102004 | 80   | 81 | 2.2    | 5.9     |          |
| U179       | 4102005 | 81   | 82 | 1.4    | 3.8     |          |
| U179       | 4102006 | 82   | 83 | 1.9    | 4.9     |          |
| U179       | 4102007 | 83   | 84 | 0.6    | 1.4     |          |
| U179       | 4102008 | 84   | 85 | 1.9    | 4.8     |          |
| U179       | 4102009 | 85   | 86 | 5.9    | 15.8    |          |
| U179       | 4102010 | 86   | 87 | 3.8    | 9.9     |          |
| U179       | 4102011 | 87   | 88 | 1.4    | 3.6     |          |
| U179       | 4102012 | 88   | 89 | 1.1    | 2.7     |          |
| U179       | 4102013 | 89   | 90 | 1      | 2.5     |          |
| U179       | 4102014 | 90   | 91 | 7.3    | 18.8    |          |
| O 1 / J    | 7102014 | 50   | 71 | 7.5    | 10.0    |          |

| BHID | SAMPID  | FROM     | то    | %shoil | shoilgt | zone   |
|------|---------|----------|-------|--------|---------|--------|
| U179 | 4102015 | 91       | 92    | 8.4    | 21.9    | 20110  |
| U179 | 4102015 | 92       | 93    | 5.9    | 15.3    |        |
| U179 | 4102010 | 93       | 94    | 3.3    | 8.4     |        |
| U179 | 4102017 | 94       | 95    | 5.1    | 13.4    |        |
| U179 | 4102018 | 95       | 96    | 4.7    | 12.2    |        |
|      |         |          | 97    |        |         |        |
| U179 | 4102020 | 96<br>97 |       | 4.1    | 10.6    |        |
| U179 | 4102021 |          | 98    | 3.9    | 10.2    |        |
| U179 | 4102022 | 98       | 99    | 0      | 0       |        |
| U179 | 4102023 | 99       | 99.8  |        | 0       |        |
| U457 | 7312884 | 0        | 10    | 4.4    | 11.4    |        |
| U457 | 7312885 | 10       | 15    | 2.8    | 7.2     |        |
| U457 | 7312886 | 15       | 20    | 2.2    | 5.7     |        |
| U457 | 7312887 | 20       | 25    | 3.9    | 9.8     |        |
| U457 | 7312888 | 25       | 30    | 3.9    | 10.1    |        |
| U457 | 7312889 | 30       | 35    | 4.4    | 11.5    |        |
| U457 | 7312890 | 35       | 40    | 3.2    | 8.3     |        |
| U457 | 7312891 | 40       | 45    | 2.9    | 7.4     |        |
| U457 | 7312892 | 45       | 50    | 4.5    | 11.6    |        |
| U457 | 7312893 | 50       | 55    | 3.5    | 9.1     |        |
| U457 | 7312894 | 55       | 60    | 3.2    | 8.3     |        |
| U457 | 7312895 | 60       | 65    | 4.3    | 11.1    |        |
| U457 | 7312896 | 65       | 70    | 3.6    | 9.4     |        |
| U457 | 7312897 | 70       | 75    | 4      | 10.4    |        |
| U457 | 7312898 | 75       | 80    | 2.9    | 7.4     |        |
| U457 | 7312899 | 80       | 85    | 2      | 5.3     |        |
| U457 | 7312900 | 85       | 90    | 4.7    | 12.2    |        |
| U457 | 7312901 | 90       | 95    | 1.6    | 4.3     |        |
| U457 | 7312902 | 95       | 100   | 4.9    | 12.7    |        |
| U457 | 7312903 | 100      | 105   | 8.6    |         | 4SEN   |
| U457 | 7312904 | 105      | 110   |        |         | AGR    |
| U457 | 7312905 | 110      | 115   | 2.3    |         | AGR    |
| U457 | 7312906 | 115      | 120   | 5.8    |         | MAHZA  |
| U457 | 7312907 | 120      | 125   | 10.4   |         | MAHZA  |
| U457 | 7312908 | 125      | 130   | 5.3    |         | MAHZA  |
| U457 | 7312909 | 130      | 135   | 7.4    |         | MAHZA  |
| U457 | 7312910 | 135      | 140   | 11.9   | 31.3    | MAHZA  |
| U457 | 7312911 | 140      | 145   | 22.2   | 58.8    | MAHBED |
| U457 | 7312912 | 145      | 150   | 15.5   | 40.9    | MAHZB  |
| U457 | 7312913 | 187.5    | 188.9 | 0.8    | 2       | MAHZB  |
| U457 | 7312914 | 188.9    | 190.1 | 4.3    | 11.1    | MAHZB  |
| U457 | 7312915 | 190.1    | 191.8 | 3.2    | 8.5     | MAHZB  |
| U457 | 7312916 | 191.8    | 193   | 5.9    | 15.6    | MAHZB  |
| U457 | 7312917 | 193      | 194   | 2.6    | 6.8     | BGR    |

| BHID | SAMPID  | FROM  | ТО    | %shoil | shoilgt | zone |
|------|---------|-------|-------|--------|---------|------|
| U457 | 7312918 | 194   | 195   | 2.4    | 6.3     | BGR  |
| U457 | 7312919 | 195   | 196   | 5      | 13.2    | BGR  |
| U457 | 7312920 | 196   | 197   | 1.1    | 2.8     | BGR  |
| U457 | 7312921 | 197   | 198   | 2.8    | 7.5     | BGR  |
| U457 | 7312922 | 198   | 199.3 | 2.2    | 5.7     | BGR  |
| U457 | 7312923 | 199.3 | 200.6 | 2.6    | 6.7     | BGR  |
| U457 | 7312924 | 200.6 | 201.8 | 2.8    | 7.4     | BGR  |
| U457 | 7312925 | 201.8 | 203   | 2.3    | 6.1     | BGR  |
| U457 | 7312926 | 203   | 204.2 | 0.8    | 2.1     | BGR  |
| U457 | 7312927 | 212   | 213.3 | 3.5    | 9       | BGR  |
| U457 | 7312928 | 213.3 | 214.7 | 3.1    | 8       | BGR  |
| U457 | 7312929 | 214.7 | 215.9 | 6.6    | 17.4    |      |
| U457 | 7312930 | 272   | 273   | 3.7    | 9.6     |      |
| U457 | 7312931 | 273   | 274.2 | 1.8    | 4.6     |      |
| U457 | 7312932 | 274.2 | 275.4 | 6.1    | 15.8    |      |
| U457 | 7312933 | 275.4 | 276.4 | 12     | 30.9    |      |
| U457 | 7312934 | 277.2 | 278   | 0.5    | 1.3     |      |
| U457 | 7312935 | 278   | 279   | 5.2    | 13.5    |      |
| U457 | 7312936 | 279   | 279.9 | 4.7    | 12.4    |      |

# APPENDIX D GEOPHYSICAL LOG

### **APPENDIX D GEOPHYSICAL LOG**

MW-04

Surveyed on September 25th, 2013

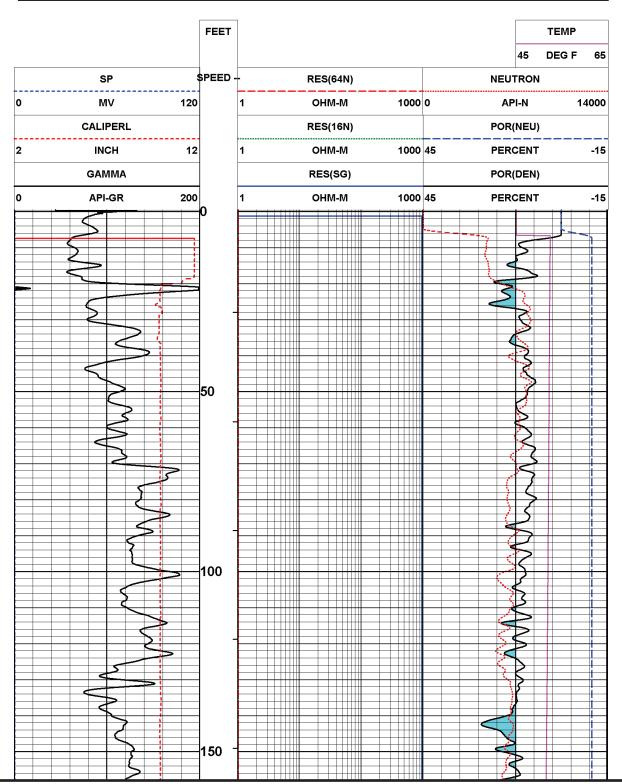
The Oil Mining Company, Inc. Uintah County, Utah

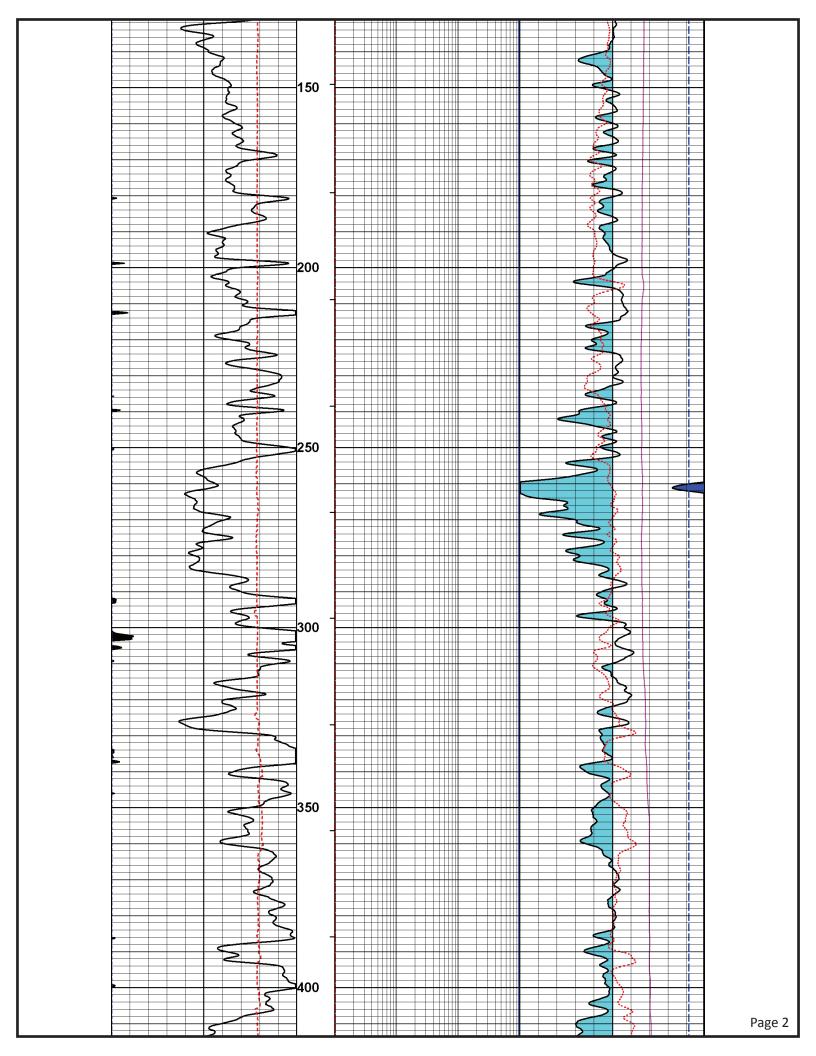
#### 5 INCH LOG, MERGED MW-04 09/25/13

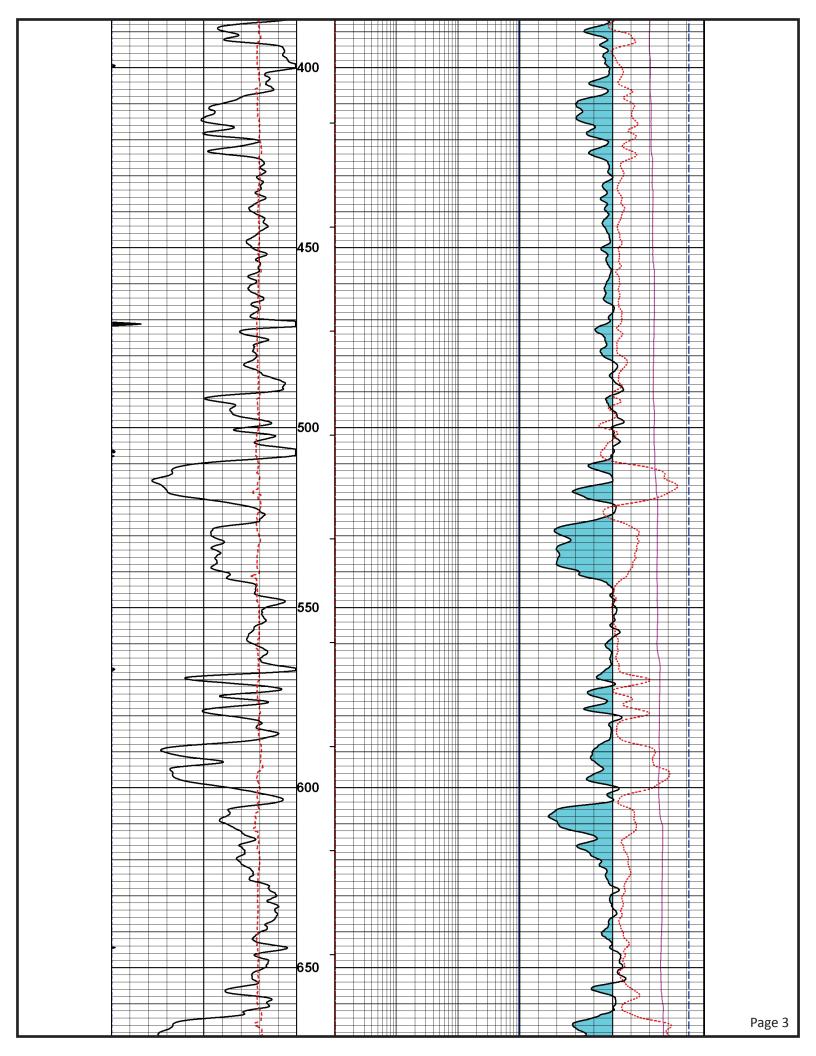
### LOG PARAMETERS

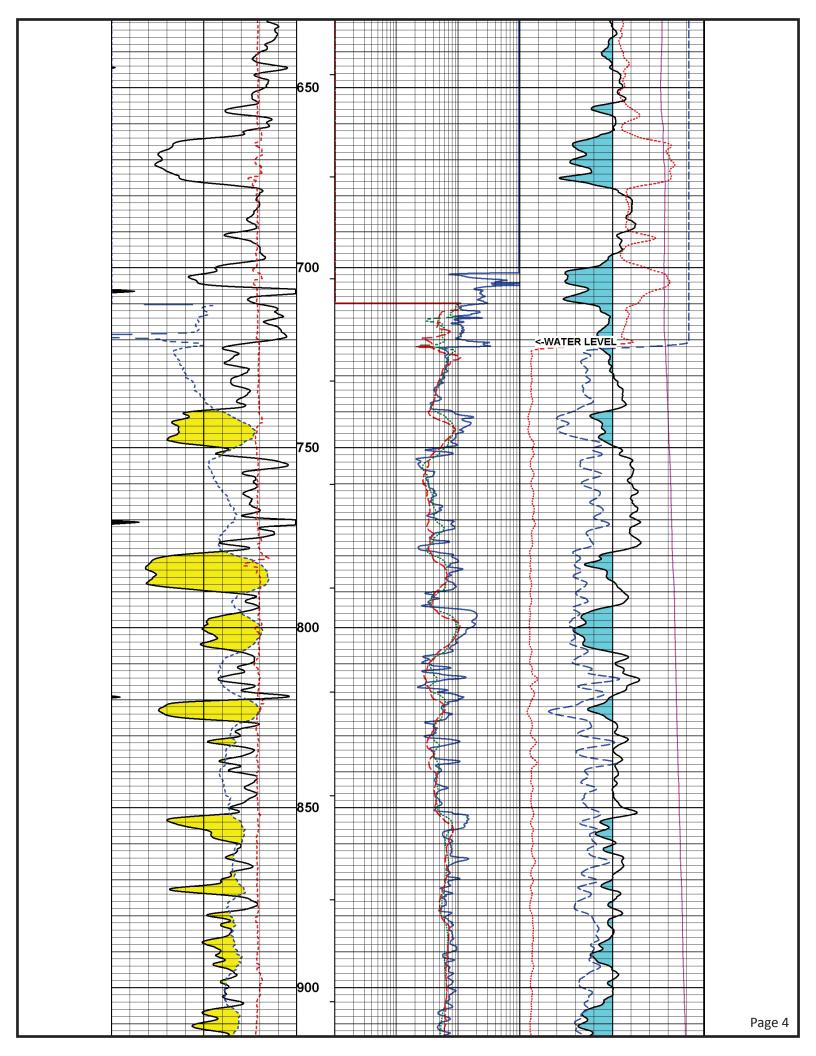
MATRIX DENSITY: 2.65 MAGNETIC DECL: 11

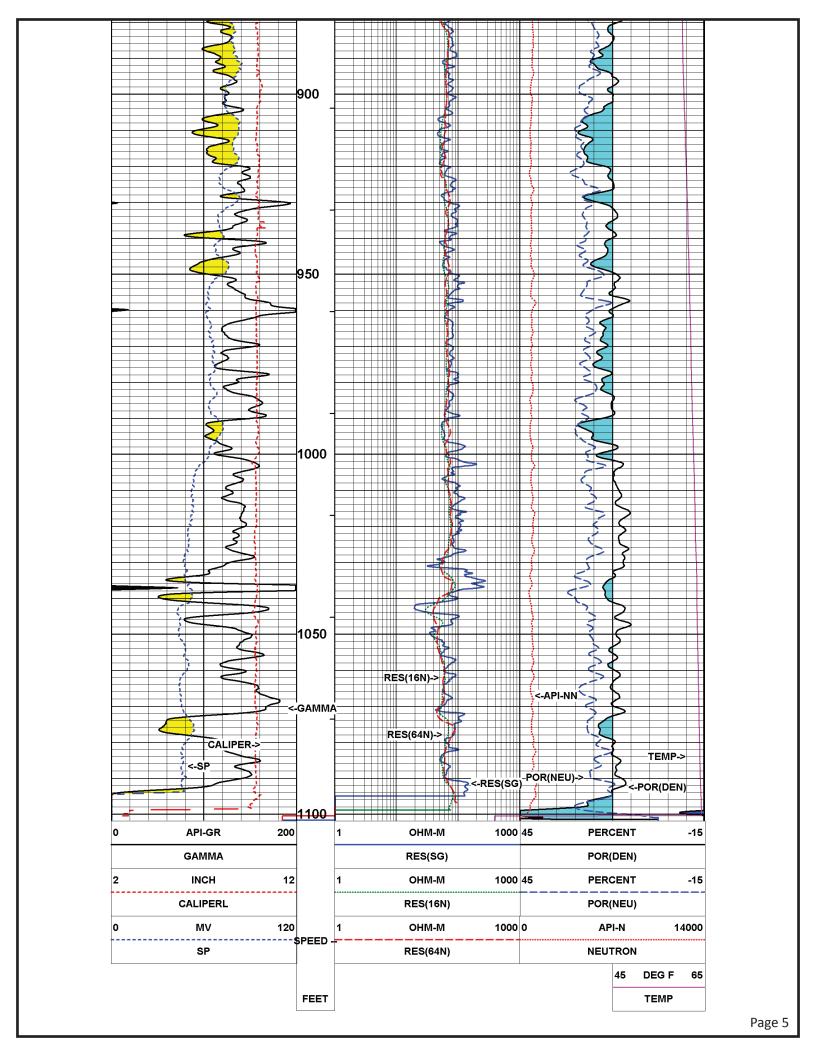
NEUTRON MATRIX: SANDSTONE ELECT. CUTOFF : 99999.


MATRIX DELTA T: 54 BIT SIZE


PRESENTATION NAME/DATE = TRIPLECOMBO WATER.0 09/26/2013


Version 3.65 JD


: 8.75


Page 1











# **APPENDIX E MONITOR WELL LABORATORY ANALYTICAL RESULTS**

# Appendix E Analytical Data

The Oil Mining Company, Inc. Uintah County, Utah

# **Monitoring Well Groundwater Samples**



## ANALYTICAL REPORT

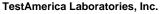
Job Number: 280-48451-1 Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release. Patrick J McEntee Senior Project Manager 11/26/2013 1:05 PM


Patrick J McEntee, Senior Project Manager 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 11/26/2013

Datul J. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





### **CASE NARRATIVE**

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-48451-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

### **RECEIPT**

The samples were received on 10/26/2013 11:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3° C.

### Except:

Two HCl preserved Trip Blank vials were received, but were not listed on the COC. As no other volume was submitted for VOA analysis, the Trip Blank vials were not logged.

The COC lists 2 bottles for sample MW-03-2013, however 3 bottles were received for this sample.

### <u>ALKALINIT</u>Y

Samples MW-01-2013 (280-48451-1), MW-03-2013 (280-48451-2), MW-04-2013 (280-48451-3) and MW-05-2013 (280-48451-4) were analyzed for Alkalinity in accordance with SM20 2320B. The samples were analyzed on 11/01/2013 and 11/06/2013.

Bicarbonate Alkalinity as CaCO3 and Total Alkalinity as CaCO3 were detected in method blank MB 280-199016/6 at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Bicarbonate Alkalinity as CaCO3 and Total Alkalinity as CaCO3 were detected in method blank MB 280-199619/6 and in the Instrument Blank at levels exceeding the reporting limit. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details. The concentrations of these analytes in the associated samples were greater than 10 times the concentration detected in the MB; therefore reanalysis was not required.

No other difficulties were encountered during the alkalinity analysis.

All other quality control parameters were within the acceptance limits.

### ANIONS (28 DAYS)

Samples MW-01-2013 (280-48451-1), MW-03-2013 (280-48451-2), MW-04-2013 (280-48451-3) and MW-05-2013 (280-48451-4) were analyzed for anions (28 days) in accordance with EPA Method 300.0. The samples were analyzed on 10/26/2013, 11/17/2013 and 11/18/2013.

Sulfate was detected in method blank MB 280-198220/6 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Samples MW-01-2013 (280-48451-1)[20X], MW-01-2013 (280-48451-1)[5X], MW-03-2013 (280-48451-2)[10X], MW-03-2013 (280-48451-2)[5X], MW-04-2013 (280-48451-3)[10X], MW-04-2013 (280-48451-3)[2X], MW-05-2013 (280-48451-4)[10X] and MW-05-2013 (280-48451-4)[2X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the anions analysis.

All other quality control parameters were within the acceptance limits.

### **ANIONS (48 HOURS)**

Samples MW-01-2013 (280-48451-1), MW-03-2013 (280-48451-2), MW-04-2013 (280-48451-3) and MW-05-2013 (280-48451-4) were analyzed for anions (48 hours) in accordance with EPA Method 300.0. The samples were analyzed on 10/26/2013.

Samples MW-01-2013 (280-48451-1)[5X] and MW-03-2013 (280-48451-2)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

Analysis of the MS and MSD was performed outside of the analytical holding time for sample MW-04-2013 (280-48451-3). The client requested MS/MSD was not analyzed with the original analysis of the parent sample. The sample and MS/MSD were re-analyzed outside of HT. The in-hold data was reported for the parent sample.

No other difficulties were encountered during the anions analysis.

All other quality control parameters were within the acceptance limits.

### **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

| Lab Sample ID         | Client Sample ID | Client Matrix | Date/Time<br>Sampled | Date/Time<br>Received |
|-----------------------|------------------|---------------|----------------------|-----------------------|
| 280-48451-1           | MW-01-2013       | Water         | 10/25/2013 1730      | 10/26/2013 1130       |
| 280-48451-2           | MW-03-2013       | Water         | 10/25/2013 1300      | 10/26/2013 1130       |
| 280-48451-3           | MW-04-2013       | Water         | 10/25/2013 1430      | 10/26/2013 1130       |
| 280-48451-3MSMS       | MW-04-2013       | Water         | 10/25/2013 1430      | 10/26/2013 1130       |
| 280-48451-3MSDM<br>SD | MW-04-2013       | Water         | 10/25/2013 1430      | 10/26/2013 1130       |
| 280-48451-4           | MW-05-2013       | Water         | 10/25/2013 1445      | 10/26/2013 1130       |

### **EXECUTIVE SUMMARY - Detections**

Job Number: 280-48451-1

Client: Ecology and Environment, Inc.

| Lab Sample ID<br>Analyte | Client Sample ID | Result | Qualifier | Reporting<br>Limit | Units  | Method    |
|--------------------------|------------------|--------|-----------|--------------------|--------|-----------|
| 280-48451-1              | MW-01-2013       |        |           |                    |        |           |
| Chloride                 | 10100-01-2013    | 530    |           | 60                 | mg/L   | 300.0     |
| Fluoride                 |                  | 28     |           | 2.5                | mg/L   | 300.0     |
| Sulfate                  |                  | 110    |           | 25                 | mg/L   | 300.0     |
| Total Alkalinity as      | CaCO3            | 3500   | В^        | 5.0                | mg/L   | SM 2320B  |
| Bicarbonate Alkali       |                  | 2800   | B ^       | 5.0                | mg/L   | SM 2320B  |
| Carbonate Alkalini       | •                | 620    | _         | 5.0                | mg/L   | SM 2320B  |
|                          |                  |        |           |                    |        |           |
| 280-48451-2              | MW-03-2013       | 100    |           | 45                 | (I     | 200.0     |
| Chloride                 |                  | 180    |           | 15                 | mg/L   | 300.0     |
| Fluoride                 |                  | 40     |           | 2.5                | mg/L   | 300.0     |
| Sulfate                  | 0-000            | 340    | Б         | 50                 | mg/L   | 300.0     |
| Total Alkalinity as      |                  | 2100   | В         | 5.0                | mg/L   | SM 2320B  |
| Bicarbonate Alkali       | nity as CaCO3    | 2100   | В         | 5.0                | mg/L   | SM 2320B  |
| 280-48451-3              | MW-04-2013       |        |           |                    |        |           |
| Chloride                 |                  | 66     |           | 6.0                | mg/L   | 300.0     |
| Fluoride                 |                  | 3.2    |           | 0.50               | mg/L   | 300.0     |
| Sulfate                  |                  | 250    |           | 50                 | mg/L   | 300.0     |
| Total Alkalinity as      | CaCO3            | 790    | В         | 5.0                | mg/L   | SM 2320B  |
| Bicarbonate Alkali       | nity as CaCO3    | 400    | В         | 5.0                | mg/L   | SM 2320B  |
| Carbonate Alkalini       | ity as CaCO3     | 390    |           | 5.0                | mg/L   | SM 2320B  |
| 280-48451-4              | MW-05-2013       |        |           |                    |        |           |
| Chloride                 | 33-2010          | 65     |           | 6.0                | mg/L   | 300.0     |
| Fluoride                 |                  | 3.2    |           | 0.50               | mg/L   | 300.0     |
| Sulfate                  |                  | 240    |           | 50                 | mg/L   | 300.0     |
| Total Alkalinity as      | CaCO3            | 790    | В         | 5.0                | mg/L   | SM 2320B  |
| Bicarbonate Alkali       |                  | 390    | В         | 5.0                | mg/L   | SM 2320B  |
| Carbonate Alkalini       |                  | 400    | 2         | 5.0                | mg/L   | SM 2320B  |
| Carbonate Aindilli       | , 45 04000       | 700    |           | 5.0                | 1119/L | OWI ZOZOD |

### **METHOD SUMMARY**

Job Number: 280-48451-1

Client: Ecology and Environment, Inc.

| Description                | Lab Location | Method      | Preparation Method |
|----------------------------|--------------|-------------|--------------------|
| Matrix: Water              |              |             |                    |
| Anions, Ion Chromatography | TAL DEN      | MCAWW 300.0 |                    |
| Alkalinity                 | TAL DEN      | SM SM 2320B |                    |

### Lab References:

TAL DEN = TestAmerica Denver

### **Method References:**

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

# METHOD / ANALYST SUMMARY

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

| Method      | Analyst              | Analyst ID |
|-------------|----------------------|------------|
| MCAWW 300.0 | Elkin, David M       | DME        |
| MCAWW 300.0 | Phan, Thu L          | TLP        |
| SM SM 2320B | Hoefler, Alexandra F | AFH        |

### **General Chemistry**

Client Sample ID: MW-01-2013

 Lab Sample ID:
 280-48451-1
 Date Sampled: 10/25/2013 1730

 Client Matrix:
 Water
 Date Received: 10/26/2013 1130

| Analyte                         | Result    | Qual           | Units      | MDL  | RL  | Dil | Method   |
|---------------------------------|-----------|----------------|------------|------|-----|-----|----------|
| Chloride                        | 530       |                | mg/L       | 5.1  | 60  | 20  | 300.0    |
| Analysis Batch: 28              | 80-201618 | Analysis Date: | 11/18/2013 | 0036 |     |     |          |
| Nitrate as N                    | ND        |                | mg/L       | 0.21 | 2.5 | 5.0 | 300.0    |
| Analysis Batch: 28              | 80-198182 | Analysis Date: | 10/26/2013 | 1606 |     |     |          |
| Fluoride                        | 28        |                | mg/L       | 0.30 | 2.5 | 5.0 | 300.0    |
| Analysis Batch: 28              | 80-198184 | Analysis Date: | 10/26/2013 | 1606 |     |     |          |
| Nitrite as N                    | ND        |                | mg/L       | 0.25 | 2.5 | 5.0 | 300.0    |
| Analysis Batch: 28              | 80-198182 | Analysis Date: | 10/26/2013 | 1606 |     |     |          |
| Sulfate                         | 110       |                | mg/L       | 1.2  | 25  | 5.0 | 300.0    |
| Analysis Batch: 28              | 80-198184 | Analysis Date: | 10/26/2013 | 1606 |     |     |          |
| Total Alkalinity as CaCO3       | 3500      | В^             | mg/L       | 1.1  | 5.0 | 1.0 | SM 2320B |
| Analysis Batch: 28              | 80-199619 | Analysis Date: | 11/06/2013 | 1612 |     |     |          |
| Bicarbonate Alkalinity as CaCO3 | 2800      | В^             | mg/L       | 1.1  | 5.0 | 1.0 | SM 2320B |
| Analysis Batch: 28              | 80-199619 | Analysis Date: | 11/06/2013 | 1612 |     |     |          |
| Carbonate Alkalinity as CaCO3   | 620       |                | mg/L       | 1.1  | 5.0 | 1.0 | SM 2320B |
| Analysis Batch: 28              | 80-199619 | Analysis Date: | 11/06/2013 | 1612 |     |     |          |

### **General Chemistry**

Client Sample ID: MW-03-2013

Lab Sample ID: 280-48451-2 Date Sampled: 10/25/2013 1300

Client Matrix: Water Date Received: 10/26/2013 1130

| Analyte             | Result                     | Qual           | Units      | MDL    | RL  | Dil | Method   |
|---------------------|----------------------------|----------------|------------|--------|-----|-----|----------|
| Chloride            | 180                        |                | mg/L       | 1.3    | 15  | 5.0 | 300.0    |
|                     | Analysis Batch: 280-198184 | Analysis Date: | 10/26/2013 | 3 1747 |     |     |          |
| Nitrate as N        | ND                         |                | mg/L       | 0.21   | 2.5 | 5.0 | 300.0    |
|                     | Analysis Batch: 280-198182 | Analysis Date: | 10/26/2013 | 3 1747 |     |     |          |
| Fluoride            | 40                         |                | mg/L       | 0.30   | 2.5 | 5.0 | 300.0    |
|                     | Analysis Batch: 280-198184 | Analysis Date: | 10/26/2013 | 3 1747 |     |     |          |
| Nitrite as N        | ND                         |                | mg/L       | 0.25   | 2.5 | 5.0 | 300.0    |
|                     | Analysis Batch: 280-198182 | Analysis Date: | 10/26/2013 | 3 1747 |     |     |          |
| Sulfate             | 340                        |                | mg/L       | 2.3    | 50  | 10  | 300.0    |
|                     | Analysis Batch: 280-201618 | Analysis Date: | 11/17/2013 | 3 1404 |     |     |          |
| Total Alkalinity as | CaCO3 2100                 | В              | mg/L       | 1.1    | 5.0 | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1436 |     |     |          |
| Bicarbonate Alkal   | inity as CaCO3 2100        | В              | mg/L       | 1.1    | 5.0 | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1436 |     |     |          |
| Carbonate Alkalin   | nity as CaCO3 ND           |                | mg/L       | 1.1    | 5.0 | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1436 |     |     |          |

### **General Chemistry**

Client Sample ID: MW-04-2013

Lab Sample ID: 280-48451-3 Date Sampled: 10/25/2013 1430

Client Matrix: Water Date Received: 10/26/2013 1130

| Analyte                | Result                     | Qual           | Units      | MDL    | RL   | Dil | Method   |
|------------------------|----------------------------|----------------|------------|--------|------|-----|----------|
| Chloride               | 66                         |                | mg/L       | 0.51   | 6.0  | 2.0 | 300.0    |
| A                      | Analysis Batch: 280-198184 | Analysis Date: | 10/26/2013 | 3 1803 |      |     |          |
| Nitrate as N           | ND                         |                | mg/L       | 0.042  | 0.50 | 1.0 | 300.0    |
| A                      | Analysis Batch: 280-198182 | Analysis Date: | 10/26/2013 | 3 1713 |      |     |          |
| Fluoride               | 3.2                        |                | mg/L       | 0.060  | 0.50 | 1.0 | 300.0    |
| A                      | Analysis Batch: 280-198184 | Analysis Date: | 10/26/2013 | 3 1713 |      |     |          |
| Nitrite as N           | ND                         |                | mg/L       | 0.049  | 0.50 | 1.0 | 300.0    |
| A                      | Analysis Batch: 280-198182 | Analysis Date: | 10/26/2013 | 3 1713 |      |     |          |
| Sulfate                | 250                        |                | mg/L       | 2.3    | 50   | 10  | 300.0    |
| A                      | Analysis Batch: 280-201618 | Analysis Date: | 11/17/2013 | 3 1420 |      |     |          |
| Total Alkalinity as Ca | CO3 790                    | В              | mg/L       | 1.1    | 5.0  | 1.0 | SM 2320B |
| A                      | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1600 |      |     |          |
| Bicarbonate Alkalinity | y as CaCO3 400             | В              | mg/L       | 1.1    | 5.0  | 1.0 | SM 2320B |
| A                      | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1600 |      |     |          |
| Carbonate Alkalinity   | as CaCO3 390               |                | mg/L       | 1.1    | 5.0  | 1.0 | SM 2320B |
| A                      | Analysis Batch: 280-199016 | Analysis Date: | 11/01/2013 | 3 1600 |      |     |          |

#### **General Chemistry**

Client Sample ID: MW-05-2013

Analysis Batch: 280-199016

 Lab Sample ID:
 280-48451-4
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/26/2013 1130

RLAnalyte Result Qual Units MDL Dil Method Chloride 0.51 6.0 2.0 300.0 65 mg/L Analysis Batch: 280-198184 Analysis Date: 10/26/2013 1820 Nitrate as N mg/L 0.042 0.50 1.0 300.0 Analysis Batch: 280-198182 Analysis Date: 10/26/2013 1730 Fluoride 3.2 mg/L 0.060 0.50 1.0 300.0 Analysis Batch: 280-198184 Analysis Date: 10/26/2013 1730 Nitrite as N ND mg/L 0.049 0.50 1.0 300.0 Analysis Date: 10/26/2013 1730 Analysis Batch: 280-198182 Sulfate 10 300.0 240 mg/L 2.3 50 Analysis Date: 11/18/2013 1037 Analysis Batch: 280-201618 Total Alkalinity as CaCO3 SM 2320B 790 В mg/L 5.0 1.0 Analysis Batch: 280-199016 Analysis Date: 11/01/2013 1555 Bicarbonate Alkalinity as CaCO3 1.0 SM 2320B 390 mg/L 1.1 5.0 Analysis Batch: 280-199016 Analysis Date: 11/01/2013 1555 Carbonate Alkalinity as CaCO3 400 mg/L 1.1 5.0 1.0 SM 2320B

Analysis Date: 11/01/2013 1555

WC\_IC8

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Method Blank - Batch: 280-198182 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198182/6 Analysis Batch: 280-198182 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 115.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 10/26/2013 1318 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Leach Date:

N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Nitrate as N
 ND
 0.042
 0.50

 Nitrite as N
 ND
 0.049
 0.50

Method Reporting Limit Check - Batch: 280-198182 Method: 300.0 Preparation: N/A

Lab Sample ID: MRL 280-198182/3 Analysis Batch: 280-198182 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 112.TXT
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/26/2013 1227 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A
Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Nitrate as N 0.224 50 - 150 0.200 112 J Nitrite as N 0.200 0.207 104 50 - 150 J

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-198182 Preparation: N/A

LCS Lab Sample ID: LCS 280-198182/4 Analysis Batch: 280-198182 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 113.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/26/2013 1244 Units: mg/L Final Weight/Volume: Prep Date: N/A

LCSD Lab Sample ID: LCSD 280-198182/5 Analysis Batch: 280-198182 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/26/2013 1301 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

% Rec. RPD Analyte LCS **LCSD** Limit **RPD Limit** LCS Qual LCSD Qual Nitrate as N 105 105 90 - 110 0 10 Nitrite as N 101 101 90 - 110 0 10

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Laboratory Control/ Method: 300.0
Laboratory Duplicate Data Report - Batch: 280-198182 Preparation: N/A

LCS Lab Sample ID: LCS 280-198182/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198182/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/26/2013 1244 Analysis Date: 10/26/2013 1301

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte      | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|--------------|---------------------|----------------------|--------------------|---------------------|
| Nitrate as N | 5.00                | 5.00                 | 5.27               | 5.27                |
| Nitrite as N | 5.00                | 5.00                 | 5.05               | 5.06                |

WC\_IC8

115.TXT

5 mL

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Method Blank - Batch: 280-198184

1.0

Method: 300.0 Preparation: N/A

Instrument ID:

Lab File ID:

Lab Sample ID: MB 280-198184/6 Analysis Batch: 280-198184 Client Matrix: Water Prep Batch: Dilution:

N/A Leach Batch: N/A 10/26/2013 1318 Units:

Initial Weight/Volume: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Analysis Date:

| Analyte  | Result | Qual | MDL   | RL   |
|----------|--------|------|-------|------|
| Chloride | ND     |      | 0.25  | 3.0  |
| Fluoride | ND     |      | 0.060 | 0.50 |
| Sulfate  | ND     |      | 0.23  | 5.0  |

Method Reporting Limit Check - Batch: 280-198184

Method: 300.0 Preparation: N/A

Final Weight/Volume:

Lab Sample ID: Analysis Batch: 280-198184 WC\_IC8 MRL 280-198184/3 Instrument ID: Client Matrix: Prep Batch: Lab File ID: 112.TXT Water N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Units:

10/26/2013 1227 Analysis Date: Prep Date: N/A Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Chloride 1.00 1.06 106 50 - 150 J Fluoride 0.200 0.199 100 50 - 150 J Sulfate 1.00 1.06 106 50 - 150 J

mg/L

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-198184 Preparation: N/A

LCS Lab Sample ID: LCS 280-198184/4 Analysis Batch: 280-198184 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 113.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/26/2013 1244 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

LCSD Lab Sample ID: LCSD 280-198184/5 Analysis Batch: 280-198184 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/26/2013 1301 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

% Rec. RPD LCSD Qual Analyte LCS **LCSD** Limit RPD Limit LCS Qual Chloride 103 103 90 - 110 0 10 Fluoride 105 105 90 - 110 0 10 Sulfate 105 105 90 - 110 0 10

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-198184

Method: 300.0
Preparation: N/A

LCS Lab Sample ID: LCS 280-198184/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198184/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/26/2013 1244 Analysis Date: 10/26/2013 1301

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte  | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|----------|---------------------|----------------------|--------------------|---------------------|
| Chloride | 25.0                | 25.0                 | 25.9               | 25.9                |
| Fluoride | 5.00                | 5.00                 | 5.25               | 5.27                |
| Sulfate  | 25.0                | 25.0                 | 26.2               | 26.2                |

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Method Blank - Batch: 280-198220

Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198220/6 Client Matrix: Water Dilution: 1.0

Analysis Batch: Prep Batch: Leach Batch:

Units:

280-198220 N/A N/A mg/L

Instrument ID: Lab File ID:

WC\_IC8 115.TXT

Analysis Date: 10/28/2013 1215 Prep Date:

Leach Date:

N/A N/A Initial Weight/Volume: Final Weight/Volume:

| Analyte  | Result | Qual | MDL   | RL   |
|----------|--------|------|-------|------|
| Chloride | ND     |      | 0.25  | 3.0  |
| Fluoride | ND     |      | 0.060 | 0.50 |
| Sulfate  | 0.298  | J    | 0.23  | 5.0  |

Method Reporting Limit Check - Batch: 280-198220

Method: 300.0 Preparation: N/A

Lab Sample ID: Client Matrix:

MRL 280-198220/3 Water

Analysis Batch: Prep Batch:

280-198220 N/A

Instrument ID: Lab File ID:

WC\_IC8 112.TXT

Dilution: 1.0

10/28/2013 1125 Analysis Date:

Prep Date: N/A Leach Batch: N/A Units:

mg/L

Initial Weight/Volume: Final Weight/Volume:

5 mL

Leach Date: N/A

| Analyte  | Spike Amount | Result | % Rec. | Limit    | Qual |
|----------|--------------|--------|--------|----------|------|
| Chloride | 1.00         | 1.08   | 108    | 50 - 150 | J    |
| Fluoride | 0.200        | 0.213  | 107    | 50 - 150 | J    |
| Sulfate  | 1.00         | 1.30   | 130    | 50 - 150 | J    |

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-198220 Preparation: N/A

LCS Lab Sample ID: LCS 280-198220/4 Analysis Batch: 280-198220 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 113.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1141 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

LCSD Lab Sample ID: LCSD 280-198220/5 Analysis Batch: 280-198220 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 114 TXT

Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1158 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

% Rec. RPD LCSD Qual Analyte LCS **LCSD** Limit RPD Limit LCS Qual Chloride 103 103 90 - 110 0 10 Fluoride 105 105 90 - 110 0 10 Sulfate 105 104 90 - 110 0 10

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-198220

Method: 300.0
Preparation: N/A

LCS Lab Sample ID: LCS 280-198220/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198220/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/28/2013 1141 Analysis Date: 10/28/2013 1158

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

| Analyte  | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|----------|---------------------|----------------------|--------------------|---------------------|
| Chloride | 25.0                | 25.0                 | 25.7               | 25.7                |
| Fluoride | 5.00                | 5.00                 | 5.27               | 5.27                |
| Sulfate  | 25.0                | 25.0                 | 26.2               | 26.0                |

WC\_IC8

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Method Blank - Batch: 280-198221 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198221/6 Analysis Batch: 280-198221 Instrument ID:

Client Matrix: Water Prep Batch: N/A Lab File ID: 115.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1215 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Nitrite as N

 Analyte
 Result
 Qual
 MDL
 RL

 Nitrate as N
 ND
 0.042
 0.50

 Nitrite as N
 ND
 0.049
 0.50

Method Reporting Limit Check - Batch: 280-198221 Method: 300.0 Preparation: N/A

 Lab Sample ID:
 MRL 280-198221/3
 Analysis Batch:
 280-198221
 Instrument ID:
 WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 112.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1125 Units: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A Final Weight/Volume: 5 m

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Nitrate as N
 0.200
 0.228
 114
 50 - 150
 J

 Nitrite as N
 0.200
 0.207
 104
 50 - 150
 J

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-198221 Preparation: N/A

LCS Lab Sample ID: LCS 280-198221/4 Analysis Batch: 280-198221 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 113.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1141 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198221/5 Analysis Batch: 280-198221 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 10/28/2013 1158 Units: mg/L Final Weight/Volume:

Analysis Date: 10/28/2013 1158 Units: mg/L Final Williams Prep Date: N/A
Leach Date: N/A

101

 Analyte
 Kec.

 LCS
 LCSD
 Limit
 RPD
 RPD Limit
 LCS Qual
 LCSD Qual

 Nitrate as N
 105
 105
 90 - 110
 0
 10

101

90 - 110

0

10

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Laboratory Control/ Method: 300.0
Laboratory Duplicate Data Report - Batch: 280-198221 Preparation: N/A

LCS Lab Sample ID: LCS 280-198221/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198221/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/28/2013 1141 Analysis Date: 10/28/2013 1158

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

LCS Spike LCSD Spike LCS **LCSD** Analyte Amount Amount Result/Qual Result/Qual Nitrate as N 5.00 5.00 5.24 5.23 Nitrite as N 5.00 5.00 5.03 5.03

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-198221 Preparation: N/A

MS Lab Sample ID: 280-48451-3MS Analysis Batch: 280-198221 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 118.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Prep Date:

N/A

Analysis Date: 10/28/2013 1424 Final Weight/Volume: 5 mL

 Leach Date:
 N/A

 MSD Lab Sample ID:
 280-48451-3MSD
 Analysis Batch:
 280-198221
 Instrument ID:
 WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 119.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/28/2013 1440 Final Weight/Volume: 5 mL

Prep Date: N/A
Leach Date: N/A

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual Nitrate as N 108 80 - 120 2 20 Н 106 Н Nitrite as N 101 80 - 120 2 Н Н 103 20

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-198221 Preparation: N/A

MS Lab Sample ID: 280-48451-3MS Units: mg/L MSD Lab Sample ID: 280-48451-3MSD

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/28/2013 1424 Analysis Date: 10/28/2013 1440

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte      | Sample<br>Result/Qual | MS Spike<br>Amount | MSD Spike<br>Amount | MS<br>Result/0 | Qual | MSD<br>Result/C | ual |
|--------------|-----------------------|--------------------|---------------------|----------------|------|-----------------|-----|
| Nitrate as N | ND                    | 5.00               | 5.00                | 5.31           | Н    | 5.41            | Н   |
| Nitrite as N | ND                    | 5.00               | 5.00                | 5.05           | Н    | 5.15            | Н   |

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Method Blank - Batch: 280-201618

Method: 300.0 Preparation: N/A

| Lab Sample ID: | MB 280-201618/6 | Analysis Batch: | 280-201618 | Instrument ID:         | WC_IC7  |
|----------------|-----------------|-----------------|------------|------------------------|---------|
| Client Matrix: | Water           | Prep Batch:     | N/A        | Lab File ID:           | 115.TXT |
| Dilution:      | 1.0             | Leach Batch:    | N/A        | Initial Weight/Volume: | 5 mL    |
| Analysis Date: | 11/17/2013 1155 | Units:          | mg/L       | Final Weight/Volume:   | 5 mL    |

Prep Date: N/A Leach Date: N/A

| Analyte  | Result | Qual | MDL   | RL   |
|----------|--------|------|-------|------|
| Chloride | ND     |      | 0.25  | 3.0  |
| Fluoride | ND     |      | 0.060 | 0.50 |
| Sulfate  | ND     |      | 0.23  | 5.0  |

Method Reporting Limit Check - Batch: 280-201618

Method: 300.0 Preparation: N/A

| Lab Sample ID: | MRL 280-201618/3 | Analysis Batch: | 280-201618 | Instrument ID:         | WC_IC7  |
|----------------|------------------|-----------------|------------|------------------------|---------|
| Client Matrix: | Water            | Prep Batch:     | N/A        | Lab File ID:           | 112.TXT |
| Dilution:      | 1.0              | Leach Batch:    | N/A        | Initial Weight/Volume: | 5 mL    |
| Analysis Date: | 11/17/2013 1108  | Units:          | mg/L       | Final Weight/Volume:   | 5 mL    |
| Prop Date:     | NI/A             |                 |            |                        |         |

Prep Date: N/A Leach Date: N/A

| Analyte  | Spike Amount | Result | % Rec. | Limit    | Qual |
|----------|--------------|--------|--------|----------|------|
| Chloride | 1.00         | 0.931  | 93     | 50 - 150 | J    |
| Fluoride | 0.200        | 0.179  | 90     | 50 - 150 | J    |
| Sulfate  | 1.00         | 0.869  | 87     | 50 - 150 | J    |

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-201618 Preparation: N/A

| LCS Lab Sample ID | D: LCS 280-201618/4   | Analysis | Batch: | 280-201618 | Instrumen   | t ID:       | WC_IC7   |           |
|-------------------|-----------------------|----------|--------|------------|-------------|-------------|----------|-----------|
| Client Matrix:    | Water                 | Prep Ba  | itch:  | N/A        | Lab File II | D:          | 113.TXT  |           |
| Dilution:         | 1.0                   | Leach B  | Batch: | N/A        | Initial Wei | ght/Volume: | 100 mL   |           |
| Analysis Date:    | 11/17/2013 1123       | Units:   |        | mg/L       | Final Weig  | ght/Volume: | 100 mL   |           |
| Prep Date:        | N/A                   |          |        | -          |             |             |          |           |
| Leach Date:       | N/A                   |          |        |            |             |             |          |           |
| LCSD Lab Sample   | ID: LCSD 280-201618/5 | Analysis | Batch: | 280-201618 | Instrumen   | t ID:       | WC_IC7   |           |
| Client Matrix:    | Water                 | Prep Ba  | itch:  | N/A        | Lab File II | D:          | 114.TXT  |           |
| Dilution:         | 1.0                   | Leach B  | atch:  | N/A        | Initial Wei | ght/Volume: | 100 mL   |           |
| Analysis Date:    | 11/17/2013 1139       | Units:   |        | mg/L       | Final Weig  | ght/Volume: | 100 mL   |           |
| Prep Date:        | N/A                   |          |        |            |             |             |          |           |
| Leach Date:       | N/A                   |          |        |            |             |             |          |           |
|                   |                       | <u>%</u> | Rec.   |            |             |             |          |           |
| Analyte           |                       | LCS      | LCSD   | Limit      | RPD         | RPD Limit   | LCS Qual | LCSD Qual |
| Chloride          |                       | 101      | 102    | 90 - 110   | 0           | 10          |          |           |

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-201618

Method: 300.0
Preparation: N/A

102

101

Fluoride

Sulfate

LCS Lab Sample ID: LCS 280-201618/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-201618/5

102

100

90 - 110

90 - 110

0

1

10

10

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/17/2013 1123 Analysis Date: 11/17/2013 1139

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

| Analyte  | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|----------|---------------------|----------------------|--------------------|---------------------|
| Chloride | 25.0                | 25.0                 | 25.3               | 25.4                |
| Fluoride | 5.00                | 5.00                 | 5.11               | 5.11                |
| Sulfate  | 25.0                | 25.0                 | 25.2               | 25.0                |

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-201618 Preparation: N/A

280-48451-3 280-201618 Instrument ID: WC\_IC7 MS Lab Sample ID: Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: 124.TXT Dilution: Leach Batch: N/A 5 mL 10 Initial Weight/Volume:

Analysis Date: 11/17/2013 1451 Final Weight/Volume: 5 mL

Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-48451-3 280-201618 Instrument ID: Analysis Batch: WC IC7 Client Matrix: Prep Batch: Lab File ID: 125.TXT Water N/A Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/17/2013 1507 Final Weight/Volume: 5 mL

Prep Date: N/A
Leach Date: N/A

% Rec. Analyte Limit RPD **RPD Limit** MS MSD MS Qual MSD Qual Chloride 105 80 - 120 1 20 104 80 - 120 Fluoride 90 91 1 20 Sulfate 96 97 80 - 120 1 20

Matrix Spike/ Method: 300.0

Matrix Spike Duplicate Recovery Report - Batch: 280-201618 Preparation: N/A

MS Lab Sample ID: 280-48451-3 Units: mg/L MSD Lab Sample ID: 280-48451-3

Client Matrix: Water Client Matrix: Water

Dilution: 10 Dilution: 10

Analysis Date: 11/17/2013 1451 Analysis Date: 11/17/2013 1507

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

Sample MS Spike MSD Spike MS MSD Result/Qual Result/Qual Result/Qual Analyte **Amount Amount** Chloride 64 250 250 323 327 Fluoride 2.1 J 50.0 50.0 47.1 47.5 Sulfate 250 250 250 487 489

Final Weight/Volume:

Job Number: 280-48451-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 280-199016 Method: SM 2320B Preparation: N/A

Units:

Lab Sample ID: MB 280-199016/6 280-199016 Instrument ID: WC-AT3 Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: 110113a.TXT

N/A Dilution: Leach Batch: Initial Weight/Volume: 1.0

Prep Date: N/A Leach Date: N/A

Analysis Date:

11/01/2013 1428

N/A

Analyte Result Qual MDL RL Total Alkalinity as CaCO3 1.13 1.1 5.0 Bicarbonate Alkalinity as CaCO3 1.13 J 1.1 5.0 Carbonate Alkalinity as CaCO3 ND 1.1 5.0

mg/L

Method: SM 2320B Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 280-199016 Preparation: N/A

LCS Lab Sample ID: LCS 280-199016/4 Analysis Batch: 280-199016 Instrument ID: WC-AT3

Client Matrix: Prep Batch: N/A Lab File ID: 110113a.TXT Water

Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0

11/01/2013 1419 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A Leach Date:

LCSD Lab Sample ID: LCSD 280-199016/5 Analysis Batch: 280-199016 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 110113a.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 11/01/2013 1424

Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD RPD Limit** LCS Qual LCSD Qual

Total Alkalinity as CaCO3 101 101 90 - 110 0 10

**Laboratory Control/** Method: SM 2320B Laboratory Duplicate Data Report - Batch: 280-199016 Preparation: N/A

LCS Lab Sample ID: LCS 280-199016/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-199016/5

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/01/2013 1419 Analysis Date: 11/01/2013 1424

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCS Spike LCSD Spike LCS **LCSD** Analyte **Amount** Amount Result/Qual Result/Qual 203 Total Alkalinity as CaCO3 200 200 202

Job Number: 280-48451-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 280-199619 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-199619/6 280-199619 Instrument ID: WC-AT3 Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: 110613a.TXT

N/A Dilution: Leach Batch: Initial Weight/Volume: 1.0

11/06/2013 1600 Units: Final Weight/Volume: Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Leach Date:

N/A

Analyte Result Qual MDL RL Total Alkalinity as CaCO3 6.01 1.1 5.0 Bicarbonate Alkalinity as CaCO3 5.40 1.1 5.0 Carbonate Alkalinity as CaCO3 ND 1.1 5.0

Method: SM 2320B Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 280-199619 Preparation: N/A

LCS Lab Sample ID: LCS 280-199619/4 Analysis Batch: 280-199619 Instrument ID: WC-AT3

110613a.TXT Client Matrix: Prep Batch: N/A Lab File ID: Water

Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0

11/06/2013 1553 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

LCSD Lab Sample ID: LCSD 280-199619/5 Analysis Batch: 280-199619 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 110613a.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

11/06/2013 1556 Analysis Date: Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

% Rec. Analyte LCS **LCSD** Limit **RPD RPD Limit** LCS Qual LCSD Qual

Total Alkalinity as CaCO3 98 93 90 - 110 5 10

**Laboratory Control/** Method: SM 2320B Laboratory Duplicate Data Report - Batch: 280-199619 Preparation: N/A

LCS Lab Sample ID: LCS 280-199619/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-199619/5

Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/06/2013 1553 Analysis Date: 11/06/2013 1556

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCS Spike LCSD Spike LCS **LCSD** Analyte **Amount** Amount Result/Qual Result/Qual Total Alkalinity as CaCO3 1000 1000 976 927

# **DATA REPORTING QUALIFIERS**

Client: Ecology and Environment, Inc. Job Number: 280-48451-1

| Lab Section       | Qualifier | Description                                                                                                    |
|-------------------|-----------|----------------------------------------------------------------------------------------------------------------|
| General Chemistry |           |                                                                                                                |
|                   | В         | Compound was found in the blank and sample.                                                                    |
|                   | ٨         | ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.   |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
|                   | Н         | Sample was prepped or analyzed beyond the specified holding time                                               |



# ANALYTICAL REPORT

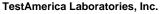
Job Number: 280-48516-1 Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release. Patrick J McEntee Senior Project Manager 11/26/2013 2:48 PM


Patrick J McEntee, Senior Project Manager 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 11/26/2013

Datul J. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





#### CASE NARRATIVE

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-48516-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### RECEIPT

The samples were received on 10/29/2013; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was C.

The samples were received on 10/29/2013 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 6 coolers at receipt time were 0.3° C, 1.2° C, 2.7° C, 3.2° C, 3.8° C and 4.2° C.

#### Except:

Sample MW-05 was received outside of the 48 hour holding time for 300\_48HR Nitrate/Nitrite analysis.

Sample MW-09 was received rapidly expiring for 300\_48HR Nitrate/Nitrite analysis

Two Trip Blank vials were received which were not listed on the COC. The Trip Blank was logged for 8260B.

One unpreserved liter amber bottle for sample MW-01 was received with a broken cap. The cap was replaced.

Sample MW-01 lists two H2SO4 preserved bottles, however only one H2SO4 bottle was received.

One of six VOA vials for sample MW-09 was received broken. Sufficient volume remains for analysis.

One of eighteen VOA vials for sample MW-04 was received broken. Sufficient volume remains for analysis.

Two of eighteen VOA vials for sample MW-04 have bubbles greater than 6mm in diameter.

One of six VOA vials for sample MW-01 has a bubble greater than 6mm in diameter.

Per a phone conversation with Jonathan Reeve on 10/30/13, sample MW-02 was activated for Anions and Alkalinity analysis. This analysis was not originally requested on the chain-of-custody (COC). The client is aware that the sample is outside of holding time for Nitrate/Nitrite analysis, and asked the laboratory to complete the analysis within 2x holding time.

The sample IDs on the container labels have a "-2013" suffix, i.e. MW-04-2013. The IDs on the COC do not, i.e. MW-04. The sample IDs were logged per the COC.

Some MS/MSD bottles for sample MW-04 list collection time 1500 or 1515. The MS/MSD volume was logged with collection time 1430, to match the parent sample.

Per client instruction on 11/1/2013, samples MW04 and MW05 were logged for Stable Water Isotopes and Oxygen, Stable Water Isotopes and Carbon and Radiocarbon Analysis of Water. This analysis was performed by IsoTech Laboratories, located at 1308 Parkland Court, Champaign IL, 61821-1826, TEL (217) 398-3490. The results for these analyses are reported under separate cover (280-48516-2).

### **VOLATILE ORGANIC COMPOUNDS (GC-MS)**

Samples TRIP BLANK (280-48516-1), MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 11/05/2013 and 11/08/2013.

The following sample was received with insufficient preservation (pH >2): MW-01 (280-48516-2). The pH taken at time of analysis was approximately 7 and all vials were of similar result.

Toluene was detected in method blank MB 280-199243/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

1,2-Dichloroethane-d4 (Surr) failed the surrogate recovery criteria high for MW-04MSD (280-48516-5MSD). Refer to the QC report for details. The parent sample's surrogate recovery was within limits and all spike recoveries were within control limits, therefore, the data have been reported.

No other difficulties were encountered during the volatiles analysis.

All other quality control parameters were within the acceptance limits.

#### **GASOLINE RANGE ORGANICS**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for gasoline range organics in accordance with EPA SW-846 Method 8015C - GRO. The samples were analyzed on 10/31/2013 and 11/01/2013.

The following sample was received with insufficient preservation (pH >2): MW-01 (280-48516-2). The pH taken at time of analysis was approximately 5 and all vials were of similar result.

No other difficulties were encountered during the GRO analysis.

All other quality control parameters were within the acceptance limits.

#### **DIESEL RANGE ORGANICS**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for Diesel Range Organics in accordance with EPA SW-846 Method 8015C - DRO. The samples were prepared on 10/29/2013 and analyzed on 10/31/2013.

o-Terphenyl (Surr) failed the surrogate recovery criteria high for MW-02 (280-48516-3). Refer to the QC report for details. Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

The following samples formed emulsions during the extraction procedure: MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4).

A portion of sample MW-01 (280-48516-2) was used for analysis, rather than testing the entire sample amount in the original container, due to a large amount of sediment being present in the sample container. As such, the required solvent rinse of the original container could not be performed.

It is the laboratory's standard procedure to aliquot aqueous samples gravimetrically assuming a density of 1g/mL. The density of the following sample was greater than 1g/mL: MW-01 (280-48516-2). The weight of the sample aliquot was divided by the density of the sample to calculate the volume of the sample extracted.

No other difficulties were encountered during the DRO analysis.

All other quality control parameters were within the acceptance limits.

#### **TOTAL METALS (ICP)**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for Total Metals (ICP) in accordance with EPA SW-846 Method 6010C. The samples were prepared on 10/30/2013 and analyzed on 11/01/2013.

No difficulties were encountered during the metals analysis.

All quality control parameters were within the acceptance limits.

#### **DISSOLVED METALS (ICPMS)**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for dissolved metals (ICPMS) in accordance with EPA SW-846 Methods 6020A. The samples were prepared and analyzed on 11/06/2013.

Copper was detected in method blank MB 280-198697/1-A at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Selenium failed the recovery criteria low for the MS of sample MW-04MS (280-48516-5) in batch 280-199679. Selenium and Silver failed the recovery criteria low for the MSD of sample MW-04MSD (280-48516-5) in batch 280-199679. Refer to the QC report for details.

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

#### **TOTAL METALS (ICPMS)**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for metals (ICPMS) in accordance with SW846 6020A. The samples were prepared on 10/30/2013 and analyzed on 10/31/2013 and 11/04/2013.

Copper and Thallium were detected in method blank MB 280-198463/1-A at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Selenium failed the recovery criteria low for the MS of sample MW-04MS (280-48516-5) in batch 280-199090. Selenium failed the recovery criteria low for the MSD of sample MW-04MSD (280-48516-5) in batch 280-199090. Refer to the QC report for details.

No other difficulties were encountered during the metals analysis.

All other quality control parameters were within the acceptance limits.

#### **DISSOLVED MERCURY**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for dissolved mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 11/12/2013.

No difficulties were encountered during the dissolved mercury analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL MERCURY**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for total mercury in accordance with EPA SW-846 Methods 7470A. The samples were prepared and analyzed on 10/31/2013.

No difficulties were encountered during the mercury analysis.

All quality control parameters were within the acceptance limits.

### HEM (Oil & Grease)

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for HEM (Oil & Grease)) in accordance with EPA Method 1664A. The samples were prepared and analyzed on 11/12/2013.

The following sample(s) was diluted due to the nature of the sample matrix: MW-02 (280-48516-3). Elevated reporting limits (RLs) are provided

HEM failed the recovery criteria low for the MS of sample MW-04MS (280-48516-5) in batch 490-121238. Refer to the QC report for details

No other difficulties were encountered during the HEM (Oil & Grease) analysis.

All other quality control parameters were within the acceptance limits.

### **ALKALINITY**

Samples MW-02 (280-48516-3), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for Alkalinity in accordance with SM20 2320B. The samples were analyzed on 11/01/2013 and 11/07/2013.

Bicarbonate Alkalinity as CaCO3 and Total Alkalinity as CaCO3 were detected in method blank MB 280-199016/6 at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Bicarbonate Alkalinity as CaCO3 and Total Alkalinity as CaCO3 were detected in method blank MB 280-199930/6 at levels that were above the method detection limit but below the reporting limit. The values should be considered estimates, and have been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Total Alkalinity as CaCO3 exceeded the RPD limit for the duplicate of sample MW-09DU (280-48516-7). Refer to the QC report for

details.

No other difficulties were encountered during the alkalinity analysis.

All other quality control parameters were within the acceptance limits.

#### **TOTAL DISSOLVED SOLIDS**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 11/01/2013.

No difficulties were encountered during the TDS analysis.

All quality control parameters were within the acceptance limits.

### ANIONS (28 DAYS)

Samples MW-02 (280-48516-3), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for anions (28 days) in accordance with EPA Method 300.0. The samples were analyzed on 10/29/2013, 10/30/2013 and 10/31/2013.

Samples MW-02 (280-48516-3)[5X] and MW-05 (280-48516-6)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the anions analysis.

All other quality control parameters were within the acceptance limits.

#### ANIONS (48 HOURS)

Samples MW-02 (280-48516-3), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for anions (48 hours) in accordance with EPA Method 300.0. The samples were analyzed on 10/29/2013 and 10/30/2013.

The request for Nitrate and Nitrite analysis on sample MW-05 (280-48516-6) was made after the holding time had expired. Samples MW-02 (280-48516-3) and MW-09 (280-48516-7) were received with the holding time rapidly expiring for Nitrate and Nitrite. Every effort was made to analyze the samples prior to the expiration of the holding time. Associated results are qualified "H".

No other difficulties were encountered during the anions analysis.

All other quality control parameters were within the acceptance limits.

### **TOTAL ORGANIC CARBON**

Samples MW-01 (280-48516-2), MW-02 (280-48516-3), MW-03 (280-48516-4), MW-04 (280-48516-5), MW-05 (280-48516-6) and MW-09 (280-48516-7) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 11/14/2013.

Total Organic Carbon - Average was detected in method blank MB 280-201021/5 at a level that was above the method detection limit but below the reporting limit. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged. Refer to the QC report for details.

Samples MW-01 (280-48516-2)[3.3X] and MW-03 (280-48516-4)[9X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the TOC analysis.

All other quality control parameters were within the acceptance limits.

## **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

|                |                  |               | Date/Time       | Date/Time       |
|----------------|------------------|---------------|-----------------|-----------------|
| Lab Sample ID  | Client Sample ID | Client Matrix | Sampled         | Received        |
| 280-48516-1TB  | TRIP BLANK       | Water         | 10/25/2013 0000 | 10/29/2013 0900 |
| 280-48516-2    | MW-01            | Water         | 10/25/2013 1730 | 10/29/2013 0900 |
| 280-48516-3    | MW-02            | Water         | 10/27/2013 1500 | 10/29/2013 0900 |
| 280-48516-4    | MW-03            | Water         | 10/25/2013 1300 | 10/29/2013 0900 |
| 280-48516-5    | MW-04            | Water         | 10/25/2013 1430 | 10/29/2013 0900 |
| 280-48516-5MS  | MW-04            | Water         | 10/25/2013 1430 | 10/29/2013 0900 |
| 280-48516-5MSD | MW-04            | Water         | 10/25/2013 1430 | 10/29/2013 0900 |
| 280-48516-6    | MW-05            | Water         | 10/25/2013 1445 | 10/29/2013 0900 |
| 280-48516-7    | MW-09            | Water         | 10/27/2013 1200 | 10/29/2013 0900 |

Job Number: 280-48516-1

| Lab Sample ID<br>Analyte | Client Sample ID   | Result  | Qualifier | Reporting<br>Limit | Units        | Method   |
|--------------------------|--------------------|---------|-----------|--------------------|--------------|----------|
| 280-48516-1TB            | TRIP BLANK         |         |           |                    |              |          |
| Toluene                  | TRIP BEARK         | 0.36    | JB        | 1.0                | ug/L         | 8260B    |
| 280-48516-2              | MW-01              |         |           |                    |              |          |
| Toluene                  | IVIVV-U I          | 0.91    | JB        | 1.0                | ug/L         | 8260B    |
|                          | anics (GRO)-C6-C10 | 21      | J         | 25                 | ug/L         | 8015C    |
| Diesel Range Organ       |                    | 5.1     | J         | 0.25               | mg/L         | 8015C    |
| Calcium                  | 103 [010-020]      | 100000  |           | 200                | ug/L         | 6010C    |
| Magnesium                |                    | 49000   |           | 200                | ug/L         | 6010C    |
| Potassium                |                    | 17000   |           | 3000               | ug/L         | 6010C    |
| Sodium                   |                    | 1800000 |           | 1000               | ug/L         | 6010C    |
| SiO2                     |                    | 100000  |           | 500                | ug/L         | 6010C    |
| Antimony                 |                    | 14      |           | 2.0                | ug/L<br>ug/L | 6020A    |
| Arsenic                  |                    | 93      |           | 5.0                | ug/L         | 6020A    |
| Barium                   |                    | 790     |           | 1.0                | ug/L         | 6020A    |
| Beryllium                |                    | 2.7     |           | 1.0                | ug/L         | 6020A    |
| Cadmium                  |                    | 1.4     |           | 1.0                | ug/L         | 6020A    |
| Chromium                 |                    | 230     |           | 2.0                | ug/L         | 6020A    |
| Cobalt                   |                    | 23      |           | 1.0                | ug/L         | 6020A    |
| Copper                   |                    | 65      | В         | 2.0                | ug/L         | 6020A    |
| Lead                     |                    | 47      | Ь         | 1.0                | ug/L         | 6020A    |
| Manganese                |                    | 1300    |           | 1.0                | ug/L         | 6020A    |
| Nickel                   |                    | 180     |           | 2.0                | ug/L         | 6020A    |
| Selenium                 |                    | 1.9     | J         | 5.0                | ug/L         | 6020A    |
| Silver                   |                    | 0.69    | J         | 5.0                | ug/L         | 6020A    |
| Thallium                 |                    | 0.68    | J B       | 1.0                | ug/L         | 6020A    |
| Vanadium                 |                    | 88      | 3.5       | 5.0                | ug/L         | 6020A    |
| Zinc                     |                    | 290     |           | 10                 | ug/L         | 6020A    |
| Mercury                  |                    | 0.082   | J         | 0.20               | ug/L         | 7470A    |
| HEM (Oil & Grease)       |                    | 8.0     | J         | 3.8                | mg/L         | 1664A    |
| Total Organic Carbo      | n - Average        | 130     | В         | 3.3                | mg/L         | 9060A    |
| Total Dissolved Solid    | -                  | 5700    | Б         | 83                 | mg/L         | SM 2540C |
| Dissolved                |                    |         |           |                    |              |          |
| Antimony                 |                    | 14      |           | 2.0                | ug/L         | 6020A    |
| Arsenic                  |                    | 87      |           | 5.0                | ug/L         | 6020A    |
| Barium                   |                    | 150     |           | 1.0                | ug/L         | 6020A    |
| Beryllium                |                    | 0.10    | J         | 1.0                | ug/L         | 6020A    |
| Cadmium                  |                    | 0.21    | J         | 1.0                | ug/L         | 6020A    |
| Chromium                 |                    | 0.59    | J         | 2.0                | ug/L         | 6020A    |
| Cobalt                   |                    | 0.91    | J         | 1.0                | ug/L         | 6020A    |
| Manganese                |                    | 200     |           | 1.0                | ug/L         | 6020A    |
| Nickel                   |                    | 11      |           | 2.0                | ug/L         | 6020A    |
| Selenium                 |                    | 0.81    | J         | 5.0                | ug/L         | 6020A    |
| Silver                   |                    | 0.092   | J         | 5.0                | ug/L         | 6020A    |
| Thallium                 |                    | 0.14    | J         | 1.0                | ug/L         | 6020A    |

Job Number: 280-48516-1

Client: Ecology and Environment, Inc.

Lab Sample ID **Client Sample ID** Reporting Analyte Result Qualifier Limit Units Method Vanadium 5.0 5.0 ug/L 6020A Zinc 6.9 J 10 ug/L 6020A

Job Number: 280-48516-1

| Lab Sample ID Client Sample ID Analyte | Result | Qualifier | Reporting<br>Limit | Units | Method   |
|----------------------------------------|--------|-----------|--------------------|-------|----------|
| 280-48516-3 MW-02                      |        |           |                    |       |          |
| Toluene                                | 0.99   | JB        | 1.0                | ug/L  | 8260B    |
| Diesel Range Organics [C10-C28]        | 19     |           | 0.24               | mg/L  | 8015C    |
| Calcium                                | 140000 |           | 200                | ug/L  | 6010C    |
| Magnesium                              | 58000  |           | 200                | ug/L  | 6010C    |
| Potassium                              | 6100   |           | 3000               | ug/L  | 6010C    |
| Sodium                                 | 350000 |           | 1000               | ug/L  | 6010C    |
| SiO2                                   | 74000  |           | 500                | ug/L  | 6010C    |
| Antimony                               | 5.1    |           | 2.0                | ug/L  | 6020A    |
| Arsenic                                | 73     |           | 5.0                | ug/L  | 6020A    |
| Barium                                 | 740    |           | 1.0                | ug/L  | 6020A    |
| Beryllium                              | 3.8    |           | 1.0                | ug/L  | 6020A    |
| Cadmium                                | 0.77   | J         | 1.0                | ug/L  | 6020A    |
| Chromium                               | 38     | -         | 2.0                | ug/L  | 6020A    |
| Cobalt                                 | 32     |           | 1.0                | ug/L  | 6020A    |
| Copper                                 | 93     | В         | 2.0                | ug/L  | 6020A    |
| Lead                                   | 38     | D         | 1.0                | ug/L  | 6020A    |
| Manganese                              | 1600   |           | 1.0                | ug/L  | 6020A    |
| Nickel                                 | 100    |           | 2.0                | ug/L  | 6020A    |
| Selenium                               | 6.5    |           | 5.0                | =     | 6020A    |
|                                        | 0.18   |           | 5.0                | ug/L  | 6020A    |
| Silver                                 |        | J         |                    | ug/L  |          |
| Thallium                               | 0.49   | JB        | 1.0                | ug/L  | 6020A    |
| Vanadium                               | 110    |           | 5.0                | ug/L  | 6020A    |
| Zinc                                   | 350    |           | 10                 | ug/L  | 6020A    |
| Mercury                                | 0.20   |           | 0.20               | ug/L  | 7470A    |
| HEM (Oil & Grease)                     | 19     |           | 7.7                | mg/L  | 1664A    |
| Nitrate as N                           | 0.53   | Н         | 0.50               | mg/L  | 300.0    |
| Chloride                               | 21     |           | 3.0                | mg/L  | 300.0    |
| Nitrite as N                           | 0.59   | Н         | 0.50               | mg/L  | 300.0    |
| Fluoride                               | 8.2    |           | 0.50               | mg/L  | 300.0    |
| Sulfate                                | 180    |           | 25                 | mg/L  | 300.0    |
| Total Organic Carbon - Average         | 37     | В         | 1.0                | mg/L  | 9060A    |
| Total Alkalinity as CaCO3              | 710    | В         | 5.0                | mg/L  | SM 2320B |
| Bicarbonate Alkalinity as CaCO3        | 710    | В         | 5.0                | mg/L  | SM 2320B |
| Total Dissolved Solids                 | 1100   |           | 67                 | mg/L  | SM 2540C |
| Dissolved                              |        |           |                    |       |          |
| Antimony                               | 8.1    |           | 2.0                | ug/L  | 6020A    |
| Arsenic                                | 19     |           | 5.0                | ug/L  | 6020A    |
| Barium                                 | 120    |           | 1.0                | ug/L  | 6020A    |
| Cobalt                                 | 3.1    |           | 1.0                | ug/L  | 6020A    |
| Copper                                 | 14     | В         | 2.0                | ug/L  | 6020A    |
| Manganese                              | 36     |           | 1.0                | ug/L  | 6020A    |
| Nickel                                 | 59     |           | 2.0                | ug/L  | 6020A    |
| Selenium                               | 5.8    |           | 5.0                | ug/L  | 6020A    |
| Thallium                               | 0.057  | J         | 1.0                | ug/L  | 6020A    |
| Vanadium                               | 5.9    |           | 5.0                | ug/L  | 6020A    |
| Zinc                                   | 17     |           | 10                 | ug/L  | 6020A    |
|                                        |        |           | -                  | - 3   |          |

Job Number: 280-48516-1

| Lab Sample ID Client Sample ID Analyte | Result  | Qualifier | Reporting<br>Limit | Units | Method   |
|----------------------------------------|---------|-----------|--------------------|-------|----------|
|                                        |         |           |                    |       |          |
| 280-48516-4 MW-03                      |         |           |                    |       |          |
| Benzene                                | 0.23    | J         | 1.0                | ug/L  | 8260B    |
| Toluene                                | 3.9     | В         | 1.0                | ug/L  | 8260B    |
| Ethylbenzene                           | 0.28    | J         | 1.0                | ug/L  | 8260B    |
| Gasoline Range Organics (GRO)-C6-C10   | 59      |           | 25                 | ug/L  | 8015C    |
| Diesel Range Organics [C10-C28]        | 4.1     |           | 0.24               | mg/L  | 8015C    |
| Calcium                                | 65000   |           | 200                | ug/L  | 6010C    |
| Magnesium                              | 54000   |           | 200                | ug/L  | 6010C    |
| Potassium                              | 9200    |           | 3000               | ug/L  | 6010C    |
| Sodium                                 | 1200000 |           | 1000               | ug/L  | 6010C    |
| SiO2                                   | 64000   |           | 500                | ug/L  | 6010C    |
| Antimony                               | 4.5     |           | 2.0                | ug/L  | 6020A    |
| Arsenic                                | 37      |           | 5.0                | ug/L  | 6020A    |
| Barium                                 | 480     |           | 1.0                | ug/L  | 6020A    |
| Beryllium                              | 0.91    | J         | 1.0                | ug/L  | 6020A    |
| Cadmium                                | 0.34    | J         | 1.0                | ug/L  | 6020A    |
| Chromium                               | 140     |           | 2.0                | ug/L  | 6020A    |
| Cobalt                                 | 14      |           | 1.0                | ug/L  | 6020A    |
| Copper                                 | 22      | В         | 2.0                | ug/L  | 6020A    |
| Lead                                   | 15      |           | 1.0                | ug/L  | 6020A    |
| Manganese                              | 740     |           | 1.0                | ug/L  | 6020A    |
| Nickel                                 | 100     |           | 2.0                | ug/L  | 6020A    |
| Selenium                               | 4.2     | J         | 5.0                | ug/L  | 6020A    |
| Silver                                 | 0.23    | J         | 5.0                | ug/L  | 6020A    |
| Thallium                               | 0.27    | JB        | 1.0                | ug/L  | 6020A    |
| Vanadium                               | 54      |           | 5.0                | ug/L  | 6020A    |
| Zinc                                   | 110     |           | 10                 | ug/L  | 6020A    |
| HEM (Oil & Grease)                     | 5.0     |           | 3.7                | mg/L  | 1664A    |
| Total Organic Carbon - Average         | 410     | В         | 9.0                | mg/L  | 9060A    |
| Total Dissolved Solids                 | 3900    |           | 40                 | mg/L  | SM 2540C |
| Dissolved                              |         |           |                    |       |          |
| Antimony                               | 4.6     |           | 2.0                | ug/L  | 6020A    |
| Arsenic                                | 26      |           | 5.0                | ug/L  | 6020A    |
| Barium                                 | 220     |           | 1.0                | ug/L  | 6020A    |
| Chromium                               | 9.7     |           | 2.0                | ug/L  | 6020A    |
| Cobalt                                 | 1.0     |           | 1.0                | ug/L  | 6020A    |
| Manganese                              | 290     |           | 1.0                | ug/L  | 6020A    |
| Nickel                                 | 16      |           | 2.0                | ug/L  | 6020A    |
| Selenium                               | 3.3     | J         | 5.0                | ug/L  | 6020A    |
| Vanadium                               | 4.1     | J         | 5.0                | ug/L  | 6020A    |
| Zinc                                   | 2.5     | J         | 10                 | ug/L  | 6020A    |
|                                        |         |           |                    | -     |          |

Job Number: 280-48516-1

| Benzene   3.0   1.0   ug/L   8260B   Toluene   5.1   B   1.0   ug/L   8260B   Ethylbenzene   1.1   1.0   ug/L   8260B   Ethylbenzene   1.1   1.0   ug/L   8260B   Ethylbenzene   1.1   1.0   ug/L   8260B   S260B   Lab Sample ID Client Sample ID Analyte                                      | Result | Qualifier | Reporting<br>Limit | Units | Method   |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------|-----------|--------------------|-------|----------|-------|
| Benzene         3.0         1.0         ug/L         8260B           Toluene         5.1         B         1.0         ug/L         8260B           Ethylbenzene         1.1         1.0         ug/L         8260B           Xylenes, Total         0.22         J         2.0         ug/L         8260B           Gasoline Range Organics (GRO)-C6-C10         38         25         ug/L         8015C           Calcium         2000         ug/L         6010C         6010C           Magnesium         1600         200         ug/L         6010C           Potassium         500000         J         3000         ug/L         6010C           SiO2         16000         J         3000         ug/L         6010C           SiO2         16000         J         300         ug/L         6010C           Antimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         2.2         B         2.0         ug/L         6020A           Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 280-48516-5 MW-04                                                           |        |           |                    |       |          |       |
| Toluene         5.1         B         1.0         ug/L         8260B           Ethylbenzene         1.1         1.0         ug/L         8260B           Xylenes, Total         0.22         J         2.0         ug/L         8260B           Gasoline Range Organics (GRO)-C6-C10         38         25         ug/L         8015C           Diesel Range Organics (C10-C28]         0.41         200         ug/L         6010C           Calcium         1600         200         ug/L         6010C           Magnesium         1600         200         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           Sdium         500000         1000         ug/L         6010C           Artimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Cobalt         0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             | 3.0    |           | 1.0                | ug/L  | 8260B    |       |
| Ethylbenzene         1.1         1.0         ug/L         8260B           Xylenes, Total         0.22         J         2.0         ug/L         8260B           Gasoline Range Organics (GRO)-C6-C10         38         25         ug/L         8015C           Diesel Range Organics [C10-C28]         0.41         0.24         mg/L         8015C           Calcium         2000         ug/L         6010C         6010C           Magnesium         1600         J         3000         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           SiO2         16000         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Arsenic         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Chromium         0.23         J         1.0         ug/L         6020A           Cobat         0.23         J         1.0         ug/L         6020A     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toluene                                                                     |        | В         | 1.0                | -     | 8260B    |       |
| Xylenes, Total         0.22         J         2.0         ug/L         8260B           Gasoline Range Organics (GRO)-C6-C10         38         25         ug/L         8015C           Diesel Range Organics [C10-C28]         0.41         0.24         mg/L         8015C           Calcium         2000         ug/L         6010C           Magnesium         1600         200         ug/L         6010C           Potassium         500000         1000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           SiO2         16000         500         ug/L         6010C           Arsenic         16000         500         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Nickel         2.2         2.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ethylbenzene                                                                | 1.1    |           | 1.0                | -     | 8260B    |       |
| Gasoline Range Organics (GRO)-C6-C10         38         25         ug/L         8015C           Diesel Range Organics [C10-C28]         0.41         0.24         mg/L         8015C           Calcium         2000         200         ug/L         6010C           Magnesium         1600         200         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           SiO2         16000         57         500         ug/L         6010C           Arsenic         15         50         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Choper         2.4         B         2.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Mickel         2.2         ug/L         6020A           Vanadium         0.89         J <td>-</td> <td>0.22</td> <td>J</td> <td></td> <td>-</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                           | 0.22   | J         |                    | -     |          |       |
| Diesel Range Organics [C10-C28]         0.41         0.24         mg/L         8015C           Calcium         2000         ug/L         6010C           Magnesium         1800         200         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         16000         ug/L         6010C           SiO2         16000         5.7         20         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         1.0         ug/L         6020A           Choper         2.4         B         2.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Total Organic Carbon - Average         25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             | 38     |           |                    | -     | 8015C    |       |
| Calcium         2000         ug/L         6010C           Magnesium         1600         200         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           SiO2         16000         500         ug/L         6010C           Artimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             | 0.41   |           | 0.24               | -     | 8015C    |       |
| Magnesium         1600         200         ug/L         6010C           Potassium         1400         J         3000         ug/L         6010C           Sodium         500000         1000         ug/L         6010C           SiO2         16000         500         ug/L         6010C           Artimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Total Organic Carbon - Average         25 <td< td=""><td></td><td>2000</td><td></td><td>200</td><td>ug/L</td><td>6010C</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | 2000   |           | 200                | ug/L  | 6010C    |       |
| Potassium         1400         J         3000         ug/L         6010C           Sodium         5000000         -         1000         ug/L         6010C           SiO2         16000         -         500         ug/L         6010C           Antimony         5.7         -         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnesium                                                                   | 1600   |           | 200                | -     | 6010C    |       |
| Sodium         500000         10000         ug/L         6010C           SiO2         16000         500         ug/L         6010C           Antimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         -         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.990         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         ug/L         6020A <td colspan<="" td=""><td>_</td><td>1400</td><td>J</td><td>3000</td><td>-</td><td>6010C</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <td>_</td> <td>1400</td> <td>J</td> <td>3000</td> <td>-</td> <td>6010C</td> | _      | 1400      | J                  | 3000  | -        | 6010C |
| SiO2         16000         500         ug/L         6010C           Antimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         140         -         20         ug/L         6020A           Arsenic         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sodium                                                                      | 500000 |           | 1000               | -     | 6010C    |       |
| Antimony         5.7         2.0         ug/L         6020A           Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.090         J B         1.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         14         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Arsenic         11 <t< td=""><td>SiO2</td><td>16000</td><td></td><td>500</td><td>-</td><td>6010C</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SiO2                                                                        | 16000  |           | 500                | -     | 6010C    |       |
| Arsenic         15         5.0         ug/L         6020A           Barium         14         1.0         ug/L         6020A           Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Vanadium         0.990         J         1.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         6020A           Arsenic         11         5.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antimony                                                                    | 5.7    |           | 2.0                | -     | 6020A    |       |
| Chromium         0.66         J         2.0         ug/L         6020A           Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Thallium         0.090         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         5M 2540C           Dissolved           Arsenic         11         5.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Arsenic                                                                     | 15     |           | 5.0                | ug/L  | 6020A    |       |
| Cobalt         0.23         J         1.0         ug/L         6020A           Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Thallium         0.090         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved           Arsenic         11         5.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Barium                                                                      | 14     |           | 1.0                | ug/L  | 6020A    |       |
| Copper         2.4         B         2.0         ug/L         6020A           Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Thallium         0.090         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chromium                                                                    | 0.66   | J         | 2.0                | ug/L  | 6020A    |       |
| Lead         0.89         J         1.0         ug/L         6020A           Manganese         17         1.0         ug/L         6020A           Nickel         2.2         2.0         ug/L         6020A           Thallium         0.090         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cobalt                                                                      | 0.23   | J         | 1.0                | ug/L  | 6020A    |       |
| Manganese       17       1.0       ug/L       6020A         Nickel       2.2       2.0       ug/L       6020A         Thallium       0.090       J B       1.0       ug/L       6020A         Vanadium       0.89       J       5.0       ug/L       6020A         Zinc       12       10       ug/L       6020A         Total Organic Carbon - Average       25       B       1.0       mg/L       9060A         Total Dissolved Solids       1400       20       mg/L       SM 2540C         Dissolved         Antimony       5.0       2.0       ug/L       6020A         Arsenic       11       5.0       ug/L       6020A         Barium       12       1.0       ug/L       6020A         Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Copper                                                                      | 2.4    | В         | 2.0                | ug/L  | 6020A    |       |
| Nickel       2.2       2.0       ug/L       6020A         Thallium       0.090       J B       1.0       ug/L       6020A         Vanadium       0.89       J       5.0       ug/L       6020A         Zinc       12       10       ug/L       6020A         Total Organic Carbon - Average       25       B       1.0       mg/L       9060A         Total Dissolved Solids       1400       20       mg/L       SM 2540C         Dissolved         Antimony       5.0       2.0       ug/L       6020A         Arsenic       11       5.0       ug/L       6020A         Barium       12       1.0       ug/L       6020A         Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead                                                                        | 0.89   | J         | 1.0                | ug/L  | 6020A    |       |
| Thallium         0.090         J B         1.0         ug/L         6020A           Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese                                                                   | 17     |           | 1.0                | ug/L  | 6020A    |       |
| Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved         SM 2540C         Ug/L         6020A           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nickel                                                                      | 2.2    |           | 2.0                | ug/L  | 6020A    |       |
| Vanadium         0.89         J         5.0         ug/L         6020A           Zinc         12         10         ug/L         6020A           Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved         SM 2540C         Ug/L         6020A           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Thallium                                                                    | 0.090  | JB        | 1.0                | ug/L  | 6020A    |       |
| Total Organic Carbon - Average         25         B         1.0         mg/L         9060A           Total Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vanadium                                                                    | 0.89   | J         | 5.0                |       | 6020A    |       |
| Dissolved Solids         1400         20         mg/L         SM 2540C           Dissolved         SM 2540C         Dissolved         SM 2540C           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zinc                                                                        | 12     |           | 10                 | ug/L  | 6020A    |       |
| Dissolved           Antimony         5.0         2.0         ug/L         6020A           Arsenic         11         5.0         ug/L         6020A           Barium         12         1.0         ug/L         6020A           Manganese         7.9         1.0         ug/L         6020A           Nickel         0.51         J         2.0         ug/L         6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Organic Carbon - Average                                              | 25     | В         | 1.0                | mg/L  | 9060A    |       |
| Antimony       5.0       2.0       ug/L       6020A         Arsenic       11       5.0       ug/L       6020A         Barium       12       1.0       ug/L       6020A         Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Dissolved Solids                                                      | 1400   |           | 20                 | mg/L  | SM 2540C |       |
| Arsenic       11       5.0       ug/L       6020A         Barium       12       1.0       ug/L       6020A         Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dissolved                                                                   |        |           |                    |       |          |       |
| Barium       12       1.0       ug/L       6020A         Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Antimony                                                                    | 5.0    |           | 2.0                | ug/L  | 6020A    |       |
| Manganese       7.9       1.0       ug/L       6020A         Nickel       0.51       J       2.0       ug/L       6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Arsenic                                                                     | 11     |           | 5.0                | ug/L  | 6020A    |       |
| Nickel 0.51 J 2.0 ug/L 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Barium                                                                      | 12     |           | 1.0                | ug/L  | 6020A    |       |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Manganese                                                                   | 7.9    |           | 1.0                | ug/L  | 6020A    |       |
| Zinc 4.5 J 10 ug/L 6020A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nickel                                                                      | 0.51   | J         | 2.0                | ug/L  | 6020A    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zinc                                                                        | 4.5    | J         | 10                 | ug/L  | 6020A    |       |

Job Number: 280-48516-1

| Lab Sample ID Client Sample ID Analyte | Result | Qualifier | Reporting<br>Limit | Units        | Method   |
|----------------------------------------|--------|-----------|--------------------|--------------|----------|
| 280-48516-6 MW-05                      |        |           |                    |              |          |
| Benzene                                | 2.8    |           | 1.0                | ug/L         | 8260B    |
| Toluene                                | 5.1    | В         | 1.0                | ug/L         | 8260B    |
| Ethylbenzene                           | 0.96   | J         | 1.0                | ug/L         | 8260B    |
| Xylenes, Total                         | 0.30   | J         | 2.0                | ug/L         | 8260B    |
| Gasoline Range Organics (GRO)-C6-C10   | 37     |           | 25                 | ug/L         | 8015C    |
| Diesel Range Organics [C10-C28]        | 0.42   |           | 0.24               | mg/L         | 8015C    |
| Calcium                                | 2200   |           | 200                | ug/L         | 6010C    |
| Magnesium                              | 1700   |           | 200                | ug/L         | 6010C    |
| Potassium                              | 1700   | J         | 3000               | ug/L         | 6010C    |
| Sodium                                 | 520000 |           | 1000               | ug/L         | 6010C    |
| SiO2                                   | 17000  |           | 500                | ug/L         | 6010C    |
| Antimony                               | 5.4    |           | 2.0                | ug/L         | 6020A    |
| Arsenic                                | 14     |           | 5.0                | ug/L         | 6020A    |
| Barium                                 | 15     |           | 1.0                | ug/L         | 6020A    |
| Beryllium                              | 0.10   | J         | 1.0                | ug/L         | 6020A    |
| Chromium                               | 0.84   | J         | 2.0                | ug/L         | 6020A    |
| Cobalt                                 | 0.24   | J         | 1.0                | ug/L         | 6020A    |
| Copper                                 | 1.6    | JB        | 2.0                | ug/L         | 6020A    |
| Lead                                   | 0.88   | J         | 1.0                | ug/L         | 6020A    |
| Manganese                              | 18     |           | 1.0                | ug/L         | 6020A    |
| Nickel                                 | 1.4    | J         | 2.0                | ug/L         | 6020A    |
| Thallium                               | 0.15   | JB        | 1.0                | ug/L         | 6020A    |
| Vanadium                               | 1.3    | J         | 5.0                | ug/L         | 6020A    |
| Zinc                                   | 11     |           | 10                 | ug/L         | 6020A    |
| HEM (Oil & Grease)                     | 1.3    | J         | 3.8                | mg/L         | 1664A    |
| Chloride                               | 63     |           | 15                 | mg/L         | 300.0    |
| Fluoride                               | 2.3    |           | 0.50               | mg/L         | 300.0    |
| Sulfate                                | 250    |           | 25                 | mg/L         | 300.0    |
| Total Organic Carbon - Average         | 25     | В         | 1.0                | mg/L         | 9060A    |
| Total Alkalinity as CaCO3              | 770    | В         | 5.0                | mg/L         | SM 2320B |
| Bicarbonate Alkalinity as CaCO3        | 430    | В         | 5.0                | mg/L         | SM 2320B |
| Carbonate Alkalinity as CaCO3          | 340    | _         | 5.0                | mg/L         | SM 2320B |
| Total Dissolved Solids                 | 1400   |           | 20                 | mg/L         | SM 2540C |
| Dissolved                              |        |           |                    |              |          |
| Antimony                               | 4.2    |           | 2.0                | ug/L         | 6020A    |
| Arsenic                                | 9.7    |           | 5.0                | ug/L         | 6020A    |
| Barium                                 | 13     |           | 1.0                | ug/L         | 6020A    |
| Manganese                              | 7.8    |           | 1.0                | ug/L         | 6020A    |
| Nickel                                 | 0.47   | J         | 2.0                | ug/L         | 6020A    |
| Thallium                               | 0.080  | J         | 1.0                | ug/L         | 6020A    |
| Zinc                                   | 4.4    | J         | 1.0                | ug/L<br>ug/L | 6020A    |
| ZIIIO                                  | 7.7    | J         | 10                 | ug/L         | 00207    |

Job Number: 280-48516-1

| Lab Sample ID<br>Analyte        | Client Sample ID | Result | Qualifier | Reporting<br>Limit | Units | Method   |
|---------------------------------|------------------|--------|-----------|--------------------|-------|----------|
|                                 |                  |        |           | -                  |       |          |
| 280-48516-7                     | MW-09            |        |           |                    |       |          |
| Toluene                         |                  | 0.75   | J         | 1.0                | ug/L  | 8260B    |
| Calcium                         |                  | 180    | J         | 200                | ug/L  | 6010C    |
| Magnesium                       |                  | 44     | J         | 200                | ug/L  | 6010C    |
| Sodium                          |                  | 620    | J         | 1000               | ug/L  | 6010C    |
| SiO2                            |                  | 110    | J         | 500                | ug/L  | 6010C    |
| Antimony                        |                  | 0.76   | J         | 2.0                | ug/L  | 6020A    |
| Barium                          |                  | 1.4    |           | 1.0                | ug/L  | 6020A    |
| Chromium                        |                  | 0.66   | J         | 2.0                | ug/L  | 6020A    |
| Copper                          |                  | 0.67   | JB        | 2.0                | ug/L  | 6020A    |
| Lead                            |                  | 0.29   | J         | 1.0                | ug/L  | 6020A    |
| Manganese                       |                  | 0.89   | J         | 1.0                | ug/L  | 6020A    |
| Nickel                          |                  | 0.48   | J         | 2.0                | ug/L  | 6020A    |
| Zinc                            |                  | 4.0    | J         | 10                 | ug/L  | 6020A    |
| Chloride                        |                  | 0.42   | J         | 3.0                | mg/L  | 300.0    |
| Sulfate                         |                  | 0.58   | J         | 5.0                | mg/L  | 300.0    |
| Total Organic Carb              | oon - Average    | 0.65   | JB        | 1.0                | mg/L  | 9060A    |
| Total Alkalinity as CaCO3       |                  | 3.6    | JB        | 5.0                | mg/L  | SM 2320B |
| Bicarbonate Alkalinity as CaCO3 |                  | 3.6    | JB        | 5.0                | mg/L  | SM 2320B |

### **METHOD SUMMARY**

Job Number: 280-48516-1

Client: Ecology and Environment, Inc.

| Description                                                                                   | Lab Location       | Method      | Preparation Method         |
|-----------------------------------------------------------------------------------------------|--------------------|-------------|----------------------------|
| Matrix: Water                                                                                 |                    |             |                            |
| Volatile Organic Compounds (GC/MS) Purge and Trap                                             | TAL DEN<br>TAL DEN | SW846 8260B | SW846 5030B                |
| Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)                      | TAL DEN            | SW846 8015C |                            |
| Purge and Trap                                                                                | TAL DEN            |             | SW846 5030C                |
| Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)                        | TAL DEN            | SW846 8015C |                            |
| Liquid-Liquid Extraction (Separatory Funnel)                                                  | TAL DEN            |             | SW846 3510C                |
| Metals (ICP) Preparation, Total Metals                                                        | TAL DEN<br>TAL DEN | SW846 6010C | SW846 3010A                |
| Metals (ICP/MS)  Preparation, Total Recoverable or Dissolved Metals  Sample Filtration, Field | TAL DEN<br>TAL DEN | SW846 6020A | SW846 3005A<br>FIELD_FLTRD |
| Metals (ICP/MS) Preparation, Total Metals                                                     | TAL DEN<br>TAL DEN | SW846 6020A | SW846 3020A                |
| Mercury (CVAA) Preparation, Mercury                                                           | TAL DEN<br>TAL DEN | SW846 7470A | SW846 7470A                |
| Mercury (CVAA) Preparation, Mercury Sample Filtration, Field                                  | TAL DEN<br>TAL DEN | SW846 7470A | SW846 7470A<br>FIELD_FLTRD |
| Anions, Ion Chromatography                                                                    | TAL DEN            | MCAWW 300.0 |                            |
| Organic Carbon, Total (TOC)                                                                   | TAL DEN            | SW846 9060A |                            |
| Alkalinity                                                                                    | TAL DEN            | SM SM 2320B |                            |
| Solids, Total Dissolved (TDS)                                                                 | TAL DEN            | SM SM 2540C |                            |
| HEM and SGT-HEM HEM and SGT-HEM (SPE)                                                         | TAL NSH<br>TAL NSH | 1664A 1664A | 1664A 1664A                |

### Lab References:

TAL DEN = TestAmerica Denver

TAL NSH = TestAmerica Nashville

#### **Method References:**

1664A = EPA-821-98-002

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# METHOD / ANALYST SUMMARY

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

| Method                     | Analyst                              | Analyst ID |
|----------------------------|--------------------------------------|------------|
| SW846 8260B<br>SW846 8260B | Berger, Brent B<br>Tinkham, Sarah A  | BBB<br>SAT |
| SW846 8015C                | Byl, Amelia M                        | AMB1       |
| SW846 8015C                | Birdsell, Matthew R                  | MRB        |
| SW846 6010C                | Scott, Samantha J                    | SJS        |
| SW846 6020A                | Trudell, Lynn-Anne M                 | LMT        |
| SW846 7470A<br>SW846 7470A | Mooney, Joseph C<br>Rhoades, Chris R | JM<br>CRR  |
| 1664A 1664A                | Dunn, Bradley                        | BAD        |
| MCAWW 300.0<br>MCAWW 300.0 | Allen, Andrew J<br>Phan, Thu L       | AJA<br>TLP |
| SW846 9060A                | Bandy, Darlene F                     | DFB        |
| SM SM 2320B                | Hoefler, Alexandra F                 | AFH        |
| SM SM 2540C                | Benson, Alex F                       | AFB        |

## **Analytical Data**

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 280-48516-1TB Date Sampled: 10/25/2013 0000

Client Matrix: Water Date Received: 10/29/2013 0900

Analysis Method: 8260B Analysis Batch: 280-199243 Instrument ID: VMS\_H
Prep Method: 5030B Prep Batch: N/A Lab File ID: H7489.D
Dilution: 1.0 Initial Weight/Volume: 20 mL

Dilution: 1.0 Initial Weight/Volume: 20 mL Analysis Date: 11/05/2013 0006 Final Weight/Volume: 20 mL

Prep Date: 11/05/2013 0006

| Analyte             | Result (ug/L) | Qualifier | MDL  | RL  |  |
|---------------------|---------------|-----------|------|-----|--|
| Benzene             | ND            |           | 0.16 | 1.0 |  |
| Toluene             | 0.36          | JB        | 0.17 | 1.0 |  |
| m-Xylene & p-Xylene | ND            |           | 0.34 | 2.0 |  |
| o-Xylene            | ND            |           | 0.19 | 1.0 |  |
| Ethylbenzene        | ND            |           | 0.16 | 1.0 |  |
| Naphthalene         | ND            |           | 0.22 | 1.0 |  |
| Xylenes, Total      | ND            |           | 0.19 | 2.0 |  |

| Surrogate                    | %Rec | Qualifier | Acceptance Limits |
|------------------------------|------|-----------|-------------------|
| 1,2-Dichloroethane-d4 (Surr) | 113  |           | 70 - 127          |
| Toluene-d8 (Surr)            | 92   |           | 80 - 125          |
| 4-Bromofluorobenzene (Surr)  | 94   |           | 78 - 120          |
| Dibromofluoromethane (Surr)  | 98   |           | 77 - 120          |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-01

 Lab Sample ID:
 280-48516-2
 Date Sampled: 10/25/2013 1730

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                              |                                    | 8260B Volatile Orga | nic Compounds | (GC/MS)   |                      |            |
|------------------------------|------------------------------------|---------------------|---------------|-----------|----------------------|------------|
| Analysis Method:             | 8260B                              | Analysis Batch:     | 280-199243    | In        | strument ID:         | VMS_H      |
| Prep Method:                 | 5030B                              | Prep Batch:         | N/A           | La        | ab File ID:          | H7490.D    |
| Dilution:                    | 1.0                                |                     |               | In        | itial Weight/Volume: | 20 mL      |
| Analysis Date:<br>Prep Date: | 11/05/2013 0028<br>11/05/2013 0028 |                     |               | Fi        | nal Weight/Volume:   | 20 mL      |
| Analyte                      |                                    | Result (u           | g/L) G        | Qualifier | MDL                  | RL         |
| Benzene                      |                                    | ND                  |               |           | 0.16                 | 1.0        |
| Toluene                      |                                    | 0.91                | J             | В         | 0.17                 | 1.0        |
| m-Xylene & p-Xyler           | ne                                 | ND                  |               |           | 0.34                 | 2.0        |
| o-Xylene                     |                                    | ND                  |               |           | 0.19                 | 1.0        |
| Ethylbenzene                 |                                    | ND                  |               |           | 0.16                 | 1.0        |
| Naphthalene                  |                                    | ND                  |               |           | 0.22                 | 1.0        |
| Xylenes, Total               |                                    | ND                  |               |           | 0.19                 | 2.0        |
| Surrogate                    |                                    | %Rec                | C             | Qualifier | Accepta              | nce Limits |
| 1,2-Dichloroethane           | -d4 (Surr)                         | 119                 |               |           | 70 - 127             |            |
| Toluene-d8 (Surr)            |                                    | 98                  |               |           | 80 - 125             |            |
| 4-Bromofluorobenz            | ene (Surr)                         | 94                  |               |           | 78 - 120             |            |
| Dibromofluorometh            | ane (Surr)                         | 101                 |               |           | 77 - 120             |            |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-02

 Lab Sample ID:
 280-48516-3
 Date Sampled: 10/27/2013 1500

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                              |                                    | 8260B Volatile Orga | nic Compounds | (GC/MS)        |                     |            |
|------------------------------|------------------------------------|---------------------|---------------|----------------|---------------------|------------|
| Analysis Method:             | 8260B                              | Analysis Batch:     | 280-199243    | Instrument ID: |                     | VMS_H      |
| Prep Method:                 | 5030B                              | Prep Batch:         | N/A           | La             | b File ID:          | H7491.D    |
| Dilution:                    | 1.0                                |                     |               | Init           | tial Weight/Volume: | 20 mL      |
| Analysis Date:<br>Prep Date: | 11/05/2013 0050<br>11/05/2013 0050 |                     |               | Fir            | nal Weight/Volume:  | 20 mL      |
| Analyte                      |                                    | Result (u           | g/L) G        | ualifier       | MDL                 | RL         |
| Benzene                      |                                    | ND                  |               |                | 0.16                | 1.0        |
| Toluene                      |                                    | 0.99                | J             | В              | 0.17                | 1.0        |
| m-Xylene & p-Xyler           | ne                                 | ND                  |               |                | 0.34                | 2.0        |
| o-Xylene                     |                                    | ND                  |               |                | 0.19                | 1.0        |
| Ethylbenzene                 |                                    | ND                  |               |                | 0.16                | 1.0        |
| Naphthalene                  |                                    | ND                  |               |                | 0.22                | 1.0        |
| Xylenes, Total               |                                    | ND                  |               |                | 0.19                | 2.0        |
| Surrogate                    |                                    | %Rec                | C             | ualifier       | Acceptar            | nce Limits |
| 1,2-Dichloroethane           | -d4 (Surr)                         | 125                 |               |                | 70 - 127            |            |
| Toluene-d8 (Surr)            |                                    | 92                  |               |                | 80 - 125            |            |
| 4-Bromofluorobenz            | ene (Surr)                         | 88                  |               |                | 78 - 120            |            |
| Dibromofluorometh            | ane (Surr)                         | 104                 |               |                | 77 - 120            |            |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-03

 Lab Sample ID:
 280-48516-4
 Date Sampled: 10/25/2013 1300

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                    |                 | 8260B Volatile Orga | nic Compounds ( | (GC/MS)        |                   |            |
|--------------------|-----------------|---------------------|-----------------|----------------|-------------------|------------|
| Analysis Method:   | 8260B           | Analysis Batch:     | 280-199243      | Instrument ID: |                   | VMS_H      |
| Prep Method:       | 5030B           | Prep Batch:         | N/A             | Lab            | File ID:          | H7492.D    |
| Dilution:          | 1.0             |                     |                 | Initi          | al Weight/Volume: | 20 mL      |
| Analysis Date:     | 11/05/2013 0111 |                     |                 | Fina           | al Weight/Volume: | 20 mL      |
| Prep Date:         | 11/05/2013 0111 |                     |                 |                |                   |            |
| Analyte            |                 | Result (u           | g/L) Q          | ualifier       | MDL               | RL         |
| Benzene            |                 | 0.23                | J               |                | 0.16              | 1.0        |
| Toluene            |                 | 3.9                 | В               |                | 0.17              | 1.0        |
| m-Xylene & p-Xyler | ne              | ND                  |                 |                | 0.34              | 2.0        |
| o-Xylene           |                 | ND                  |                 |                | 0.19              | 1.0        |
| Ethylbenzene       |                 | 0.28                | J               |                | 0.16              | 1.0        |
| Naphthalene        |                 | ND                  |                 |                | 0.22              | 1.0        |
| Xylenes, Total     |                 | ND                  |                 |                | 0.19              | 2.0        |
| Surrogate          |                 | %Rec                | Q               | ualifier       | Acceptar          | nce Limits |
| 1,2-Dichloroethane | -d4 (Surr)      | 125                 |                 |                | 70 - 127          |            |
| Toluene-d8 (Surr)  |                 | 95                  |                 |                | 80 - 125          |            |
| 4-Bromofluorobenz  | ene (Surr)      | 89                  |                 |                | 78 - 120          |            |
| Dibromofluorometh  | ane (Surr)      | 101                 |                 |                | 77 - 120          |            |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-04

 Lab Sample ID:
 280-48516-5
 Date Sampled: 10/25/2013 1430

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                     |                 | 8260B Volatile Orga | nic Compounds ( | (GC/MS)        |                     |            |
|---------------------|-----------------|---------------------|-----------------|----------------|---------------------|------------|
| Analysis Method:    | 8260B           | Analysis Batch:     | 280-199243      | Instrument ID: |                     | VMS_H      |
| Prep Method:        | 5030B           | Prep Batch:         | N/A             | La             | b File ID:          | H7499.D    |
| Dilution:           | 1.0             |                     |                 | Init           | tial Weight/Volume: | 20 mL      |
| Analysis Date:      | 11/05/2013 0341 |                     |                 | Fir            | nal Weight/Volume:  | 20 mL      |
| Prep Date:          | 11/05/2013 0341 |                     |                 |                |                     |            |
| Analyte             |                 | Result (u           | g/L) Q          | (ualifier      | MDL                 | RL         |
| Benzene             |                 | 3.0                 |                 |                | 0.16                | 1.0        |
| Toluene             |                 | 5.1                 | В               |                | 0.17                | 1.0        |
| m-Xylene & p-Xyler  | ne              | ND                  |                 |                | 0.34                | 2.0        |
| o-Xylene            |                 | ND                  |                 |                | 0.19                | 1.0        |
| Ethylbenzene        |                 | 1.1                 |                 |                | 0.16                | 1.0        |
| Naphthalene         |                 | ND                  |                 |                | 0.22                | 1.0        |
| Xylenes, Total      |                 | 0.22                | J               |                | 0.19                | 2.0        |
| Surrogate           |                 | %Rec                | Q               | ualifier       | Accepta             | nce Limits |
| 1,2-Dichloroethane- | -d4 (Surr)      | 112                 |                 |                | 70 - 127            |            |
| Toluene-d8 (Surr)   |                 | 95                  |                 |                | 80 - 125            |            |
| 4-Bromofluorobenz   | ene (Surr)      | 82                  |                 |                | 78 - 120            |            |
| Dibromofluorometh   | ane (Surr)      | 97                  |                 |                | 77 - 120            |            |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-05

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

#### 8260B Volatile Organic Compounds (GC/MS) Analysis Method: 280-199243 VMS\_H 8260B Analysis Batch: Instrument ID: Prep Method: 5030B Prep Batch: N/A Lab File ID: H7496.D Dilution: 1.0 Initial Weight/Volume: 20 mL Analysis Date: 11/05/2013 0237 Final Weight/Volume: 20 mL Prep Date: 11/05/2013 0237 Result (ug/L) Qualifier MDL RL Analyte 1.0 Benzene 2.8 0.16 Toluene 5.1 В 0.17 1.0 m-Xylene & p-Xylene ND 2.0 0.34 o-Xylene ND 0.19 1.0 Ethylbenzene 0.96 J 0.16 1.0 Naphthalene ND 0.22 1.0 J Xylenes, Total 0.30 0.19 2.0 Surrogate %Rec Qualifier Acceptance Limits 1,2-Dichloroethane-d4 (Surr) 118 70 - 127 Toluene-d8 (Surr) 89 80 - 125 4-Bromofluorobenzene (Surr) 95 78 - 120 Dibromofluoromethane (Surr) 77 - 120 100

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-09

 Lab Sample ID:
 280-48516-7
 Date Sampled: 10/27/2013 1200

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                                                                               |                                                             | 8260B Volatile Orga            | nic Compounds (G  | C/MS)   |          |                                    |
|-------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|-------------------|---------|----------|------------------------------------|
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date:<br>Prep Date: | 8260B<br>5030B<br>1.0<br>11/08/2013 0406<br>11/08/2013 0406 | Analysis Batch:<br>Prep Batch: | 280-199896<br>N/A |         |          | VMS_P<br>P4558.D<br>20 mL<br>20 mL |
| Analyte                                                                       |                                                             | Result (u                      | g/L) Qua          | alifier | MDL      | RL                                 |
| Benzene                                                                       |                                                             | ND                             |                   |         | 0.16     | 1.0                                |
| Toluene                                                                       |                                                             | 0.75                           | J                 |         | 0.17     | 1.0                                |
| m-Xylene & p-Xyler                                                            | ne                                                          | ND                             |                   |         | 0.34     | 2.0                                |
| o-Xylene                                                                      |                                                             | ND                             |                   |         | 0.19     | 1.0                                |
| Ethylbenzene                                                                  |                                                             | ND                             |                   |         | 0.16     | 1.0                                |
| Naphthalene                                                                   |                                                             | ND                             |                   |         | 0.22     | 1.0                                |
| Xylenes, Total                                                                |                                                             | ND                             |                   |         | 0.19     | 2.0                                |
| Surrogate                                                                     |                                                             | %Rec                           | Qua               | alifier | Acceptar | nce Limits                         |
| 1,2-Dichloroethane-                                                           | -d4 (Surr)                                                  | 100                            |                   |         | 70 - 127 |                                    |
| Toluene-d8 (Surr)                                                             |                                                             | 101                            |                   |         | 80 - 125 |                                    |
| 4-Bromofluorobenz                                                             | ene (Surr)                                                  | 105                            |                   |         | 78 - 120 |                                    |
| Dibromofluorometh                                                             | ane (Surr)                                                  | 102                            |                   |         | 77 - 120 |                                    |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-01

 Lab Sample ID:
 280-48516-2
 Date Sampled: 10/25/2013 1730

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 10/31/2013 1929 Injection Volume:

Prep Date: 10/31/2013 1929 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL
Gasoline Range Organics (GRO)-C6-C10 21 J 10 25

Surrogate%RecQualifierAcceptance Limitsa,a,a-Trifluorotoluene9282 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-02

 Lab Sample ID:
 280-48516-3
 Date Sampled: 10/27/2013 1500

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 10/31/2013 1954 Injection Volume:

Prep Date: 10/31/2013 1954 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL
Gasoline Range Organics (GRO)-C6-C10 ND 10 25

Surrogate %Rec Qualifier Acceptance Limits a,a,a-Trifluorotoluene 95 82 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-03

 Lab Sample ID:
 280-48516-4
 Date Sampled: 10/25/2013 1300

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 10/31/2013 2018 Injection Volume:

Prep Date: 10/31/2013 2018 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Gasoline Range Organics (GRO)-C6-C10 59 10 25

Surrogate%RecQualifierAcceptance Limitsa,a,a-Trifluorotoluene10182 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-04

 Lab Sample ID:
 280-48516-5
 Date Sampled: 10/25/2013 1430

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/01/2013 1018 Injection Volume:

Prep Date: 11/01/2013 1018 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL
Gasoline Range Organics (GRO)-C6-C10 38 10 25

Surrogate%RecQualifierAcceptance Limitsa,a,a-Trifluorotoluene9082 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-05

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 11/01/2013 1132 Injection Volume:

Prep Date: 11/01/2013 1132 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Gasoline Range Organics (GRO)-C6-C10 37 10 25

Surrogate%RecQualifierAcceptance Limitsa,a,a-Trifluorotoluene9782 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-09

 Lab Sample ID:
 280-48516-7
 Date Sampled: 10/27/2013 1200

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Prep Method: 5030C N/A Initial Weight/Volume: 5 mL
Dilution: 1.0 Final Weight/Volume: 5 mL

Analysis Date: 10/31/2013 2248 Injection Volume:

Prep Date: 10/31/2013 2248 Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL
Gasoline Range Organics (GRO)-C6-C10 ND 10 25

Surrogate%RecQualifierAcceptance Limitsa,a,a-Trifluorotoluene9882 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-01

Lab Sample ID: 280-48516-2 Date Sampled: 10/25/2013 1730 Client Matrix: Water Date Received: 10/29/2013 0900

# 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1016.4 mL Dilution: Final Weight/Volume: 1000 uL 1.0 10/31/2013 1944 1 uL

Analysis Date: Injection Volume: PRIMARY Prep Date: 10/29/2013 2041 Result Type:

Analyte Result (mg/L) Qualifier MDL RL Diesel Range Organics [C10-C28] 5.1 0.032 0.25

Surrogate %Rec Qualifier Acceptance Limits o-Terphenyl (Surr) 83 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-02

 Lab Sample ID:
 280-48516-3
 Date Sampled: 10/27/2013 1500

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

### 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1045.2 mL Dilution: Final Weight/Volume: 1000 uL 1.0

 Analysis Date:
 10/31/2013 2013
 Injection Volume:
 1 uL

 Prep Date:
 10/29/2013 2041
 Result Type:
 PRIMARY

Analyte Result (mg/L) Qualifier MDL RL
Diesel Range Organics [C10-C28] 19 0.031 0.24

Surrogate %Rec Qualifier Acceptance Limits
o-Terphenyl (Surr) 171 X 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-03

 Lab Sample ID:
 280-48516-4
 Date Sampled: 10/25/2013 1300

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

# 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1046.5 mL Dilution: Final Weight/Volume: 1000 uL 1.0

 Analysis Date:
 10/31/2013 2042
 Injection Volume:
 1 uL

 Prep Date:
 10/29/2013 2041
 Result Type:
 PRIMARY

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Diesel Range Organics [C10-C28]
 4.1
 0.031
 0.24

Surrogate %Rec Qualifier Acceptance Limits
o-Terphenyl (Surr) 89 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-04

 Lab Sample ID:
 280-48516-5
 Date Sampled: 10/25/2013 1430

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

# 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1039.5 mL Dilution: Final Weight/Volume: 1000 uL 1.0 1 uL

 Analysis Date:
 10/31/2013 2110
 Injection Volume:
 1 uL

 Prep Date:
 10/29/2013 2041
 Result Type:
 PRIMARY

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Diesel Range Organics [C10-C28]
 0.41
 0.031
 0.24

Surrogate %Rec Qualifier Acceptance Limits
o-Terphenyl (Surr) 80 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-05

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

# 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1045.4 mL Dilution: Final Weight/Volume: 1000 uL 1.0 10/31/2013 2236 1 uL

 Analysis Date:
 10/31/2013 2236
 Injection Volume:
 1 uL

 Prep Date:
 10/29/2013 2041
 Result Type:
 PRIMARY

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Diesel Range Organics [C10-C28]
 0.42
 0.031
 0.24

Surrogate %Rec Qualifier Acceptance Limits
o-Terphenyl (Surr) 83 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-09

 Lab Sample ID:
 280-48516-7
 Date Sampled: 10/27/2013 1200

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

# 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analysis Method: 8015C Analysis Batch: 280-198700 Instrument ID: SGC\_U Prep Method: 3510C Prep Batch: 280-198384 Initial Weight/Volume: 1029.9 mL Dilution: Final Weight/Volume: 1000 uL 1.0

 Analysis Date:
 10/31/2013 2305
 Injection Volume:
 1 uL

 Prep Date:
 10/29/2013 2041
 Result Type:
 PRIMARY

 Analyte
 Result (mg/L)
 Qualifier
 MDL
 RL

 Diesel Range Organics [C10-C28]
 ND
 0.032
 0.24

Surrogate %Rec Qualifier Acceptance Limits
o-Terphenyl (Surr) 79 50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-01

Lab Sample ID: 280-48516-2 Date Sampled: 10/25/2013 1730 Date Received: 10/29/2013 0900

Client Matrix: Water

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 280-198837 Instrument ID: MT\_025

Prep Method: 3010A Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

> Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0204 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

1.0

Dilution:

RL Analyte Result (ug/L) Qualifier MDL 35 200 Calcium 100000 49000 200 Magnesium 11 Potassium 240 3000 17000 Sodium 1800000 92 1000 SiO2 100000 35 500

6020A Metals (ICP/MS)

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077 Prep Method: 3020A Prep Batch: 280-198463 069SMPL.d Lab File ID:

Dilution: 1.0

Initial Weight/Volume: 50 mL Analysis Date: 10/31/2013 1637 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1004

Analyte Result (ug/L) Qualifier MDL RL Antimony 14 0.40 2.0 93 5.0 Arsenic 0.33 790 Barium 0.29 1.0 Beryllium 2.7 0.080 1.0 Cadmium 1.4 0.10 1.0 Chromium 230 0.50 2.0 23 0.054 1.0 Cobalt 65 В 2.0 Copper 0.56 Lead 47 0.18 1.0 Manganese 1300 0.31 1.0 Nickel 180 0.30 2.0 Selenium 1.9 J 0.70 5.0 Silver 0.69 J 0.033 5.0 Thallium 0.68 JΒ 0.050 1.0 Vanadium 88 0.50 5.0 Zinc 290 2.0 10

6020A Metals (ICP/MS)-Dissolved

Analysis Method: Analysis Batch: 280-199679 MT\_077 6020A Instrument ID: Prep Method: 3005A Prep Batch: 280-198697 Lab File ID: 029SMPL.d Initial Weight/Volume: 50 mL

Dilution: 1.0

Analysis Date: 11/06/2013 1257 Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

Analyte Result (ug/L) Qualifier MDL RL Antimony 14 0.40 2.0 87 Arsenic 0.33 5.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-01

 Lab Sample ID:
 280-48516-2
 Date Sampled: 10/25/2013 1730

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                  |                 |                 | 100/110\ D:   |           |                             |                    |
|------------------|-----------------|-----------------|---------------|-----------|-----------------------------|--------------------|
|                  |                 | 6020A Metals (  | ICP/MS)-Disso | lved      |                             |                    |
| Analyte          |                 | Result (u       | g/L)          | Qualifier | MDL                         | RL                 |
| Barium           |                 | 150             |               |           | 0.29                        | 1.0                |
| Beryllium        |                 | 0.10            |               | J         | 0.080                       | 1.0                |
| Cadmium          |                 | 0.21            |               | J         | 0.10                        | 1.0                |
| Chromium         |                 | 0.59            |               | J         | 0.50                        | 2.0                |
| Cobalt           |                 | 0.91            |               | J         | 0.054                       | 1.0                |
| Copper           |                 | ND              |               |           | 0.56                        | 2.0                |
| Lead             |                 | ND              |               |           | 0.18                        | 1.0                |
| Manganese        |                 | 200             |               |           | 0.31                        | 1.0                |
| Nickel           |                 | 11              |               |           | 0.30                        | 2.0                |
| Selenium         |                 | 0.81            |               | J         | 0.70                        | 5.0                |
| Silver           |                 | 0.092           |               | J         | 0.033                       | 5.0                |
| Thallium         |                 | 0.14            |               | J         | 0.050                       | 1.0                |
| Vanadium         |                 | 5.0             |               |           | 0.50                        | 5.0                |
| Zinc             |                 | 6.9             |               | J         | 2.0                         | 10                 |
|                  |                 | 7470A Me        | rcury (CVAA)  |           |                             |                    |
| Analysis Method: | 7470A           | Analysis Batch: | 280-198910    |           | Instrument ID:              | MT_034             |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198430    |           | Lab File ID:                | 131031taa.txt      |
| Dilution:        | 1.0             | op 20.0         |               |           | Initial Weight/Volume:      | 30 mL              |
| Analysis Date:   | 10/31/2013 1428 |                 |               |           | Final Weight/Volume:        | 30 mL              |
| -                |                 |                 |               |           | i iliai vveigiti/voiuitie.  | 30 IIIL            |
| Prep Date:       | 10/31/2013 0945 |                 |               |           |                             |                    |
| Analyte          |                 | Result (u       | g/L)          | Qualifier |                             | RL                 |
| Mercury          |                 | 0.082           |               | J         | 0.027                       | 0.20               |
|                  |                 | 7470A Mercury   | (CVAA)-Disso  | lved      |                             |                    |
| Analysis Method: | 7470A           | Analysis Batch: | 280-200762    |           | Instrument ID:              | MT_034             |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198428    |           | Lab File ID:                | _<br>131112tad.txt |
| Dilution:        | 1.0             | - F             |               |           | Initial Weight/Volume:      | 30 mL              |
| Analysis Date:   | 11/12/2013 2157 |                 |               |           | Final Weight/Volume:        | 30 mL              |
| •                |                 |                 |               |           | i iliai vveigilii volullie. | JU IIIL            |
| Prep Date:       | 11/12/2013 1330 |                 |               |           |                             |                    |
| Analyte          |                 | Result (u       | g/L)          | Qualifier | MDL                         | RL                 |
| Mercury          |                 | ND              |               |           | 0.027                       | 0.20               |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-02

Lab Sample ID: 280-48516-3 Date Sampled: 10/27/2013 1500 Client Matrix: Date Received: 10/29/2013 0900

Water

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 280-198837 Instrument ID: MT\_025

Prep Method: 3010A Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

> Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0207 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

1.0

Dilution:

RL Analyte Result (ug/L) Qualifier MDL 35 200 Calcium 140000 58000 200 Magnesium 11 Potassium 6100 240 3000 Sodium 350000 92 1000 SiO2 74000 35 500

6020A Metals (ICP/MS)

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077 Prep Method: 3020A 280-198463 070SMPL.d Lab File ID:

Prep Batch:

Dilution: Initial Weight/Volume: 1.0 50 mL Analysis Date: 10/31/2013 1640 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1004

Analyte Result (ug/L) Qualifier MDL RL Antimony 5.1 0.40 2.0 5.0 Arsenic 73 0.33 740 Barium 0.29 1.0 Beryllium 3.8 0.080 1.0 Cadmium 0.10 0.77 J 1.0 Chromium 38 0.50 2.0 32 0.054 1.0 Cobalt 93 В 2.0 Copper 0.56 Lead 38 0.18 1.0 Manganese 1600 0.31 1.0 Nickel 100 0.30 2.0 Selenium 6.5 0.70 5.0 Silver 0.18 J 0.033 5.0 Thallium 0.49 JΒ 0.050 1.0 Vanadium 110 0.50 5.0 Zinc 350 2.0 10

6020A Metals (ICP/MS)-Dissolved

Analysis Method: Analysis Batch: 280-199679 MT\_077 6020A Instrument ID: Prep Method: 3005A Prep Batch: 280-198697 Lab File ID: 030SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/06/2013 1300 Final Weight/Volume: 50 mL Prep Date: 11/06/2013 0730

Analyte Result (ug/L) Qualifier MDL RL Antimony 8.1 0.40 2.0 Arsenic 19 0.33 5.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-02

 Lab Sample ID:
 280-48516-3
 Date Sampled: 10/27/2013 1500

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

| Chefit Matrix.                                                  | vvater                                   |                             |                          |           | Batt                                                                             | Received. 10/29/2013                      |
|-----------------------------------------------------------------|------------------------------------------|-----------------------------|--------------------------|-----------|----------------------------------------------------------------------------------|-------------------------------------------|
|                                                                 |                                          | 6020A Metals                | (ICP/MS)-Disso           | olved     |                                                                                  |                                           |
| Analyte                                                         |                                          | Result (u                   | g/L)                     | Qualifier | MDL                                                                              | RL                                        |
| Barium                                                          |                                          | 120                         |                          |           | 0.29                                                                             | 1.0                                       |
| Beryllium                                                       |                                          | ND                          |                          |           | 0.080                                                                            | 1.0                                       |
| Cadmium                                                         |                                          | ND                          |                          |           | 0.10                                                                             | 1.0                                       |
| Chromium                                                        |                                          | ND                          |                          |           | 0.50                                                                             | 2.0                                       |
| Cobalt                                                          |                                          | 3.1                         |                          |           | 0.054                                                                            | 1.0                                       |
| Copper                                                          |                                          | 14                          |                          | В         | 0.56                                                                             | 2.0                                       |
| Lead                                                            |                                          | ND                          |                          |           | 0.18                                                                             | 1.0                                       |
| Manganese                                                       |                                          | 36                          |                          |           | 0.31                                                                             | 1.0                                       |
| Nickel                                                          |                                          | 59                          |                          |           | 0.30                                                                             | 2.0                                       |
| Selenium                                                        |                                          | 5.8                         |                          |           | 0.70                                                                             | 5.0                                       |
| Silver                                                          |                                          | ND                          |                          |           | 0.033                                                                            | 5.0                                       |
| Thallium                                                        |                                          | 0.057                       |                          | J         | 0.050                                                                            | 1.0                                       |
| Vanadium                                                        |                                          | 5.9                         |                          |           | 0.50                                                                             | 5.0                                       |
| Zinc                                                            |                                          | 17                          |                          |           | 2.0                                                                              | 10                                        |
| Analysis Method:<br>Prep Method:<br>Dilution:<br>Analysis Date: | 7470A<br>7470A<br>1.0<br>10/31/2013 1431 | Analysis Batch: Prep Batch: | 280-198910<br>280-198430 |           | Instrument ID:<br>Lab File ID:<br>Initial Weight/Volume:<br>Final Weight/Volume: | MT_034<br>131031taa.txt<br>30 mL<br>30 mL |
| Prep Date:<br>Analyte                                           | 10/31/2013 0945                          | Result (u                   | g/L)                     | Qualifier |                                                                                  | RL                                        |
| Mercury                                                         |                                          | 0.20                        |                          |           | 0.027                                                                            | 0.20                                      |
|                                                                 |                                          | 7470A Mercury               | / (CVAA)-Disso           | olved     |                                                                                  |                                           |
| Analysis Method:                                                | 7470A                                    | Analysis Batch:             | 280-200762               |           | Instrument ID:                                                                   | MT_034                                    |
| Prep Method:                                                    | 7470A                                    | Prep Batch:                 | 280-198428               |           | Lab File ID:                                                                     | _<br>131112tad.txt                        |
| Dilution:                                                       | 1.0                                      | ,                           |                          |           | Initial Weight/Volume:                                                           | 30 mL                                     |
| Analysis Date:                                                  | 11/12/2013 2159                          |                             |                          |           | Final Weight/Volume:                                                             | 30 mL                                     |
| Prep Date:                                                      | 11/12/2013 1330                          |                             |                          |           | i mai vvoigniv voidine.                                                          | JO IIIL                                   |
| Analyte                                                         |                                          | Result (u                   | g/L)                     | Qualifier | MDL                                                                              | RL                                        |
| Mercury                                                         |                                          | ND                          |                          |           | 0.027                                                                            | 0.20                                      |

Job Number: 280-48516-1 Client: Ecology and Environment, Inc.

Client Sample ID: MW-03

Lab Sample ID: 280-48516-4 Date Sampled: 10/25/2013 1300 Client Matrix: Water Date Received: 10/29/2013 0900

### 6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 280-198837 Instrument ID: MT\_025

Prep Method: 3010A Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

> Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0210 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

1.0

Dilution:

RL Analyte Result (ug/L) Qualifier MDL 65000 35 200 Calcium 54000 200 Magnesium 11 Potassium 9200 240 3000 Sodium 1200000 92 1000 SiO2 64000 35 500

#### 6020A Metals (ICP/MS)

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077 Prep Method: 3020A Prep Batch: 280-198463 Lab File ID: 071SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

10/31/2013 1644 Final Weight/Volume: 50 mL

Analysis Date: Prep Date: 10/30/2013 1004

| Analyte   | Result (ug/L) | Qualifier | MDL   | RL  |
|-----------|---------------|-----------|-------|-----|
| Antimony  | 4.5           |           | 0.40  | 2.0 |
| Arsenic   | 37            |           | 0.33  | 5.0 |
| Barium    | 480           |           | 0.29  | 1.0 |
| Beryllium | 0.91          | J         | 0.080 | 1.0 |
| Cadmium   | 0.34          | J         | 0.10  | 1.0 |
| Chromium  | 140           |           | 0.50  | 2.0 |
| Cobalt    | 14            |           | 0.054 | 1.0 |
| Copper    | 22            | В         | 0.56  | 2.0 |
| Lead      | 15            |           | 0.18  | 1.0 |
| Manganese | 740           |           | 0.31  | 1.0 |
| Nickel    | 100           |           | 0.30  | 2.0 |
| Selenium  | 4.2           | J         | 0.70  | 5.0 |
| Silver    | 0.23          | J         | 0.033 | 5.0 |
| Thallium  | 0.27          | JB        | 0.050 | 1.0 |
| Vanadium  | 54            |           | 0.50  | 5.0 |
| Zinc      | 110           |           | 2.0   | 10  |

#### 6020A Metals (ICP/MS)-Dissolved

Instrument ID: Analysis Method: Analysis Batch: 280-199679 MT\_077 6020A 031SMPL.d Prep Method: 3005A Prep Batch: 280-198697 Lab File ID:

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/06/2013 1304 Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

Analyte Result (ug/L) Qualifier MDL RL Antimony 4.6 0.40 2.0 26 Arsenic 0.33 5.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-03

 Lab Sample ID:
 280-48516-4
 Date Sampled: 10/25/2013 1300

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

|                  |                 | 6020A Metals    | (ICP/MS)-Disso  | lved      |                        |               |
|------------------|-----------------|-----------------|-----------------|-----------|------------------------|---------------|
| Analyte          |                 | Result (u       | a/L)            | Qualifier | MDL                    | RL            |
| Barium           |                 | 220             | <i>5</i> /      |           | 0.29                   | 1.0           |
| Beryllium        |                 | ND              |                 |           | 0.080                  | 1.0           |
| Cadmium          |                 | ND              |                 |           | 0.10                   | 1.0           |
| Chromium         |                 | 9.7             |                 |           | 0.50                   | 2.0           |
| Cobalt           |                 | 1.0             |                 |           | 0.054                  | 1.0           |
| Copper           |                 | ND              |                 |           | 0.56                   | 2.0           |
| Lead             |                 | ND              |                 |           | 0.18                   | 1.0           |
| Manganese        |                 | 290             |                 |           | 0.31                   | 1.0           |
| Nickel           |                 | 16              |                 |           | 0.30                   | 2.0           |
| Selenium         |                 | 3.3             |                 | J         | 0.70                   | 5.0           |
| Silver           |                 | ND              |                 |           | 0.033                  | 5.0           |
| Thallium         |                 | ND              |                 |           | 0.050                  | 1.0           |
| Vanadium         |                 | 4.1             |                 | J         | 0.50                   | 5.0           |
| Zinc             |                 | 2.5             |                 | J         | 2.0                    | 10            |
|                  |                 |                 |                 |           |                        |               |
|                  |                 |                 |                 |           |                        |               |
|                  |                 | 7470A M         | ercury (CVAA)   |           |                        |               |
| Analysis Method: | 7470A           | Analysis Batch: | 280-198910      |           | Instrument ID:         | MT_034        |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198430      |           | Lab File ID:           | 131031taa.txt |
| Dilution:        | 1.0             |                 |                 |           | Initial Weight/Volume: | 30 mL         |
| Analysis Date:   | 10/31/2013 1433 |                 |                 |           | Final Weight/Volume:   | 30 mL         |
| Prep Date:       | 10/31/2013 0945 |                 |                 |           | <b>.</b>               |               |
| •                |                 |                 |                 |           |                        |               |
| Analyte          |                 | Result (u       | g/L)            | Qualifier |                        | RL            |
| Mercury          |                 | ND              |                 |           | 0.027                  | 0.20          |
|                  |                 | 7470 A Managara | · (OVA A) Disco | .l. and   |                        |               |
|                  |                 | 7470A Mercury   |                 |           |                        |               |
| Analysis Method: | 7470A           | Analysis Batch: | 280-200762      |           | Instrument ID:         | MT_034        |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198428      |           | Lab File ID:           | 131112tad.txt |
| Dilution:        | 1.0             |                 |                 |           | Initial Weight/Volume: | 30 mL         |
| Analysis Date:   | 11/12/2013 2202 |                 |                 |           | Final Weight/Volume:   | 30 mL         |
| Prep Date:       | 11/12/2013 1330 |                 |                 |           |                        |               |
|                  |                 | Result (u       | a/I \           | Qualifier | MDL                    | RL            |
| Analyte          |                 | Result (u       | g/∟)            | Qualifier | IVIDL                  | INL           |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-04

Lab Sample ID: 280-48516-5 Date Sampled: 10/25/2013 1430 Client Matrix: Water Date Received: 10/29/2013 0900

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 280-198837 Instrument ID: MT\_025

Prep Method: 3010A Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

> Initial Weight/Volume: 50 mL mL

Analysis Date: 11/01/2013 0222 Final Weight/Volume: 50

Prep Date: 10/30/2013 1000

1.0

Dilution:

RL Analyte Result (ug/L) Qualifier MDL 2000 35 200 Calcium 200 Magnesium 1600 11 Potassium 1400 J 240 3000 Sodium 500000 92 1000 SiO2 16000 35 500

6020A Metals (ICP/MS)

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077 Prep Method: 3020A Prep Batch: 280-198463 075SMPL.d Lab File ID:

Dilution: 1.0

Initial Weight/Volume: 50 mL Analysis Date: 10/31/2013 1658 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1004

Analyte Result (ug/L) Qualifier MDL RL Antimony 5.7 0.40 2.0 5.0 Arsenic 0.33 15 Barium 14 0.29 1.0 Beryllium ND 0.080 1.0 Cadmium ND 0.10 1.0 Chromium 0.66 0.50 2.0 J 0.23 0.054 1.0 Cobalt J В 2.0 Copper 2.4 0.56 Lead 0.89 J 0.18 1.0 Manganese 17 0.31 1.0 Nickel 2.2 0.30 2.0 Selenium ND 0.70 5.0 Silver ND 0.033 5.0 Thallium 0.090 JΒ 0.050 1.0 Vanadium 0.89 J 0.50 5.0 Zinc 12 2.0 10

6020A Metals (ICP/MS)-Dissolved

Analysis Method: Analysis Batch: 280-199679 MT\_077 6020A Instrument ID: Prep Method: 3005A Prep Batch: 280-198697 Lab File ID: 032SMPL.d

Dilution: 1.0

Initial Weight/Volume: 50 mL Analysis Date: 11/06/2013 1308 Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

Analyte Result (ug/L) Qualifier MDL RL Antimony 5.0 0.40 2.0 Arsenic 11 0.33 5.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-04

 Lab Sample ID:
 280-48516-5
 Date Sampled: 10/25/2013 1430

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

| Client Matrix.   | vvater          |                 |                |           | Batto                      | Received. 10/29/2013 |
|------------------|-----------------|-----------------|----------------|-----------|----------------------------|----------------------|
|                  |                 | 6020A Metals    | (ICP/MS)-Disso | olved     |                            |                      |
| Analyte          |                 | Result (u       | g/L)           | Qualifier | MDL                        | RL                   |
| Barium           |                 | 12              |                |           | 0.29                       | 1.0                  |
| Beryllium        |                 | ND              |                |           | 0.080                      | 1.0                  |
| Cadmium          |                 | ND              |                |           | 0.10                       | 1.0                  |
| Chromium         |                 | ND              |                |           | 0.50                       | 2.0                  |
| Cobalt           |                 | ND              |                |           | 0.054                      | 1.0                  |
| Copper           |                 | ND              |                |           | 0.56                       | 2.0                  |
| Lead             |                 | ND              |                |           | 0.18                       | 1.0                  |
| Manganese        |                 | 7.9             |                |           | 0.31                       | 1.0                  |
| Nickel           |                 | 0.51            |                | J         | 0.30                       | 2.0                  |
| Selenium         |                 | ND              |                |           | 0.70                       | 5.0                  |
| Silver           |                 | ND              |                |           | 0.033                      | 5.0                  |
| Thallium         |                 | ND              |                |           | 0.050                      | 1.0                  |
| Vanadium         |                 | ND              |                |           | 0.50                       | 5.0                  |
| Zinc             |                 | 4.5             |                | J         | 2.0                        | 10                   |
|                  |                 |                 |                |           |                            |                      |
|                  |                 | 7470A M         | ercury (CVAA)  |           |                            |                      |
| Analysis Method: | 7470A           | Analysis Batch: | 280-198910     |           | Instrument ID:             | MT_034               |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198430     |           | Lab File ID:               | _<br>131031taa.txt   |
| Dilution:        | 1.0             |                 |                |           | Initial Weight/Volume:     | 30 mL                |
| Analysis Date:   | 10/31/2013 1435 |                 |                |           | Final Weight/Volume:       | 30 mL                |
| Prep Date:       | 10/31/2013 1433 |                 |                |           | i iliai vveigili volullie. | 30 IIIL              |
| ricp bate.       | 10/01/2010 0040 |                 |                |           |                            |                      |
| Analyte          |                 | Result (u       | g/L)           | Qualifier | MDL                        | RL                   |
| Mercury          |                 | ND              |                |           | 0.027                      | 0.20                 |
|                  |                 |                 |                |           |                            |                      |
|                  |                 | 7470A Mercury   | / (CVAA)-Disso | olved     |                            |                      |
| Analysis Method: | 7470A           | Analysis Batch: | 280-200762     |           | Instrument ID:             | MT_034               |
| Prep Method:     | 7470A           | Prep Batch:     | 280-198428     |           | Lab File ID:               | 131112tad.txt        |
| Dilution:        | 1.0             |                 |                |           | Initial Weight/Volume:     | 30 mL                |
| Analysis Date:   | 11/12/2013 2209 |                 |                |           | Final Weight/Volume:       | 30 mL                |
| Prep Date:       | 11/12/2013 1330 |                 |                |           |                            | =                    |
| - l              |                 |                 |                |           |                            |                      |
| Analyte          |                 | Result (u       | g/L)           | Qualifier | MDL                        | RL                   |
| Mercury          |                 | ND              |                |           | 0.027                      | 0.20                 |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-05

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

6010C Metals (ICP)

 Analysis Method:
 6010C
 Analysis Batch:
 280-198837
 Instrument ID:
 MT\_025

 Prep Method:
 3010A
 Prep Batch:
 280-198459
 Lab File ID:
 25B2103113.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0235 Final Weight/Volume: 50 mL Prep Date: 10/30/2013 1000

RL Analyte Result (ug/L) Qualifier MDL 2200 35 200 Calcium 1700 200 Magnesium 11 Potassium 1700 J 240 3000 Sodium 520000 92 1000 SiO2 17000 35 500

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077

Prog. Method: 6020A Prog. Details (ICP/MS)

Prep Method: 3020A Prep Batch: 280-198463 Lab File ID: 080SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL

 Dilution:
 1.0
 Initial Weight/Volume:
 50 mL

 Analysis Date:
 10/31/2013 1716
 Final Weight/Volume:
 50 mL

Analysis Date: 10/31/2013 1716 Final Weight/Volume: 50 mL Prep Date: 10/30/2013 1004

Analyte Result (ug/L) Qualifier MDL RL Arsenic 14 0.33 5.0 Barium 15 0.29 1.0 0.10 J Beryllium 0.080 1.0 Cadmium ND 0.10 1.0 Chromium 0.84 J 0.50 2.0 Cobalt 0.24 0.054 1.0 .1 1.6 JΒ 0.56 2.0 Copper Lead 88.0 J 0.18 1.0 Manganese 18 0.31 1.0 Nickel 1.4 J 0.30 2.0 ND Selenium 0.70 5.0 Silver ND 0.033 5.0 Thallium 0.15 JΒ 0.050 1.0 Vanadium 1.3 J 0.50 5.0 Zinc 11 2.0 10

 Analysis Method:
 6020A
 Analysis Batch:
 280-199221
 Instrument ID:
 MT\_077

 Prep Method:
 3020A
 Prep Batch:
 280-198463
 Lab File ID:
 052SMPL.d

Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/04/2013 1431 Final Weight/Volume: 50 mL Prep Date: 10/30/2013 1004

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Antimony
 5.4
 0.40
 2.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-05

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

#### 6020A Metals (ICP/MS)-Dissolved

Analysis Method: 6020A Analysis Batch: 280-199679 Instrument ID: MT\_077 Prep Method: 3005A Prep Batch: 280-198697 Lab File ID: 040SMPL.d Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/06/2013 1338 Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

RL Analyte Result (ug/L) Qualifier MDL 4.2 0.40 2.0 Antimony 0.33 5.0 Arsenic 9.7 Barium 0.29 1.0 13 Beryllium ND 0.080 1.0 Cadmium ND 0.10 1.0 0.50 Chromium ND 2.0 ND 0.054 Cobalt 1.0 ND 2.0 Copper 0.56 Lead ND 0.18 1.0 Manganese 7.8 0.31 1.0 Nickel 0.47 J 0.30 2.0 Selenium ND 0.70 5.0 Silver ND 0.033 5.0 Thallium 0.080 J 0.050 1.0 Vanadium ND 0.50 5.0 Zinc 4.4 J 2.0 10

#### 7470A Mercury (CVAA)

Initial Weight/Volume:

0.027

Initial Weight/Volume:

Final Weight/Volume:

30 mL

30 mL

30 mL

30 mL

0.20

Analysis Method: 7470A Analysis Batch: 280-198910 Instrument ID: MT\_034
Prep Method: 7470A Prep Batch: 280-198430 Lab File ID: 131031taa.txt

Dilution: 1.0

Mercury

Dilution:

Analysis Date: 10/31/2013 1447 Final Weight/Volume: Prep Date: 10/31/2013 0945

Analyte Result (ug/L) Qualifier MDL RL

ND

 Analysis Method:
 7470A
 Analysis Batch:
 280-200762
 Instrument ID:
 MT\_034

 Prep Method:
 7470A
 Prep Batch:
 280-198428
 Lab File ID:
 131112tad.txt

7470A Mercury (CVAA)-Dissolved

Analysis Date: 11/12/2013 2216

Prep Date: 11/12/2013 1330

1.0

 Analyte
 Result (ug/L)
 Qualifier
 MDL
 RL

 Mercury
 ND
 0.027
 0.20

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-09

Lab Sample ID: 280-48516-7 Date Sampled: 10/27/2013 1200 Client Matrix: Water Date Received: 10/29/2013 0900

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 280-198837 Instrument ID: MT\_025

Prep Method: 3010A Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

Dilution: 1.0 Initial Weight/Volume: 50 mL Analysis Date: 11/01/2013 0238 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

RL Analyte Result (ug/L) Qualifier MDL 35 200 Calcium 180 J 200 Magnesium 44 J 11 Potassium ND 240 3000

Sodium 620 J 92 1000 SiO2 110 J 35 500

6020A Metals (ICP/MS)

Analysis Method: 6020A Analysis Batch: 280-199090 Instrument ID: MT\_077 Prep Method: 3020A Prep Batch: 280-198463 081SMPL.d Lab File ID:

Dilution: Initial Weight/Volume: 1.0

50 mL Analysis Date: 10/31/2013 1720 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1004

Silver

Zinc

Thallium

Vanadium

Analyte Result (ug/L) Qualifier MDL RL Antimony 0.76 0.40 2.0 5.0 Arsenic ND 0.33 Barium 1.4 0.29 1.0 Beryllium ND 0.080 1.0 Cadmium ND 0.10 1.0 Chromium J 0.50 2.0 0.66 ND 0.054 1.0 Cobalt JΒ 2.0 Copper 0.67 0.56 Lead 0.29 J 0.18 1.0 Manganese 0.89 J 0.31 1.0 Nickel 0.48 J 0.30 2.0 Selenium ND 0.70 5.0

0.033

0.050

0.50

2.0

J

5.0

1.0

5.0

10

Analysis Method: Analysis Batch: 280-199679 MT\_077 6020A Instrument ID: 3005A 280-198697 Lab File ID: 041SMPL.d

6020A Metals (ICP/MS)-Dissolved

ND

ND

ND

4.0

Prep Method: Prep Batch: Dilution: 1.0 Initial Weight/Volume: 50 mL

Analysis Date: 11/06/2013 1341 Final Weight/Volume: 50 mL Prep Date: 11/06/2013 0730

Analyte Result (ug/L) Qualifier MDL RL Antimony ND 0.40 2.0 ND Arsenic 0.33 5.0

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Client Sample ID: MW-09

 Lab Sample ID:
 280-48516-7
 Date Sampled: 10/27/2013 1200

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

| Chefit Matrix.                                | vvater                             |                                                                                                    |                |           | Dak                                                    | Received. 10/29/2013             |
|-----------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------|----------------|-----------|--------------------------------------------------------|----------------------------------|
|                                               |                                    | 6020A Metals                                                                                       | (ICP/MS)-Disso | olved     |                                                        |                                  |
| Analyte                                       |                                    | Result (u                                                                                          | g/L)           | Qualifier | MDL                                                    | RL                               |
| Barium                                        |                                    | ND                                                                                                 |                |           | 0.29                                                   | 1.0                              |
| Beryllium                                     |                                    | ND                                                                                                 |                |           | 0.080                                                  | 1.0                              |
| Cadmium                                       |                                    | ND                                                                                                 |                |           | 0.10                                                   | 1.0                              |
| Chromium                                      |                                    | ND                                                                                                 |                |           | 0.50                                                   | 2.0                              |
| Cobalt                                        |                                    | ND                                                                                                 |                |           | 0.054                                                  | 1.0                              |
| Copper                                        |                                    | ND                                                                                                 |                |           | 0.56                                                   | 2.0                              |
| Lead                                          |                                    | ND                                                                                                 |                |           | 0.18                                                   | 1.0                              |
| Manganese                                     |                                    | ND                                                                                                 |                |           | 0.31                                                   | 1.0                              |
| Nickel                                        |                                    | ND                                                                                                 |                |           | 0.30                                                   | 2.0                              |
| Selenium                                      |                                    | ND                                                                                                 |                |           | 0.70                                                   | 5.0                              |
| Silver                                        |                                    | ND                                                                                                 |                |           | 0.033                                                  | 5.0                              |
| Thallium                                      |                                    | ND                                                                                                 |                |           | 0.050                                                  | 1.0                              |
| Vanadium                                      |                                    | ND                                                                                                 |                |           | 0.50                                                   | 5.0                              |
| Zinc                                          |                                    | ND                                                                                                 |                |           | 2.0                                                    | 10                               |
| Analysis Method:<br>Prep Method:<br>Dilution: | 7470A<br>7470A<br>1.0              | 7470A Mercury (CVAA)         Analysis Batch:       280-198910         Prep Batch:       280-198430 |                | !<br>!    | nstrument ID:<br>.ab File ID:<br>nitial Weight/Volume: | MT_034<br>131031taa.txt<br>30 mL |
| Analysis Date:<br>Prep Date:                  | 10/31/2013 1449<br>10/31/2013 0945 |                                                                                                    |                |           | Final Weight/Volume:                                   | 30 mL                            |
| Analyte                                       |                                    | Result (u                                                                                          | g/L)           | Qualifier | MDL                                                    | RL                               |
| Mercury                                       |                                    | ND                                                                                                 |                |           | 0.027                                                  | 0.20                             |
|                                               |                                    | 7470A Mercury                                                                                      | y (CVAA)-Disso | olved     |                                                        |                                  |
| Analysis Method:                              | 7470A                              | Analysis Batch:                                                                                    | 280-200762     | ı         | nstrument ID:                                          | MT_034                           |
| Prep Method:                                  | 7470A                              | Prep Batch:                                                                                        | 280-198428     | ı         | ab File ID:                                            | 131112tad.txt                    |
| Dilution:                                     | 1.0                                | '                                                                                                  |                |           | nitial Weight/Volume:                                  | 30 mL                            |
| Analysis Date:                                | 11/12/2013 2218                    |                                                                                                    |                |           | Final Weight/Volume:                                   | 30 mL                            |
| Prep Date:                                    | 11/12/2013 1330                    |                                                                                                    |                | •         | mai vioignii voidino.                                  | oo me                            |
| Analyte                                       |                                    | Result (u                                                                                          | g/L)           | Qualifier | MDL                                                    | RL                               |
|                                               |                                    |                                                                                                    |                |           |                                                        |                                  |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### **General Chemistry** Client Sample ID: MW-01 Lab Sample ID: 280-48516-2 Date Sampled: 10/25/2013 1730 Client Matrix: Date Received: 10/29/2013 0900 Water Analyte MDL RLDil Method Result Qual Units HEM (Oil & Grease) 8.0 mg/L 1.3 3.8 1.0 1664A Analysis Batch: 490-121238 Analysis Date: 11/12/2013 1055 Prep Batch: 490-121230 Prep Date: 11/12/2013 1055 Total Organic Carbon - Average В mg/L 0.51 3.3 3.3 9060A 130 Analysis Batch: 280-201021 Analysis Date: 11/14/2013 0056 **Total Dissolved Solids** 5700 mg/L 83 1.0 SM 2540C Analysis Date: 11/01/2013 1338 Analysis Batch: 280-198932

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

# **General Chemistry**

Client Sample ID: MW-02

Lab Sample ID: 280-48516-3 Date Sampled: 10/27/2013 1500

Client Matrix: Water Date Received: 10/29/2013 0900

| Analyte             | Result                     | Qual           | Units      | MDL   | RL   | Dil | Method   |
|---------------------|----------------------------|----------------|------------|-------|------|-----|----------|
| HEM (Oil & Great    | se) 19                     |                | mg/L       | 2.7   | 7.7  | 1.0 | 1664A    |
|                     | Analysis Batch: 490-121238 | Analysis Date: | 11/12/2013 | 1055  |      |     |          |
|                     | Prep Batch: 490-121230     | Prep Date: 11/ | 12/2013 10 | 55    |      |     |          |
| Chloride            | 21                         |                | mg/L       | 0.25  | 3.0  | 1.0 | 300.0    |
|                     | Analysis Batch: 280-198951 | Analysis Date: | 10/30/2013 | 1904  |      |     |          |
| Nitrate as N        | 0.53                       | Н              | mg/L       | 0.042 | 0.50 | 1.0 | 300.0    |
|                     | Analysis Batch: 280-198950 | Analysis Date: | 10/30/2013 | 1904  |      |     |          |
| Fluoride            | 8.2                        |                | mg/L       | 0.060 | 0.50 | 1.0 | 300.0    |
|                     | Analysis Batch: 280-198951 | Analysis Date: | 10/30/2013 | 1904  |      |     |          |
| Nitrite as N        | 0.59                       | Н              | mg/L       | 0.049 | 0.50 | 1.0 | 300.0    |
|                     | Analysis Batch: 280-198950 | Analysis Date: | 10/30/2013 | 1904  |      |     |          |
| Sulfate             | 180                        |                | mg/L       | 1.2   | 25   | 5.0 | 300.0    |
|                     | Analysis Batch: 280-198951 | Analysis Date: | 10/31/2013 | 0210  |      |     |          |
| Total Organic Ca    | rbon - Average 37          | В              | mg/L       | 0.16  | 1.0  | 1.0 | 9060A    |
|                     | Analysis Batch: 280-201021 | Analysis Date: | 11/14/2013 | 0126  |      |     |          |
| Γotal Alkalinity as | CaCO3 710                  | В              | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199930 | Analysis Date: | 11/07/2013 | 2104  |      |     |          |
| Bicarbonate Alkal   | inity as CaCO3 710         | В              | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199930 | Analysis Date: | 11/07/2013 | 2104  |      |     |          |
| Carbonate Alkalir   | nity as CaCO3 ND           |                | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                     | Analysis Batch: 280-199930 | Analysis Date: | 11/07/2013 | 2104  |      |     |          |
| Total Dissolved S   | olids 1100                 |                | mg/L       | 31    | 67   | 1.0 | SM 2540C |
|                     | Analysis Batch: 280-198932 | Analysis Date: | 11/01/2013 | 1338  |      |     |          |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### **General Chemistry** Client Sample ID: MW-03 Lab Sample ID: 280-48516-4 Date Sampled: 10/25/2013 1300 Client Matrix: Date Received: 10/29/2013 0900 Water Analyte MDL RLDil Method Result Qual Units HEM (Oil & Grease) 5.0 mg/L 1.3 3.7 1.0 1664A Analysis Batch: 490-121238 Analysis Date: 11/12/2013 1055 Prep Batch: 490-121230 Prep Date: 11/12/2013 1055 Total Organic Carbon - Average В mg/L 1.4 9.0 9.0 9060A 410 Analysis Batch: 280-201021 Analysis Date: 11/14/2013 0156 **Total Dissolved Solids** 3900 mg/L 40 1.0 SM 2540C Analysis Batch: 280-198932 Analysis Date: 11/01/2013 1338

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### **General Chemistry** Client Sample ID: MW-04 Lab Sample ID: 280-48516-5 Date Sampled: 10/25/2013 1430 Client Matrix: Date Received: 10/29/2013 0900 Water Analyte MDL RLDil Method Result Qual Units HEM (Oil & Grease) ND mg/L 1.3 3.8 1.0 1664A Analysis Batch: 490-121238 Analysis Date: 11/12/2013 1055 Prep Batch: 490-121230 Prep Date: 11/12/2013 1055 Total Organic Carbon - Average 25 В mg/L 1.0 1.0 9060A 0.16 Analysis Batch: 280-201021 Analysis Date: 11/14/2013 0216 **Total Dissolved Solids** 1400 mg/L 9.4 20 1.0 SM 2540C Analysis Batch: 280-198932 Analysis Date: 11/01/2013 1338

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### **General Chemistry**

Client Sample ID: MW-05

Analysis Batch: 280-198932

 Lab Sample ID:
 280-48516-6
 Date Sampled: 10/25/2013 1445

 Client Matrix:
 Water
 Date Received: 10/29/2013 0900

Analyte Result Qual Units MDL RLDil Method HEM (Oil & Grease) 3.8 1.3 mg/L 1.3 1.0 1664A Analysis Batch: 490-121238 Analysis Date: 11/12/2013 1055 Prep Batch: 490-121230 Prep Date: 11/12/2013 1055 Chloride 15 5.0 300.0 63 mg/L 1.3 Analysis Batch: 280-198509 Analysis Date: 10/30/2013 0252 Nitrate as N ND Н mg/L 0.042 0.50 1.0 300.0 Analysis Batch: 280-198510 Analysis Date: 10/29/2013 2057 Fluoride 2.3 mg/L 0.060 0.50 1.0 300.0 Analysis Date: 10/29/2013 2057 Analysis Batch: 280-198509 Nitrite as N 0.049 0.50 1.0 300.0 ND Н mg/L Analysis Batch: 280-198510 Analysis Date: 10/29/2013 2057 mg/L Sulfate 25 5.0 300.0 250 1.2 Analysis Date: 10/30/2013 0252 Analysis Batch: 280-198509 Total Organic Carbon - Average 25 В mg/L 0.16 1.0 1.0 9060A Analysis Batch: 280-201021 Analysis Date: 11/14/2013 0312 Total Alkalinity as CaCO3 770 В mg/L 5.0 1.0 SM 2320B Analysis Batch: 280-199016 Analysis Date: 11/01/2013 1538 Bicarbonate Alkalinity as CaCO3 В 5.0 1.0 SM 2320B 430 mg/L Analysis Date: 11/01/2013 1538 Analysis Batch: 280-199016 Carbonate Alkalinity as CaCO3 340 mg/L 5.0 1.0 SM 2320B 1.1 Analysis Date: 11/01/2013 1538 Analysis Batch: 280-199016 **Total Dissolved Solids** mg/L 20 1.0 SM 2540C 1400

Analysis Date: 11/01/2013 1338

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

# **General Chemistry**

Client Sample ID: MW-09

Lab Sample ID: 280-48516-7 Date Sampled: 10/27/2013 1200

Client Matrix: Water Date Received: 10/29/2013 0900

| Analyte                                                  | Result                     | Qual                           | Units      | MDL   | RL   | Dil | Method   |
|----------------------------------------------------------|----------------------------|--------------------------------|------------|-------|------|-----|----------|
| HEM (Oil & Gre                                           | ease) ND                   |                                | mg/L       | 1.3   | 3.6  | 1.0 | 1664A    |
|                                                          | Analysis Batch: 490-121238 | Analysis Date: 11/12/2013 1055 |            |       |      |     |          |
|                                                          | Prep Batch: 490-121230     | Prep Date: 11/12/2013 1055     |            |       |      |     |          |
| Chloride                                                 | 0.42                       | J                              | mg/L       | 0.25  | 3.0  | 1.0 | 300.0    |
|                                                          | Analysis Batch: 280-198509 | Analysis Date: 10/29/2013 2113 |            |       |      |     |          |
| Nitrate as N                                             | ND                         | Н                              | mg/L       | 0.042 | 0.50 | 1.0 | 300.0    |
|                                                          | Analysis Batch: 280-198510 | Analysis Date: 10/29/2013 2113 |            |       |      |     |          |
| Fluoride                                                 | ND                         |                                | mg/L       | 0.060 | 0.50 | 1.0 | 300.0    |
|                                                          | Analysis Batch: 280-198509 | Analysis Date: 10/29/2013 2113 |            |       |      |     |          |
| Nitrite as N                                             | ND                         | Н                              | mg/L       | 0.049 | 0.50 | 1.0 | 300.0    |
|                                                          | Analysis Batch: 280-198510 | Analysis Date: 10/29/2013 2113 |            |       |      |     |          |
| Sulfate                                                  | 0.58                       | J                              | mg/L       | 0.23  | 5.0  | 1.0 | 300.0    |
|                                                          | Analysis Batch: 280-198509 | Analysis Date: 10/29/2013 2113 |            |       |      |     |          |
| Total Organic Carbon - Average 0.65                      |                            | JВ                             | mg/L       | 0.16  | 1.0  | 1.0 | 9060A    |
|                                                          | Analysis Batch: 280-201021 | Analysis Date:                 | 11/14/2013 | 0331  |      |     |          |
| Total Alkalinity as CaCO3 3.6 Analysis Batch: 280-199930 |                            | JB                             | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                                                          |                            | Analysis Date: 11/07/2013 2056 |            |       |      |     |          |
| Bicarbonate Alkalinity as CaCO3 3.6                      |                            | JВ                             | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                                                          | Analysis Batch: 280-199930 | Analysis Date: 11/07/2013 2056 |            |       |      |     |          |
| Carbonate Alkalinity as CaCO3 ND                         |                            |                                | mg/L       | 1.1   | 5.0  | 1.0 | SM 2320B |
|                                                          | Analysis Batch: 280-199930 | Analysis Date:                 | 11/07/2013 | 2056  |      |     |          |
| otal Dissolved Solids ND                                 |                            |                                | mg/L       | 19    | 40   | 1.0 | SM 2540C |
|                                                          | Analysis Batch: 280-198932 | Analysis Date:                 | 11/01/2013 | 1338  |      |     |          |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

# **Surrogate Recovery Report**

## 8260B Volatile Organic Compounds (GC/MS)

## Client Matrix: Water

|                  |                  | DBFM | DCA  | TOL  | BFB  |
|------------------|------------------|------|------|------|------|
| Lab Sample ID    | Client Sample ID | %Rec | %Rec | %Rec | %Rec |
| 280-48516-1      | TRIP BLANK       | 98   | 113  | 92   | 94   |
| 280-48516-2      | MW-01            | 101  | 119  | 98   | 94   |
| 280-48516-3      | MW-02            | 104  | 125  | 92   | 88   |
| 280-48516-4      | MW-03            | 101  | 125  | 95   | 89   |
| 280-48516-5      | MW-04            | 97   | 112  | 95   | 82   |
| 280-48516-6      | MW-05            | 100  | 118  | 89   | 95   |
| 280-48516-7      | MW-09            | 102  | 100  | 101  | 105  |
| MB 280-199243/5  |                  | 100  | 116  | 95   | 93   |
| MB 280-199896/6  |                  | 103  | 100  | 100  | 103  |
| LCS 280-199243/4 |                  | 95   | 114  | 100  | 82   |
| LCS 280-199896/4 |                  | 100  | 94   | 99   | 98   |
| 280-48516-5 MS   | MW-04 MS         | 97   | 123  | 101  | 94   |
| 280-48516-5 MSD  | MW-04 MSD        | 103  | 129X | 105  | 86   |

| Surrogate                          | Acceptance Limits |
|------------------------------------|-------------------|
| DBFM = Dibromofluoromethane (Surr) | 77-120            |
| DCA = 1,2-Dichloroethane-d4 (Surr) | 70-127            |
| TOL = Toluene-d8 (Surr)            | 80-125            |
| BFB = 4-Bromofluorobenzene (Surr)  | 78-120            |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

# **Surrogate Recovery Report**

## 8015C Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

#### Client Matrix: Water

|                   |                  | TFT1 |
|-------------------|------------------|------|
| Lab Sample ID     | Client Sample ID | %Rec |
| 280-48516-2       | MW-01            | 92   |
| 280-48516-3       | MW-02            | 95   |
| 280-48516-4       | MW-03            | 101  |
| 280-48516-5       | MW-04            | 90   |
| 280-48516-6       | MW-05            | 97   |
| 280-48516-7       | MW-09            | 98   |
| MB 280-198686/5   |                  | 100  |
| LCS 280-198686/6  |                  | 93   |
| LCSD 280-198686/7 |                  | 94   |
| 280-48516-5 MS    | MW-04 MS         | 89   |
| 280-48516-5 MSD   | MW-04 MSD        | 97   |

| Surrogate | Acceptance Limits |
|-----------|-------------------|
|           |                   |

TFT = a,a,a-Trifluorotoluene 82-110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

# **Surrogate Recovery Report**

## 8015C Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

#### Client Matrix: Water

|                    |                  | OTPH1 |
|--------------------|------------------|-------|
| Lab Sample ID      | Client Sample ID | %Rec  |
| 280-48516-2        | MW-01            | 83    |
| 280-48516-3        | MW-02            | 171X  |
| 280-48516-4        | MW-03            | 89    |
| 280-48516-5        | MW-04            | 80    |
| 280-48516-6        | MW-05            | 83    |
| 280-48516-7        | MW-09            | 79    |
| MB 280-198384/1-A  |                  | 79    |
| LCS 280-198384/2-A |                  | 83    |
| 280-48516-5 MS     | MW-04 MS         | 82    |
| 280-48516-5 MSD    | MW-04 MSD        | 65    |

Surrogate Acceptance Limits

OTPH = o-Terphenyl (Surr) 50-115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### Method Blank - Batch: 280-199243

Method: 8260B Preparation: 5030B

| Lab Sample ID: | MB 280-199243/5 | Analysis Batch: | 280-199243 | Instrument ID:         | VMS_H   |
|----------------|-----------------|-----------------|------------|------------------------|---------|
| Client Matrix: | Water           | Prep Batch:     | N/A        | Lab File ID:           | H7478.D |
| Dilution:      | 1.0             | Leach Batch:    | N/A        | Initial Weight/Volume: | 20 mL   |
| Analysis Date: | 11/04/2013 2009 | Units:          | ug/L       | Final Weight/Volume:   | 20 mL   |
| Prep Date:     | 11/04/2013 2009 |                 |            |                        |         |

Leach Date: N/A

| Analyte             | Result | Qual | MDL  | RL  |
|---------------------|--------|------|------|-----|
| Benzene             | ND     |      | 0.16 | 1.0 |
| Toluene             | 0.337  | J    | 0.17 | 1.0 |
| m-Xylene & p-Xylene | ND     |      | 0.34 | 2.0 |
| o-Xylene            | ND     |      | 0.19 | 1.0 |
| Ethylbenzene        | ND     |      | 0.16 | 1.0 |
| Naphthalene         | ND     |      | 0.22 | 1.0 |
| Xylenes, Total      | ND     |      | 0.19 | 2.0 |

| Surrogate                    | % Rec | Acceptance Limits |  |
|------------------------------|-------|-------------------|--|
| 1,2-Dichloroethane-d4 (Surr) | 116   | 70 - 127          |  |
| Toluene-d8 (Surr)            | 95    | 80 - 125          |  |
| 4-Bromofluorobenzene (Surr)  | 93    | 78 - 120          |  |
| Dibromofluoromethane (Surr)  | 100   | 77 - 120          |  |

## Lab Control Sample - Batch: 280-199243

Method: 8260B Preparation: 5030B

| Lab Sample ID:<br>Client Matrix: | LCS 280-199243/4<br>Water | Analysis Batch:<br>Prep Batch: | 280-199243<br>N/A | Instrument ID:<br>Lab File ID: | VMS_H<br>H7477.D |
|----------------------------------|---------------------------|--------------------------------|-------------------|--------------------------------|------------------|
| Dilution:                        | 1.0                       | Leach Batch:                   | N/A               | Initial Weight/Volume:         | 20 mL            |
| Analysis Date:                   | 11/04/2013 1947           | Units:                         | ug/L              | Final Weight/Volume:           | 20 mL            |
| Prep Date:                       | 11/04/2013 1947           |                                |                   |                                |                  |

Leach Date: N/A

| Analyte                      | Spike Amount | Result | % Rec.   | Limit            | Qual |
|------------------------------|--------------|--------|----------|------------------|------|
| Benzene                      | 5.00         | 4.90   | 98       | 74 - 135         |      |
| Toluene                      | 5.00         | 5.00   | 100      | 73 - 120         |      |
| m-Xylene & p-Xylene          | 5.00         | 4.86   | 97       | 74 - 135         |      |
| o-Xylene                     | 5.00         | 4.78   | 96       | 73 - 135         |      |
| Ethylbenzene                 | 5.00         | 4.72   | 94       | 72 - 120         |      |
| Naphthalene                  | 5.00         | 5.04   | 101      | 48 - 135         |      |
| Xylenes, Total               | 10.0         | 9.64   | 96       | 75 - 135         |      |
| Surrogate                    | %            | Rec    | А        | cceptance Limits |      |
| 1,2-Dichloroethane-d4 (Surr) | 1            | 14     |          | 70 - 127         |      |
| Toluene-d8 (Surr)            | 1            | 00     | 80 - 125 |                  |      |
| 4-Bromofluorobenzene (Surr)  | 8            | 32     | 78 - 120 |                  |      |
| Dibromofluoromethane (Surr)  | 9            | 5      | 77 - 120 |                  |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 280-199243 Preparation: 5030B

| MS Lab Sample ID:<br>Client Matrix:<br>Dilution:<br>Analysis Date:<br>Prep Date:<br>Leach Date: | 280-48516-5<br>Water<br>1.0<br>11/05/2013 0154<br>11/05/2013 0154<br>N/A | Pre      | lysis Batch:<br>o Batch:<br>ch Batch: | 280-199243<br>N/A<br>N/A |                      |               | VMS_H<br>H7494.D<br>20 mL<br>20 mL |          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------|---------------------------------------|--------------------------|----------------------|---------------|------------------------------------|----------|
| MSD Lab Sample ID                                                                               | ): 280-48516-5<br>Water                                                  |          | lysis Batch:<br>b Batch:              | 280-199243<br>N/A        | Instrume<br>Lab File |               | VMS_H<br>H7495.D                   |          |
| Dilution:                                                                                       | 1.0                                                                      |          | ch Batch:                             | N/A                      |                      | eight/Volume: | 20 mL                              |          |
| Analysis Date:                                                                                  | 11/05/2013 0215                                                          | 200      | on Baton.                             |                          |                      | ight/Volume:  | 20 mL                              |          |
| Prep Date:                                                                                      | 11/05/2013 0215                                                          |          |                                       |                          |                      | · ·           |                                    |          |
| Leach Date:                                                                                     | N/A                                                                      |          |                                       |                          |                      |               |                                    |          |
|                                                                                                 |                                                                          | <u>%</u> | Rec.                                  |                          |                      |               |                                    |          |
| Analyte                                                                                         |                                                                          | MS       | MSD                                   | Limit                    | RPD                  | RPD Limit     | MS Qual                            | MSD Qual |
| Benzene                                                                                         |                                                                          | 94       | 99                                    | 74 - 135                 | 3                    | 20            |                                    |          |
| Toluene                                                                                         |                                                                          | 88       | 91                                    | 73 - 120                 | 2                    | 20            |                                    |          |
| m-Xylene & p-Xylene                                                                             | е                                                                        | 98       | 98                                    | 74 - 135                 | 0                    | 20            |                                    |          |
| o-Xylene                                                                                        |                                                                          | 90       | 93                                    | 73 - 135                 | 3                    | 20            |                                    |          |
| Ethylbenzene                                                                                    |                                                                          | 90       | 94                                    | 72 - 120                 | 4                    | 26            |                                    |          |
| Naphthalene                                                                                     |                                                                          | 108      | 109                                   | 48 - 135                 | 1                    | 32            |                                    |          |
| Xylenes, Total                                                                                  |                                                                          | 92       | 93                                    | 75 - 135                 | 1                    | 20            |                                    |          |
| Surrogate                                                                                       |                                                                          |          | MS % Rec                              | MSD %                    | % Rec                | Acc           | eptance Limit                      | 3        |
| 1,2-Dichloroethane-                                                                             | d4 (Surr)                                                                |          | 123                                   | 129                      | Х                    |               | 70 - 127                           |          |
| Toluene-d8 (Surr)                                                                               |                                                                          |          | 101                                   | 105                      |                      |               | 80 - 125                           |          |
| 4-Bromofluorobenze                                                                              | , ,                                                                      |          | 94                                    | 86                       |                      |               | 78 - 120                           |          |
| Dibromofluorometha                                                                              | ne (Surr)                                                                |          | 97                                    | 103                      |                      | -             | 77 - 120                           |          |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 8260B
Matrix Spike Duplicate Recovery Report - Batch: 280-199243 Preparation: 5030B

Units: ug/L

MS Lab Sample ID: 280-48516-5 Client Matrix: Water

Dilution: Water 1.0

Analysis Date: 11/05/2013 0154 Prep Date: 11/05/2013 0154

Leach Date: N/A

MSD Lab Sample ID: 280-48516-5 Client Matrix: Water

Dilution: Wat

Analysis Date: 11/05/2013 0215 Prep Date: 11/05/2013 0215

Leach Date: N/A

| Analyte             | Sample<br>Result/Qua | al | MS Spike<br>Amount | MSD Spike<br>Amount | MS<br>Result/Qual | MSD<br>Result/Qual |
|---------------------|----------------------|----|--------------------|---------------------|-------------------|--------------------|
| Benzene             | 3.0                  |    | 5.00               | 5.00                | 7.69              | 7.94               |
| Toluene             | 5.1                  |    | 5.00               | 5.00                | 9.49              | 9.65               |
| m-Xylene & p-Xylene | ND                   |    | 5.00               | 5.00                | 4.90              | 4.90               |
| o-Xylene            | ND                   |    | 5.00               | 5.00                | 4.52              | 4.64               |
| Ethylbenzene        | 1.1                  |    | 5.00               | 5.00                | 5.63              | 5.84               |
| Naphthalene         | ND                   |    | 5.00               | 5.00                | 5.40              | 5.45               |
| Xylenes, Total      | 0.22                 | J  | 10.0               | 10.0                | 9.42              | 9.54               |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### Method Blank - Batch: 280-199896

Method: 8260B Preparation: 5030B

| Lab Sample ID: | MB 280-199896/6 | Analysis Batch: | 280-199896 | Instrument ID:         | VMS_P   |
|----------------|-----------------|-----------------|------------|------------------------|---------|
| Client Matrix: | Water           | Prep Batch:     | N/A        | Lab File ID:           | P4547.D |
| Dilution:      | 1.0             | Leach Batch:    | N/A        | Initial Weight/Volume: | 20 mL   |
| Analysis Date: | 11/08/2013 0014 | Units:          | ug/L       | Final Weight/Volume:   | 20 mL   |
|                |                 |                 |            |                        |         |

Prep Date: 11/08/2013 0014

Leach Date: N/A

| Analyte             | Result | Qual | MDL  | RL  |  |
|---------------------|--------|------|------|-----|--|
| Benzene             | ND     |      | 0.16 | 1.0 |  |
| Toluene             | ND     |      | 0.17 | 1.0 |  |
| m-Xylene & p-Xylene | ND     |      | 0.34 | 2.0 |  |
| o-Xylene            | ND     |      | 0.19 | 1.0 |  |
| Ethylbenzene        | ND     |      | 0.16 | 1.0 |  |
| Naphthalene         | ND     |      | 0.22 | 1.0 |  |
| Xylenes, Total      | ND     |      | 0.19 | 2.0 |  |

| Surrogate                    | % Rec | Acceptance Limits |  |
|------------------------------|-------|-------------------|--|
| 1,2-Dichloroethane-d4 (Surr) | 100   | 70 - 127          |  |
| Toluene-d8 (Surr)            | 100   | 80 - 125          |  |
| 4-Bromofluorobenzene (Surr)  | 103   | 78 - 120          |  |
| Dibromofluoromethane (Surr)  | 103   | 77 - 120          |  |

## Lab Control Sample - Batch: 280-199896

Method: 8260B Preparation: 5030B

| Lab Sample ID:<br>Client Matrix: | LCS 280-199896/4<br>Water | Analysis Batch:<br>Prep Batch: | 280-199896<br>N/A | Instrument ID:<br>Lab File ID: | VMS_P<br>P4546.D |
|----------------------------------|---------------------------|--------------------------------|-------------------|--------------------------------|------------------|
| Dilution:                        | 1.0                       | Leach Batch:                   | N/A               | Initial Weight/Volume:         | 20 mL            |
| Analysis Date:                   | 11/07/2013 2353           | Units:                         | ug/L              | Final Weight/Volume:           | 20 mL            |
| Prep Date:                       | 11/07/2013 2353           |                                |                   |                                |                  |

Leach Date: N/A

| Analyte                      | Spike Amount | Result | % Rec.   | Limit            | Qual |
|------------------------------|--------------|--------|----------|------------------|------|
| Benzene                      | 5.00         | 5.06   | 101      | 74 - 135         |      |
| Toluene                      | 5.00         | 5.27   | 105      | 73 - 120         |      |
| m-Xylene & p-Xylene          | 5.00         | 4.78   | 96       | 74 - 135         |      |
| o-Xylene                     | 5.00         | 4.69   | 94       | 73 - 135         |      |
| Ethylbenzene                 | 5.00         | 4.79   | 96       | 72 - 120         |      |
| Naphthalene                  | 5.00         | 3.96   | 79       | 48 - 135         |      |
| Xylenes, Total               | 10.0         | 9.48   | 95       | 75 - 135         |      |
| Surrogate                    | %            | Rec    | А        | cceptance Limits |      |
| 1,2-Dichloroethane-d4 (Surr) | 9            | 94     | 70 - 127 |                  |      |
| Toluene-d8 (Surr)            | g            | 9      | 80 - 125 |                  |      |
| 4-Bromofluorobenzene (Surr)  | g            | 98     | 78 - 120 |                  |      |
| Dibromofluoromethane (Surr)  | 1            | 00     | 77 - 120 |                  |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198686 Method: 8015C Preparation: 5030C

Lab Sample ID: MB 280-198686/5 280-198686 Instrument ID: VGC\_Q Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: 005F0501.D Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0 5 mL Analysis Date: 10/31/2013 1225 Units: ug/L Final Weight/Volume: 5 mL

Prep Date: 10/31/2013 1225 Units. ug/L Final Weight Volume: Injection Volume:

Leach Date: N/A Column ID: PRIMARY

Analyte Result Qual MDL RL
Gasoline Range Organics (GRO)-C6-C10 ND 10 25

Surrogate % Rec Acceptance Limits

a,a,a-Trifluorotoluene 100 82 - 110

Lab Control Sample/ Method: 8015C
Lab Control Sample Duplicate Recovery Report - Batch: 280-198686 Preparation: 5030C

a,a,a-Trifluorotoluene

VGC Q LCS Lab Sample ID: LCS 280-198686/6 Analysis Batch: 280-198686 Instrument ID: Client Matrix: Prep Batch: N/A Lab File ID: 006F0601.D Water Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 10/31/2013 1250 Units: ug/L Final Weight/Volume: 5 mL Prep Date: 10/31/2013 1250 Injection Volume: Column ID: Leach Date: **PRIMARY** N/A LCSD Lab Sample ID: LCSD 280-198686/7 Analysis Batch: 280-198686 Instrument ID: VGC\_Q Client Matrix: Water Prep Batch: N/A Lab File ID: 007F0701.D Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 5 mL 10/31/2013 1315 Units: ug/L Final Weight/Volume: 5 mL Analysis Date: Prep Date: 10/31/2013 1315 Injection Volume: Leach Date: N/A Column ID: **PRIMARY** % Rec. LCS RPD LCSD Qual Analyte **LCSD** Limit **RPD Limit** LCS Qual Gasoline Range Organics (GRO)-C6-C10 104 107 79 - 149 3 27 Surrogate LCS % Rec LCSD % Rec Acceptance Limits

94

82 - 110

93

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-198686

Method: 8015C
Preparation: 5030C

LCS Lab Sample ID: LCS 280-198686/6 Units: ug/L LCSD Lab Sample ID: LCSD 280-198686/7

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

 Analysis Date:
 10/31/2013
 1250
 Analysis Date:
 10/31/2013
 1315

 Prep Date:
 10/31/2013
 1250
 Prep Date:
 10/31/2013
 1315

Leach Date: N/A Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Gasoline Range Organics (GRO)-C6-C10 101 101 105 108

Matrix Spike/ Method: 8015C
Matrix Spike Duplicate Recovery Report - Batch: 280-198686 Preparation: 5030C

MS Lab Sample ID: 280-48516-5 Analysis Batch: 280-198686 Instrument ID: VGC Q Client Matrix: Water Prep Batch: N/A Lab File ID: 035F3501.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/01/2013 1042 Final Weight/Volume: 5 mL

Prep Date: 11/01/2013 1042 Injection Volume:

Leach Date: N/A Column ID: PRIMARY

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-198686 Instrument ID: VGC\_Q
Client Matrix: Water Prep Batch: N/A Lab File ID: 036F3601.D

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 11/01/2013 1107 Final Weight/Volume: 5 mL

Prep Date: 11/01/2013 1107 Injection Volume:

Leach Date: N/A Column ID: PRIMARY

Eccor Date. 1974

 MS
 MSD
 Limit
 RPD
 RPD Limit
 MS Qual
 MSD Qual

 Gasoline Range Organics (GRO)-C6-C10
 111
 107
 79 - 149
 3
 27

Surrogate MS % Rec MSD % Rec Acceptance Limits

a,a,a-Trifluorotoluene 89 97 82 - 110

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 8015C
Matrix Spike Duplicate Recovery Report - Batch: 280-198686 Preparation: 5030C

MS Lab Sample ID: 280-48516-5 Units: ug/L MSD Lab Sample ID: 280-48516-5 Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/01/2013 1042 Analysis Date: 11/01/2013 1107
Prep Date: 11/01/2013 1042 Prep Date: 11/01/2013 1107

Leach Date: N/A Leach Date: N/A

| Analyte                              | Sample      | MS Spike | MSD Spike | MS          | MSD         |
|--------------------------------------|-------------|----------|-----------|-------------|-------------|
|                                      | Result/Qual | Amount   | Amount    | Result/Qual | Result/Qual |
| Gasoline Range Organics (GRO)-C6-C10 | 38          | 101      | 101       | 150         | 145         |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198384

MB 280-198384/1-A

Method: 8015C Preparation: 3510C

 Client Matrix:
 Water

 Dilution:
 1.0

 Analysis Date:
 10/31/2013 1430

 Prep Date:
 10/29/2013 2041

N/A

Analysis Batch: 280-198700
Prep Batch: 280-198384
Leach Batch: N/A
Units: mg/L

Instrument ID: SGC\_U
Lab File ID: 10310006.D
Initial Weight/Volume: 1000 mL
Final Weight/Volume: 1000 uL
Injection Volume: 1 uL
Column ID: PRIMARY

Analyte

Result

MDL RL

Diesel Range Organics [C10-C28]

ND

Qual

0.033

0.25

Qual

Surrogate

Lab Sample ID:

Leach Date:

% Rec

Acceptance Limits

. . . . . .

o-Terphenyl (Surr)

79

50 - 115

Lab Control Sample - Batch: 280-198384

Method: 8015C Preparation: 3510C

 Lab Sample ID:
 LCS 280-198384/2-A

 Client Matrix:
 Water

 Dilution:
 1.0

 Analysis Date:
 10/31/2013 1459

 Prep Date:
 10/29/2013 2041

 Leach Date:
 N/A

Analysis Batch: 280-198700
Prep Batch: 280-198384
Leach Batch: N/A
Units: mg/L

Instrument ID: SGC\_U
Lab File ID: 10310007.D
Initial Weight/Volume: 1000 mL
Final Weight/Volume: 1000 uL
Injection Volume: 1 uL
Column ID: PRIMARY

AnalyteSpike AmountResult% Rec.LimitDiesel Range Organics [C10-C28]2.001.758754 - 115Surrogate% RecAcceptance Limits

o-Terphenyl (Surr) 83 50 - 115

50 - 115

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 8015C
Matrix Spike Duplicate Recovery Report - Batch: 280-198384 Preparation: 3510C

| MS Lab Sample ID:  | 280-48516-5     | Ana      | ılysis Batch: | 280-198700 | Instrume   | nt ID:        | SGC_U          |          |
|--------------------|-----------------|----------|---------------|------------|------------|---------------|----------------|----------|
| Client Matrix:     | Water           | Pre      | p Batch:      | 280-198384 | Lab File   | ID:           | 10310021.      | D        |
| Dilution:          | 1.0             | Lea      | ch Batch:     | N/A        | Initial We | eight/Volume: | 986.2 mL       |          |
| Analysis Date:     | 10/31/2013 2139 |          |               |            | Final We   | ight/Volume:  | 1000 uL        |          |
| Prep Date:         | 10/29/2013 2041 |          |               |            | Injection  | Volume:       | 1 uL           |          |
| Leach Date:        | N/A             |          |               |            | Column I   | ID:           | PRIMARY        |          |
| MSD Lab Sample ID  | 280-48516-5     | Ana      | llysis Batch: | 280-198700 | Instrume   | nt ID:        | SGC_U          |          |
| Client Matrix:     | Water           | Pre      | p Batch:      | 280-198384 | Lab File   | ID:           | 10310022.      | )        |
| Dilution:          | 1.0             | Lea      | ch Batch:     | N/A        | Initial We | eight/Volume: | 1053.4 ml      | _        |
| Analysis Date:     | 10/31/2013 2208 |          |               |            | Final We   | ight/Volume:  | 1000 uL        |          |
| Prep Date:         | 10/29/2013 2041 |          |               |            | Injection  | Volume:       | 1 uL           |          |
| Leach Date:        | N/A             |          |               |            | Column I   | ID:           | PRIMARY        |          |
|                    |                 | <u>%</u> | Rec.          |            |            |               |                |          |
| Analyte            |                 | MS       | MSD           | Limit      | RPD        | RPD Limit     | MS Qual        | MSD Qual |
| Diesel Range Organ | ics [C10-C28]   | 70       | 55            | 50 - 115   | 23         | 31            |                |          |
| Surrogate          |                 |          | MS % Rec      | MSD 9      | % Rec      | Acc           | eptance Limits | 3        |

65

Matrix Spike/ Method: 8015C
Matrix Spike Duplicate Recovery Report - Batch: 280-198384 Preparation: 3510C

o-Terphenyl (Surr)

MS Lab Sample ID: 280-48516-5 Units: mg/L MSD Lab Sample ID: 280-48516-5 Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

82

 Analysis Date:
 10/31/2013 2139
 Analysis Date:
 10/31/2013 2208

 Prep Date:
 10/29/2013 2041
 Prep Date:
 10/29/2013 2041

Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Result/Qual Result/Qual Amount Diesel Range Organics [C10-C28] 0.41 2.03 1.90 1.84 1.46

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198459

Method: 6010C Preparation: 3010A

Lab Sample ID: MB 280-198459/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/01/2013 0155

Prep Date: 10/30/2013 1000

Leach Date: N/A

280-198837 Analysis Batch: Prep Batch: 280-198459 N/A

Leach Batch: Units: ug/L Instrument ID: MT\_025

Lab File ID: 25B2103113.asc

Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

| Analyte   | Result | Qual | MDL | RL   |
|-----------|--------|------|-----|------|
| Calcium   | ND     |      | 35  | 200  |
| Magnesium | ND     |      | 11  | 200  |
| Potassium | ND     |      | 240 | 3000 |
| Sodium    | ND     |      | 92  | 1000 |
| SiO2      | ND     |      | 35  | 500  |

Lab Control Sample - Batch: 280-198459

Method: 6010C Preparation: 3010A

Lab Sample ID: LCS 280-198459/2-A Client Matrix: Water Dilution: 1.0 Analysis Date: 11/01/2013 0157

Prep Date: 10/30/2013 1000

Leach Date: N/A Analysis Batch: 280-198837 Instrument ID: MT 025 280-198459 25B2103113.asc Prep Batch: Lab File ID: Initial Weight/Volume: Leach Batch: N/A 50 mL Units: ug/L Final Weight/Volume: 50 mL

Analyte Spike Amount Result % Rec. Limit Qual Calcium 50000 48300 97 90 - 111 Magnesium 50000 46900 94 90 - 113 Potassium 50000 49700 99 89 - 114 Sodium 50000 50400 101 90 - 115 SiO2 21400 21100 99 80 - 110

Post Digestion Spike - Batch: 280-198459

Method: 6010C Preparation: 3010A

Lab Sample ID: 280-48516-5 Client Matrix: Water Dilution: 1.0 Analysis Date: 11/01/2013 0233 Prep Date: 10/30/2013 1000 Leach Date: N/A

Analysis Batch: 280-198837 280-198459 Prep Batch: Leach Batch: N/A Units: ug/L

Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:

MT\_025

50 mL

50 mL

25B2103113.asc

| Analyte   | Sample Result/Qu | ual | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|------------------|-----|--------------|--------|--------|----------|------|
| Calcium   | 2000             |     | 20000        | 21000  | 95     | 75 - 125 |      |
| Magnesium | 1600             |     | 20000        | 19300  | 89     | 75 - 125 |      |
| Potassium | 1400 J           | l   | 20000        | 21700  | 101    | 75 - 125 |      |
| Sodium    | 500000           |     | 20000        | 508000 | NC     | 75 - 125 |      |
| SiO2      | 16000            |     | 10700        | 26400  | 97     | 75 - 125 |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 6010C

Matrix Spike Duplicate Recovery Report - Batch: 280-198459 Preparation: 3010A

MS Lab Sample ID: 280-48516-5 Analysis Batch: 280-198837 Instrument ID: MT\_025

Client Matrix: Water Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0227 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

Leach Date: N/A

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-198837 Instrument ID: MT\_025

Client Matrix: Water Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0230 Final Weight/Volume: 50 mL

Prep Date: 10/30/2013 1000

% Rec. RPD **RPD Limit** Analyte MS MSD Limit MS Qual MSD Qual 99 48 - 153 Calcium 95 4 20 Magnesium 91 93 62 - 146 2 20 Potassium 101 106 76 - 132 4 20 70 - 203 Sodium 111 153 4 20 4 4

75 - 141

6

20

Matrix Spike/ Method: 6010C
Matrix Spike Duplicate Recovery Report - Batch: 280-198459 Preparation: 3010A

100

Leach Date:

SiO2

N/A

110

MS Lab Sample ID: 280-48516-5 Units: ug/L MSD Lab Sample ID: 280-48516-5 Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/01/2013 0227 Analysis Date: 11/01/2013 0230

Prep Date: 10/30/2013 1000 Prep Date: 10/30/2013 1000

Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual **Amount** Amount Result/Qual Result/Qual Calcium 2000 50000 50000 49500 51600 Magnesium 1600 50000 50000 47000 47900 Potassium 1400 50000 50000 51900 54300 J 574000 Sodium 500000 50000 50000 553000 4 4 SiO2 39600 16000 21400 21400 37400

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Serial Dilution - Batch: 280-198459 Method: 6010C Preparation: 3010A

Lab Sample ID: 280-48516-5 Analysis Batch: 280-198837 Instrument ID: MT\_025

Client Matrix: Water Prep Batch: 280-198459 Lab File ID: 25B2103113.asc

Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 50 mL

Analysis Date: 11/01/2013 0225 Units: ug/L Final Weight/Volume: 50 mL Prep Date: 10/30/2013 1000

Leach Date: N/A

Leadif Date. N/A

| Analyte   | Sample Result/Q | Qual | Result | %Diff | Limit | Qual |
|-----------|-----------------|------|--------|-------|-------|------|
| Calcium   | 2000            |      | 2110   | 3.3   | 10    |      |
| Magnesium | 1600            |      | 1640   | 2.5   | 10    |      |
| Potassium | 1400            | J    | 1630   | NC    | 10    | J    |
| Sodium    | 500000          |      | 502000 | 0.86  | 10    |      |
| SiO2      | 16000           |      | 15600  | 2.0   | 10    |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

280-199090

Method Blank - Batch: 280-198463

Method: 6020A Preparation: 3020A

Lab Sample ID: MB 280-198463/1-A Client Matrix: Water Dilution: 1.0 Analysis Date: 10/31/2013 1615 Prep Date:

N/A

Leach Date:

10/30/2013 1004

Prep Batch: 280-198463 Leach Batch: N/A Units: ug/L

Analysis Batch:

Instrument ID: MT\_077 Lab File ID: 063\_BLK.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

| Analyte   | Result | Qual | MDL   | RL  |
|-----------|--------|------|-------|-----|
| Antimony  | ND     |      | 0.40  | 2.0 |
| Arsenic   | ND     |      | 0.33  | 5.0 |
| Barium    | ND     |      | 0.29  | 1.0 |
| Beryllium | ND     |      | 0.080 | 1.0 |
| Cadmium   | ND     |      | 0.10  | 1.0 |
| Chromium  | ND     |      | 0.50  | 2.0 |
| Cobalt    | ND     |      | 0.054 | 1.0 |
| Copper    | 0.733  | J    | 0.56  | 2.0 |
| Lead      | ND     |      | 0.18  | 1.0 |
| Manganese | ND     |      | 0.31  | 1.0 |
| Nickel    | ND     |      | 0.30  | 2.0 |
| Selenium  | ND     |      | 0.70  | 5.0 |
| Silver    | ND     |      | 0.033 | 5.0 |
| Thallium  | 0.0790 | J    | 0.050 | 1.0 |
| Vanadium  | ND     |      | 0.50  | 5.0 |
| Zinc      | ND     |      | 2.0   | 10  |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### Lab Control Sample - Batch: 280-198463

Method: 6020A Preparation: 3020A

 Lab Sample ID:
 LCS 280-198463/2-A

 Client Matrix:
 Water

 Dilution:
 1.0

 Analysis Date:
 10/31/2013 1619

 Prep Date:
 10/30/2013 1004

N/A

Leach Date:

Analysis Batch: 280-199090
Prep Batch: 280-198463
Leach Batch: N/A
Units: ug/L

Instrument ID: MT\_077
Lab File ID: 064\_LCS.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

| Analyte   | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|--------------|--------|--------|----------|------|
| Antimony  | 40.0         | 37.9   | 95     | 85 - 115 |      |
| Arsenic   | 40.0         | 39.9   | 100    | 85 - 117 |      |
| Barium    | 40.0         | 38.8   | 97     | 85 - 118 |      |
| Beryllium | 40.0         | 41.4   | 103    | 80 - 125 |      |
| Cadmium   | 40.0         | 40.1   | 100    | 85 - 115 |      |
| Chromium  | 40.0         | 40.6   | 102    | 84 - 121 |      |
| Cobalt    | 40.0         | 41.3   | 103    | 85 - 120 |      |
| Copper    | 40.0         | 41.0   | 103    | 85 - 119 |      |
| Lead      | 40.0         | 41.6   | 104    | 85 - 118 |      |
| Manganese | 40.0         | 41.5   | 104    | 85 - 117 |      |
| Nickel    | 40.0         | 40.9   | 102    | 85 - 119 |      |
| Selenium  | 40.0         | 42.5   | 106    | 77 - 122 |      |
| Silver    | 40.0         | 41.1   | 103    | 85 - 115 |      |
| Thallium  | 40.0         | 41.2   | 103    | 85 - 118 |      |
| Vanadium  | 40.0         | 39.8   | 99     | 85 - 120 |      |
| Zinc      | 40.0         | 40.9   | 102    | 83 - 122 |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### Post Digestion Spike - Batch: 280-198463

Method: 6020A Preparation: 3020A

 Lab Sample ID:
 280-48516-5

 Client Matrix:
 Water

 Dilution:
 1.0

 Analysis Date:
 10/31/2013 1712

 Prep Date:
 10/30/2013 1004

N/A

Leach Date:

Analysis Batch: 280-199090
Prep Batch: 280-198463
Leach Batch: N/A
Units: ug/L

Instrument ID: MT\_077
Lab File ID: 079SMPL.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

| Analyte   | Sample Result/Qual |   | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|--------------------|---|--------------|--------|--------|----------|------|
| Antimony  | 5.7                |   | 200          | 201    | 98     | 75 - 125 |      |
| Arsenic   | 15                 |   | 200          | 218    | 102    | 75 - 125 |      |
| Barium    | 14                 |   | 200          | 218    | 102    | 75 - 125 |      |
| Beryllium | ND                 |   | 200          | 202    | 101    | 75 - 125 |      |
| Cadmium   | ND                 |   | 200          | 195    | 98     | 75 - 125 |      |
| Chromium  | 0.66               | J | 200          | 204    | 102    | 75 - 125 |      |
| Cobalt    | 0.23               | J | 200          | 206    | 103    | 75 - 125 |      |
| Copper    | 2.4                |   | 200          | 201    | 99     | 75 - 125 |      |
| Lead      | 0.89               | J | 200          | 202    | 100    | 75 - 125 |      |
| Manganese | 17                 |   | 200          | 221    | 102    | 75 - 125 |      |
| Nickel    | 2.2                |   | 200          | 202    | 100    | 75 - 125 |      |
| Selenium  | ND                 |   | 200          | 207    | 103    | 75 - 125 |      |
| Silver    | ND                 |   | 50.0         | 47.6   | 95     | 75 - 125 |      |
| Thallium  | 0.090              | J | 200          | 201    | 100    | 75 - 125 |      |
| Vanadium  | 0.89               | J | 200          | 209    | 104    | 75 - 125 |      |
| Zinc      | 12                 |   | 200          | 226    | 107    | 75 - 125 |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 6020A
Matrix Spike Duplicate Recovery Report - Batch: 280-198463 Preparation: 3020A

| MS Lab Sample ID:<br>Client Matrix:<br>Dilution:<br>Analysis Date:<br>Prep Date:<br>Leach Date: | 280-48516-5<br>Water<br>1.0<br>10/31/2013 1705<br>10/30/2013 1004<br>N/A | Prep             | rsis Batch:<br>Batch:<br>n Batch: | 280-199090<br>280-198463<br>N/A |     |           | MT_077<br>077SMPL.d<br>50 mL<br>50 mL |          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|-----------------------------------|---------------------------------|-----|-----------|---------------------------------------|----------|
| MSD Lab Sample ID<br>Client Matrix:<br>Dilution:<br>Analysis Date:<br>Prep Date:<br>Leach Date: | 280-48516-5<br>Water<br>1.0<br>10/31/2013 1709<br>10/30/2013 1004<br>N/A | Prep             | sis Batch:<br>Batch:<br>n Batch:  | 280-199090<br>280-198463<br>N/A |     |           | MT_077<br>078SMPL.d<br>50 mL<br>50 mL |          |
| Analyte                                                                                         |                                                                          | <u>% I</u><br>MS | Rec.<br>MSD                       | Limit                           | RPD | RPD Limit | MS Qual                               | MSD Qual |

|           | <u>%</u> | Rec. |          |     |           |         |          |
|-----------|----------|------|----------|-----|-----------|---------|----------|
| Analyte   | MS       | MSD  | Limit    | RPD | RPD Limit | MS Qual | MSD Qual |
| Antimony  | 95       | 93   | 85 - 115 | 2   | 20        |         |          |
| Arsenic   | 101      | 92   | 85 - 117 | 7   | 20        |         |          |
| Barium    | 103      | 96   | 85 - 118 | 5   | 20        |         |          |
| Beryllium | 100      | 99   | 80 - 125 | 1   | 20        |         |          |
| Cadmium   | 99       | 94   | 85 - 115 | 4   | 20        |         |          |
| Chromium  | 102      | 100  | 84 - 121 | 2   | 20        |         |          |
| Cobalt    | 102      | 98   | 85 - 120 | 4   | 20        |         |          |
| Copper    | 98       | 96   | 85 - 119 | 1   | 20        |         |          |
| Lead      | 97       | 97   | 85 - 118 | 0   | 20        |         |          |
| Manganese | 101      | 96   | 85 - 117 | 3   | 20        |         |          |
| Nickel    | 100      | 96   | 85 - 119 | 3   | 20        |         |          |
| Selenium  | 19       | 16   | 77 - 122 | 20  | 20        | F       | F        |
| Silver    | 90       | 89   | 85 - 115 | 0   | 20        |         |          |
| Thallium  | 97       | 97   | 85 - 118 | 0   | 20        |         |          |
| Vanadium  | 105      | 100  | 85 - 120 | 5   | 20        |         |          |
| Zinc      | 100      | 97   | 83 - 122 | 3   | 20        |         |          |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 6020A

Matrix Spike Duplicate Recovery Report - Batch: 280-198463 Preparation: 3020A

Units: ug/L

MS Lab Sample ID: 280-48516-5 Client Matrix: Water

Client Matrix: Wat Dilution: 1.0

Analysis Date: 10/31/2013 1705 Prep Date: 10/30/2013 1004

Leach Date: N/A

MSD Lab Sample ID: 280-48516-5 Client Matrix: Water

Dilution: 1.0

Analysis Date: 10/31/2013 1709 Prep Date: 10/30/2013 1004

Leach Date: N/A

| Analyte   | Sample<br>Result/Qua | al | MS Spike<br>Amount | MSD Spike<br>Amount | MS<br>Result/Qual | MSD<br>Result/Qual |
|-----------|----------------------|----|--------------------|---------------------|-------------------|--------------------|
| Antimony  | 5.7                  |    | 40.0               | 40.0                | 43.5              | 42.7               |
| Arsenic   | 15                   |    | 40.0               | 40.0                | 55.4              | 51.9               |
| Barium    | 14                   |    | 40.0               | 40.0                | 55.5              | 52.9               |
| Beryllium | ND                   |    | 40.0               | 40.0                | 39.9              | 39.5               |
| Cadmium   | ND                   |    | 40.0               | 40.0                | 39.5              | 37.8               |
| Chromium  | 0.66                 | J  | 40.0               | 40.0                | 41.5              | 40.7               |
| Cobalt    | 0.23                 | J  | 40.0               | 40.0                | 41.2              | 39.4               |
| Copper    | 2.4                  |    | 40.0               | 40.0                | 41.5              | 40.9               |
| Lead      | 0.89                 | J  | 40.0               | 40.0                | 39.7              | 39.8               |
| Manganese | 17                   |    | 40.0               | 40.0                | 57.7              | 55.8               |
| Nickel    | 2.2                  |    | 40.0               | 40.0                | 42.1              | 40.7               |
| Selenium  | ND                   |    | 40.0               | 40.0                | 7.69 F            | 6.30 F             |
| Silver    | ND                   |    | 40.0               | 40.0                | 35.8              | 35.7               |
| Thallium  | 0.090                | J  | 40.0               | 40.0                | 38.8              | 38.8               |
| Vanadium  | 0.89                 | J  | 40.0               | 40.0                | 43.0              | 40.9               |
| Zinc      | 12                   |    | 40.0               | 40.0                | 52.6              | 51.1               |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Serial Dilution - Batch: 280-198463 Method: 6020A Preparation: 3020A

Lab Sample ID: 280-199090 Instrument ID: MT\_077 280-48516-5 Analysis Batch: Client Matrix: Water Prep Batch: 280-198463 Lab File ID: 076SMPL.d Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 50 mL Units: Final Weight/Volume: Analysis Date: 10/31/2013 1702 ug/L 50 mL

Prep Date: 10/30/2013 1004

Leach Date: N/A

| Analyte   | Sample Res | Sample Result/Qual |       | %Diff | Limit | Qual |
|-----------|------------|--------------------|-------|-------|-------|------|
| Antimony  | 5.7        |                    | 5.93  | NC    | 10    | J    |
| Arsenic   | 15         |                    | 15.1  | NC    | 10    | J    |
| Barium    | 14         |                    | 15.0  | NC    | 10    |      |
| Beryllium | ND         |                    | ND    | NC    | 10    |      |
| Cadmium   | ND         |                    | ND    | NC    | 10    |      |
| Chromium  | 0.66       | J                  | ND    | NC    | 10    |      |
| Cobalt    | 0.23       | J                  | ND    | NC    | 10    |      |
| Copper    | 2.4        |                    | ND    | NC    | 10    |      |
| Lead      | 0.89       | J                  | 0.995 | NC    | 10    | J    |
| Manganese | 17         |                    | 16.2  | 6.4   | 10    |      |
| Nickel    | 2.2        |                    | 2.19  | NC    | 10    | J    |
| Selenium  | ND         |                    | ND    | NC    | 10    |      |
| Silver    | ND         |                    | ND    | NC    | 10    |      |
| Thallium  | 0.090      | J                  | ND    | NC    | 10    |      |
| Vanadium  | 0.89       | J                  | ND    | NC    | 10    |      |
| Zinc      | 12         |                    | 16.8  | NC    | 10    | J    |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198697

MB 280-198697/1-A

Method: 6020A Preparation: 3005A **Total Recoverable** 

Client Matrix: Water Dilution: 1.0 11/06/2013 1249 Analysis Date:

Prep Batch: Leach Batch: Units: 11/06/2013 0730

Analysis Batch: 280-199679 280-198697 N/A ug/L

Instrument ID: MT\_077 Lab File ID: 027\_BLK.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Leach Date: N/A

Lab Sample ID:

Prep Date:

| Analyte   | Result | Qual | MDL   | RL  |  |
|-----------|--------|------|-------|-----|--|
| Antimony  | ND     |      | 0.40  | 2.0 |  |
| Arsenic   | ND     |      | 0.33  | 5.0 |  |
| Barium    | ND     |      | 0.29  | 1.0 |  |
| Beryllium | ND     |      | 0.080 | 1.0 |  |
| Cadmium   | ND     |      | 0.10  | 1.0 |  |
| Chromium  | ND     |      | 0.50  | 2.0 |  |
| Cobalt    | ND     |      | 0.054 | 1.0 |  |
| Copper    | 0.598  | J    | 0.56  | 2.0 |  |
| Lead      | ND     |      | 0.18  | 1.0 |  |
| Nickel    | ND     |      | 0.30  | 2.0 |  |
| Selenium  | ND     |      | 0.70  | 5.0 |  |
| Silver    | ND     |      | 0.033 | 5.0 |  |
| Thallium  | ND     |      | 0.050 | 1.0 |  |
| Vanadium  | ND     |      | 0.50  | 5.0 |  |
| Zinc      | ND     |      | 2.0   | 10  |  |

Method Blank - Batch: 280-198697

Method: 6020A Preparation: 3005A **Total Recoverable** 

Initial Weight/Volume:

Final Weight/Volume:

MT\_077

50 mL 50 mL

047\_BLK.d

Instrument ID:

Lab File ID:

Lab Sample ID: MB 280-198697/1-A Client Matrix: Water Dilution: 1.0 Analysis Date: 11/06/2013 1406 Prep Date:

11/06/2013 0730

Leach Date: N/A

Analyte Result Qual MDL RL ND 0.31 Manganese 1.0

280-199679

280-198697

N/A

ug/L

Analysis Batch:

Prep Batch:

Units:

Leach Batch:

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Lab Control Sample - Batch: 280-198697

N/A

Method: 6020A Preparation: 3005A **Total Recoverable** 

Lab Sample ID: LCS 280-198697/2-A Client Matrix: Water Dilution: 1.0 11/06/2013 1253 Analysis Date: Prep Date: 11/06/2013 0730

Leach Date:

Analysis Batch: Prep Batch: Leach Batch: N/A Units: ug/L

280-199679 280-198697

Instrument ID: MT\_077 Lab File ID: 028 LCS.d Initial Weight/Volume: 50 mL Final Weight/Volume: 50 mL

Analyte Spike Amount % Rec. Limit Qual Result Antimony 40.0 37.6 94 85 - 115 40.0 103 85 - 117 Arsenic 41.1 Barium 40.0 40.5 101 85 - 118 Beryllium 40.0 37.5 94 80 - 125 Cadmium 40.0 41.1 103 85 - 115 Chromium 40.0 40.8 102 84 - 121 40.0 Cobalt 41.4 103 85 - 120 40.0 103 85 - 119 Copper 41.1 Lead 40.0 41.0 102 85 - 118 Manganese 40.0 41.3 103 85 - 117 Nickel 40.0 42.0 105 85 - 119 Selenium 40.0 39.8 77 - 122 100 85 - 115 Silver 40.0 40.3 101 Thallium 40.0 40.4 101 85 - 118 Vanadium 40.0 40.6 101 85 - 120 Zinc 40.0 42.1 105 83 - 122

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

#### Post Digestion Spike - Batch: 280-198697

Method: 6020A Preparation: 3005A

Dissolved

Lab Sample ID: 280-48516-5
Client Matrix: Water
Dilution: 1.0
Analysis Date: 11/06/2013 1323

Analysis Batch: 280-199679
Prep Batch: 280-198697
Leach Batch: N/A
Units: ug/L

Instrument ID: MT\_077
Lab File ID: 036SMPL.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

Leach Date: N/A

| Analyte   | Sample Result/C | Qual | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|-----------------|------|--------------|--------|--------|----------|------|
| Antimony  | 5.0             |      | 200          | 207    | 101    | 75 - 125 |      |
| Arsenic   | 11              |      | 200          | 209    | 99     | 75 - 125 |      |
| Barium    | 12              |      | 200          | 210    | 99     | 75 - 125 |      |
| Beryllium | ND              |      | 200          | 191    | 96     | 75 - 125 |      |
| Cadmium   | ND              |      | 200          | 196    | 98     | 75 - 125 |      |
| Chromium  | ND              |      | 200          | 196    | 98     | 75 - 125 |      |
| Cobalt    | ND              |      | 200          | 195    | 98     | 75 - 125 |      |
| Copper    | ND              |      | 200          | 191    | 96     | 75 - 125 |      |
| Lead      | ND              |      | 200          | 192    | 96     | 75 - 125 |      |
| Manganese | 7.9             |      | 200          | 211    | 102    | 75 - 125 |      |
| Nickel    | 0.51            | J    | 200          | 194    | 97     | 75 - 125 |      |
| Selenium  | ND              |      | 200          | 193    | 96     | 75 - 125 |      |
| Silver    | ND              |      | 50.0         | 45.9   | 92     | 75 - 125 |      |
| Thallium  | ND              |      | 200          | 197    | 98     | 75 - 125 |      |
| Vanadium  | ND              |      | 200          | 199    | 100    | 75 - 125 |      |
| Zinc      | 4.5             | J    | 200          | 210    | 103    | 75 - 125 |      |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/
Matrix Spike Duplicate Recovery Report - Batch: 280-198697

Method: 6020A Preparation: 3005A

**Dissolved** 

MS Lab Sample ID: 280-Client Matrix: Water Dilution: 1.0

280-48516-5 Analysis Batch: 280-199679 atter Prep Batch: 280-198697 Leach Batch: N/A Instrument ID: MT\_077
Lab File ID: 034SMPL.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Analysis Date: 11/06/2013 1315 Prep Date: 11/06/2013 0730

Leach Date: N/A

MSD Lab Sample ID: 280-48516-5

Client Matrix: Water Dilution: 1.0

Analysis Date: 11/06/2013 1319 Prep Date: 11/06/2013 0730

Leach Date: N/A

Zinc

Analysis Batch: 280-199679 Instrument ID: MT\_077

Prep Batch: 280-198697 Lab File ID: 035SMPL.d

Leach Batch: N/A Initial Weight/Volume: 50 mL

Final Weight/Volume: 50 mL

% Rec. RPD **RPD Limit** Analyte MS MSD Limit MS Qual MSD Qual 93 85 - 115 Antimony 91 1 20 Arsenic 100 94 85 - 117 5 20 100 94 85 - 118 5 20 7 94 88 80 - 125 20 5 100 96 85 - 115 20

Barium Beryllium Cadmium Chromium 97 91 84 - 121 6 20 93 4 20 Cobalt 98 85 - 120 Copper 94 88 85 - 119 6 20 90 85 - 118 4 20 Lead 94 Manganese 103 96 85 - 117 6 20 6 20 Nickel 96 90 85 - 119 24 4 20 F Selenium 23 77 - 122 F 6 F Silver 86 81 85 - 115 20 Thallium 94 89 85 - 118 5 20 Vanadium 100 94 85 - 120 6 20

83 - 122

1

20

92

91

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Units: ug/L

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 280-198697 Method: 6020A Preparation: 3005A

Dissolved

MS Lab Sample ID:

280-48516-5

Client Matrix:

Water

MSD Lab Sample ID: 280-48516-5 Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/06/2013 1315 Prep Date: 11/06/2013 0730 Analysis Date: 11/06/2013 1319 Prep Date: 11/06/2013 0730

Leach Date: N/A Leach Date: N/A

| Analyte   | Sample<br>Result/Qua | l | MS Spike<br>Amount | MSD Spike<br>Amount | MS<br>Result/Qua | al | MSD<br>Result/Qua | al |
|-----------|----------------------|---|--------------------|---------------------|------------------|----|-------------------|----|
| Antimony  | 5.0                  |   | 40.0               | 40.0                | 41.5             |    | 42.0              |    |
| Arsenic   | 11                   |   | 40.0               | 40.0                | 51.6             |    | 49.2              |    |
| Barium    | 12                   |   | 40.0               | 40.0                | 52.4             |    | 49.8              |    |
| Beryllium | ND                   |   | 40.0               | 40.0                | 37.6             |    | 35.1              |    |
| Cadmium   | ND                   |   | 40.0               | 40.0                | 40.2             |    | 38.3              |    |
| Chromium  | ND                   |   | 40.0               | 40.0                | 38.9             |    | 36.5              |    |
| Cobalt    | ND                   |   | 40.0               | 40.0                | 39.1             |    | 37.4              |    |
| Copper    | ND                   |   | 40.0               | 40.0                | 37.5             |    | 35.2              |    |
| Lead      | ND                   |   | 40.0               | 40.0                | 37.6             |    | 36.1              |    |
| Manganese | 7.9                  |   | 40.0               | 40.0                | 49.2             |    | 46.2              |    |
| Nickel    | 0.51                 | J | 40.0               | 40.0                | 39.1             |    | 36.7              |    |
| Selenium  | ND                   |   | 40.0               | 40.0                | 9.14             | F  | 9.56              | F  |
| Silver    | ND                   |   | 40.0               | 40.0                | 34.3             |    | 32.4              | F  |
| Thallium  | ND                   |   | 40.0               | 40.0                | 37.6             |    | 35.6              |    |
| Vanadium  | ND                   |   | 40.0               | 40.0                | 39.9             |    | 37.4              |    |
| Zinc      | 4.5                  | J | 40.0               | 40.0                | 41.2             |    | 40.9              |    |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Serial Dilution - Batch: 280-198697

Method: 6020A Preparation: 3005A

Dissolved

 Lab Sample ID:
 280-48516-5

 Client Matrix:
 Water

 Dilution:
 5.0

 Analysis Date:
 11/06/2013 1312

Analysis Batch: 280-199679
Prep Batch: 280-198697
Leach Batch: N/A
Units: ug/L

Instrument ID: MT\_077
Lab File ID: 033SMPL.d
Initial Weight/Volume: 50 mL
Final Weight/Volume: 50 mL

Prep Date: 11/06/2013 0730

Leach Date: N/A

| Analyte   | Sample Re | esult/Qual | Result | %Diff | Limit | Qual |
|-----------|-----------|------------|--------|-------|-------|------|
| Antimony  | 5.0       |            | 6.31   | NC    | 10    | J    |
| Arsenic   | 11        |            | 12.1   | NC    | 10    | J    |
| Barium    | 12        |            | 12.4   | NC    | 10    |      |
| Beryllium | ND        |            | ND     | NC    | 10    |      |
| Cadmium   | ND        |            | ND     | NC    | 10    |      |
| Chromium  | ND        |            | ND     | NC    | 10    |      |
| Cobalt    | ND        |            | ND     | NC    | 10    |      |
| Copper    | ND        |            | ND     | NC    | 10    |      |
| Lead      | ND        |            | ND     | NC    | 10    |      |
| Manganese | 7.9       |            | 11.3   | NC    | 10    |      |
| Nickel    | 0.51      | J          | ND     | NC    | 10    |      |
| Selenium  | ND        |            | ND     | NC    | 10    |      |
| Silver    | ND        |            | ND     | NC    | 10    |      |
| Thallium  | ND        |            | ND     | NC    | 10    |      |
| Vanadium  | ND        |            | ND     | NC    | 10    |      |
| Zinc      | 4.5       | J          | ND     | NC    | 10    |      |

30 mL

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198428 Method: 7470A Preparation: 7470A

MB 280-198428/1-A Lab Sample ID: 280-200762 Instrument ID: MT\_034 Analysis Batch: Client Matrix: Water Prep Batch: 280-198428 Lab File ID: 131112tad.txt Leach Batch: N/A Dilution: 1.0 Initial Weight/Volume: 30 mL

Analysis Date: 11/12/2013 2152 Units: ug/L Final Weight/Volume: 30 mL

Prep Date: 11/12/2013 1330

Leach Date: N/A

Analyte Result Qual MDL RL

Mercury ND 0.027 0.20

Lab Control Sample - Batch: 280-198428 Method: 7470A
Preparation: 7470A

Lab Sample ID: LCS 280-198428/2-A Analysis Batch: 280-200762 Instrument ID: MT 034 Client Matrix: Water Prep Batch: 280-198428 Lab File ID: 131112tad.txt Dilution: Leach Batch: N/A Initial Weight/Volume: 30 mL 1.0

Analysis Date: 11/12/2013 2155 Units: ug/L Final Weight/Volume:

Prep Date: 11/12/2013 1330

Leach Date: N/A

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Mercury
 5.00
 4.98
 100
 84 - 120

Matrix Spike/ Method: 7470A

Matrix Spike Duplicate Recovery Report - Batch: 280-198428 Preparation: 7470A
Dissolved

D13501V

MS Lab Sample ID: 280-48516-5 Analysis Batch: 280-200762 Instrument ID: MT 034 131112tad.txt Client Matrix: Water Prep Batch: 280-198428 Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 30 mL

Analysis Date: 11/12/2013 2211 Final Weight/Volume: 30 mL Prep Date: 11/12/2013 1330

Leach Date: N/A

N/A

Leach Date:

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-200762 Instrument ID: MT\_034

Client Matrix: Water Prep Batch: 280-198428 Lab File ID: 131112tad.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 30 mL

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 30 mL Analysis Date: 11/12/2013 2213 Final Weight/Volume: 30 mL

Prep Date: 11/12/2013 1330

<u>% Rec.</u>

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

Mercury 99 98 75 - 125 0 20

280-48516-5

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 7470A

Matrix Spike Duplicate Recovery Report - Batch: 280-198428 Preparation: 7470A

Dissolved

MS Lab Sample ID: 280-48516-5 Units: ug/L MSD Lab Sample ID: Client Matrix: Vater Client Matrix:

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 11/12/2013 2211 Analysis Date: 11/12/2013 2213

Prep Date: 11/12/2013 1330 Prep Date: 11/12/2013 1330

Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Mercury ND 5.00 5.00 4.93 4.91

Job Number: 280-48516-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 280-198430 Method: 7470A Preparation: 7470A

Lab Sample ID: MB 280-198430/1-A 280-198910 Instrument ID: MT\_034 Analysis Batch: Client Matrix: Water Prep Batch: 280-198430 Lab File ID: 131031taa.txt Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 30 ml

Analysis Date: 10/31/2013 1424 Units: ug/L Final Weight/Volume: 30 mL

Prep Date: 10/31/2013 0945 Leach Date: N/A

N/A

N/A

Leach Date:

Leach Date:

Mercury

Analyte Result Qual MDL RL

Mercury ND 0.027 0.20

Lab Control Sample - Batch: 280-198430 Method: 7470A Preparation: 7470A

Lab Sample ID: LCS 280-198430/2-A Analysis Batch: 280-198910 Instrument ID: MT 034 Client Matrix: Water Prep Batch: 280-198430 Lab File ID: 131031taa.txt Dilution: Leach Batch: N/A Initial Weight/Volume: 30 mL 1.0

10/31/2013 1426 Units: Analysis Date: ug/L Final Weight/Volume: 30 mL

Prep Date: 10/31/2013 0945

% Rec. I imit Analyte Spike Amount Result

Qual 5.00 4.75 95 84 - 120 Mercury

Matrix Spike/ Method: 7470A Matrix Spike Duplicate Recovery Report - Batch: 280-198430 Preparation: 7470A

MS Lab Sample ID: 280-48516-5 Analysis Batch: 280-198910 Instrument ID: MT\_034 131031taa.txt Client Matrix: Water Prep Batch: 280-198430 Lab File ID: Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 30 mL

Analysis Date: 10/31/2013 1438 Final Weight/Volume: 30 mL Prep Date: 10/31/2013 0945

Leach Date:

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-198910 Instrument ID: MT 034 131031taa.txt Client Matrix: Water Prep Batch: 280-198430 Lab File ID: Dilution: Leach Batch: N/A 30 mL Initial Weight/Volume:

Analysis Date: 10/31/2013 1445 Final Weight/Volume: 30 mL

10/31/2013 0945 Prep Date:

94

94

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual

75 - 125

1

20

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 7470A

Matrix Spike Duplicate Recovery Report - Batch: 280-198430 Preparation: 7470A

MS Lab Sample ID: 280-48516-5 Units: ug/L MSD Lab Sample ID: 280-48516-5 Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

 Analysis Date:
 10/31/2013
 1438
 Analysis Date:
 10/31/2013
 1445

 Prep Date:
 10/31/2013
 0945
 Prep Date:
 10/31/2013
 0945

Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Analyte Result/Qual Amount Amount Result/Qual Result/Qual Mercury ND 5.00 5.00 4.72 4.68

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 490-121230 Method: 1664A Preparation: 1664A

Lab Sample ID: MB 490-121230/1-A Analysis Batch: 490-121238 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-121230 Lab File ID: Dilution: Leach Batch: N/A Initial Weight/Volume: 960 mL 1.0 11/12/2013 1055 Units: Final Weight/Volume: 960 mL Analysis Date: mg/L

Prep Date: 11/12/2013 1055

Leach Date: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 HEM (Oil & Grease)
 ND
 1.4
 4.0

Lab Control Sample/ Method: 1664A
Lab Control Sample Duplicate Recovery Report - Batch: 490-121230 Preparation: 1664A

LCS Lab Sample ID: LCS 490-121230/2-A Analysis Batch: 490-121238 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-121230 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL

Analysis Date: 11/12/2013 1055 Units: mg/L Final Weight/Volume: 960 mL

Prep Date: 11/12/2013 1055
Leach Date: N/A

N/A

Leach Date:

LCSD Lab Sample ID: LCSD 490-121230/3-A Analysis Batch: 490-121238 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-121230 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL

Analysis Date: 11/12/2013 1055 Units: mg/L Final Weight/Volume: 960 mL

Prep Date: 11/12/2013 1055

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

HEM (Oil & Grease) 91 90 78 - 114 17 18

Laboratory Control/ Method: 1664A
Laboratory Duplicate Data Report - Batch: 490-121230 Preparation: 1664A

LCS Lab Sample ID: LCS 490-121230/2-A Units: mg/L LCSD Lab Sample ID: LCSD 490-121230/3-A

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

 Analysis Date:
 11/12/2013 1055
 Analysis Date:
 11/12/2013 1055

 Prep Date:
 11/12/2013 1055
 Prep Date:
 11/12/2013 1055

Leach Date: N/A Leach Date: N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual
HEM (Oil & Grease) 41.7 41.7 37.8 37.5

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 1664A

Matrix Spike Duplicate Recovery Report - Batch: 490-121230 Preparation: 1664A

Leach Date:

N/A

MS Lab Sample ID: 280-48516-5 Analysis Batch: 490-121238 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-121230 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 1040 mL

Analysis Date: 11/12/2013 1055 Final Weight/Volume: 960 mL

Analysis Date: 11/12/2013 1055 Final Weight/Volume: 960 mL Prep Date: 11/12/2013 1055

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 490-121238 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-121230 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 1040 mL

Analysis Date: 11/12/2013 1055 Final Weight/Volume: 960 mL Prep Date: 11/12/2013 1055

Leach Date: N/A

% Rec. Limit RPD **RPD Limit** Analyte MS MSD MS Qual MSD Qual HEM (Oil & Grease) 80 78 - 114 F 76 5 18

Matrix Spike/ Method: 1664A

Matrix Spike Duplicate Recovery Report - Batch: 490-121230 Preparation: 1664A

MS Lab Sample ID: 280-48516-5 Units: mg/L MSD Lab Sample ID: 280-48516-5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

 Analysis Date:
 11/12/2013 1055
 Analysis Date:
 11/12/2013 1055

 Prep Date:
 11/12/2013 1055
 Prep Date:
 11/12/2013 1055

Leach Date: N/A Leach Date: N/A

Sample MS Spike MSD Spike MS MSD Result/Qual Amount Amount Result/Qual Result/Qual Analyte HEM (Oil & Grease) ND 38.5 38.5 29.2 F 30.7

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198509 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198509/11 Analysis Batch: 280-198509 Instrument ID: WC\_IC10
Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1342 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Result Qual Analyte MDL RL Chloride ND 0.25 3.0 Fluoride ND 0.060 0.50 Sulfate ND 0.23 5.0

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-198509 Preparation: N/A

LCS Lab Sample ID: LCS 280-198509/9 Analysis Batch: 280-198509 Instrument ID: WC\_IC10

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1309 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198509/10 Analysis Batch: 280-198509 Instrument ID: WC\_IC10

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

97

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1326 Units: mg/L Final Weight/Volume:

Analysis Date: 10/29/2013 1326 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

96

Sulfate

% Rec. LCS **RPD** LCSD Qual Analyte **LCSD** Limit **RPD Limit** LCS Qual Chloride 99 99 90 - 110 0 10 Fluoride 101 100 90 - 110 1 10

90 - 110

0

10

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Laboratory Control/ Method: 300.0
Laboratory Duplicate Data Report - Batch: 280-198509 Preparation: N/A

LCS Lab Sample ID: LCS 280-198509/9 Units: mg/L LCSD Lab Sample ID: LCSD 280-198509/10

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/29/2013 1309 Analysis Date: 10/29/2013 1326

Prep Date: N/A
Leach Date: N/A
Leach Date: N/A

| Analyte  | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|----------|---------------------|----------------------|--------------------|---------------------|
| Chloride | 25.0                | 25.0                 | 24.7               | 24.8                |
| Fluoride | 5.00                | 5.00                 | 5.06               | 4.99                |
| Sulfate  | 25.0                | 25.0                 | 24.1               | 24.2                |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198510 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198510/11 Analysis Batch: 280-198510 Instrument ID: WC\_IC10
Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv
Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1342 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Nitrate as N
 ND
 0.042
 0.50

 Nitrite as N
 ND
 0.049
 0.50

Lab Control Sample/ Method: 300.0

Lab Control Sample Duplicate Recovery Report - Batch: 280-198510 Preparation: N/A

LCS Lab Sample ID: LCS 280-198510/9 Analysis Batch: 280-198510 Instrument ID: WC\_IC10

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1309 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198510/10 Analysis Batch: 280-198510 Instrument ID: WC\_IC10

Client Matrix: Water Prep Batch: N/A Lab File ID: 102913.csv

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/29/2013 1326 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Nitrate as N 93 93 90 - 110 0 10
Nitrite as N 98 99 90 - 110 1 10

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Laboratory Control/ Method: 300.0
Laboratory Duplicate Data Report - Batch: 280-198510 Preparation: N/A

LCS Lab Sample ID: LCS 280-198510/9 Units: mg/L LCSD Lab Sample ID: LCSD 280-198510/10

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/29/2013 1309 Analysis Date: 10/29/2013 1326

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte      | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|--------------|---------------------|----------------------|--------------------|---------------------|
| Nitrate as N | 5.00                | 5.00                 | 4.63               | 4.65                |
| Nitrite as N | 5.00                | 5.00                 | 4.91               | 4.95                |

Job Number: 280-48516-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 280-198950 Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198950/6 280-198950 Instrument ID: WC\_IC8 Analysis Batch: Client Matrix: Water Prep Batch: N/A Lab File ID: 115.TXT

N/A Dilution: 1.0 Leach Batch: Initial Weight/Volume: Analysis Date: 10/30/2013 1150 Units: Final Weight/Volume: mg/L

Prep Date: N/A Leach Date: N/A

Leach Date:

Nitrite as N

N/A

Analyte Result Qual MDL RL Nitrate as N ND 0.042 0.50 Nitrite as N ND 0.049 0.50

Method: 300.0 Method Reporting Limit Check - Batch: 280-198950 Preparation: N/A

Lab Sample ID: Analysis Batch: 280-198950 Instrument ID: WC IC8 MRL 280-198950/3

Client Matrix: Water Prep Batch: N/A Lab File ID: 112.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

10/30/2013 1100 Units: Analysis Date: mg/L Final Weight/Volume: 5 mL

Prep Date: N/A

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual Nitrate as N 0.205 50 - 150 0.200 103 J Nitrite as N 0.200 0.191 96 50 - 150 J

Lab Control Sample/ Method: 300.0 Lab Control Sample Duplicate Recovery Report - Batch: 280-198950 Preparation: N/A

280-198950 WC\_IC8 LCS Lab Sample ID: LCS 280-198950/4 Analysis Batch: Instrument ID:

Client Matrix: N/A 113.TXT Water Prep Batch: Lab File ID: Dilution: Leach Batch: 1.0 N/A Initial Weight/Volume:

Analysis Date: 10/30/2013 1117 Units: Final Weight/Volume: mg/L

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198950/5 Analysis Batch: 280-198950 Instrument ID: WC\_IC8

Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

10/30/2013 1134 Units: Final Weight/Volume: Analysis Date: mg/L Prep Date: N/A

100

% Rec. RPD Analyte LCS **LCSD** Limit **RPD Limit** LCS Qual LCSD Qual Nitrate as N 99 98 90 - 110 0 10

100

90 - 110

0

10

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Laboratory Control/ Method: 300.0
Laboratory Duplicate Data Report - Batch: 280-198950 Preparation: N/A

LCS Lab Sample ID: LCS 280-198950/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198950/5

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/30/2013 1117 Analysis Date: 10/30/2013 1134

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte      | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|--------------|---------------------|----------------------|--------------------|---------------------|
| Nitrate as N | 5.00                | 5.00                 | 4.93               | 4.92                |
| Nitrite as N | 5.00                | 5.00                 | 5.00               | 5.00                |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-198951

Method: 300.0 Preparation: N/A

Lab Sample ID: MB 280-198951/6 Client Matrix: Water 1.0

Analysis Batch: Prep Batch: Leach Batch:

Units:

280-198951 N/A N/A mg/L

Instrument ID: Lab File ID: Initial Weight/Volume:

Final Weight/Volume:

WC\_IC8 115.TXT

Dilution: Analysis Date:

10/30/2013 1150

Prep Date: N/A Leach Date: N/A

| Analyte  | Result | Qual | MDL   | RL   |
|----------|--------|------|-------|------|
| Chloride | ND     |      | 0.25  | 3.0  |
| Fluoride | ND     |      | 0.060 | 0.50 |
| Sulfate  | ND     |      | 0.23  | 5.0  |

Method Reporting Limit Check - Batch: 280-198951

Method: 300.0 Preparation: N/A

Lab Sample ID: Client Matrix:

MRL 280-198951/3 Water

Analysis Batch: Prep Batch:

280-198951 N/A

Instrument ID: Lab File ID:

WC\_IC8 112.TXT

5 mL

Dilution: Analysis Date:

Prep Date:

Leach Date:

1.0

10/30/2013 1100

N/A N/A Leach Batch: N/A Initial Weight/Volume: Units: Final Weight/Volume: mg/L

| Analyte  | Spike Amount | Result | % Rec. | Limit    | Qual |
|----------|--------------|--------|--------|----------|------|
| Chloride | 1.00         | 0.999  | 100    | 50 - 150 | J    |
| Fluoride | 0.200        | 0.172  | 86     | 50 - 150 | J    |
| Sulfate  | 1.00         | 1.06   | 106    | 50 - 150 | J    |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Lab Control Sample/ Method: 300.0
Lab Control Sample Duplicate Recovery Report - Batch: 280-198951 Preparation: N/A

LCS Lab Sample ID: LCS 280-198951/4 Analysis Batch: 280-198951 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 113.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/30/2013 1117 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198951/5 Analysis Batch: 280-198951 Instrument ID: WC\_IC8 Client Matrix: Water Prep Batch: N/A Lab File ID: 114.TXT

Dilution: 1.0 Leach Batch: N/A Lab File ID: 114.1X

Analysis Date: 10/30/2013 1134 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

% Rec. RPD LCSD Qual Analyte LCS **LCSD** Limit RPD Limit LCS Qual Chloride 102 102 90 - 110 0 10 Fluoride 105 104 90 - 110 0 10 Sulfate 102 102 90 - 110 0 10

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-198951

Method: 300.0
Preparation: N/A

LCS Lab Sample ID: LCS 280-198951/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-198951/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/30/2013 1117 Analysis Date: 10/30/2013 1134

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

| Analyte  | LCS Spike<br>Amount | LCSD Spike<br>Amount | LCS<br>Result/Qual | LCSD<br>Result/Qual |
|----------|---------------------|----------------------|--------------------|---------------------|
| Chloride | 25.0                | 25.0                 | 25.4               | 25.4                |
| Fluoride | 5.00                | 5.00                 | 5.23               | 5.22                |
| Sulfate  | 25.0                | 25.0                 | 25.6               | 25.5                |

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-201021 Method: 9060A
Preparation: N/A

Lab Sample ID: MB 280-201021/5 Analysis Batch: 280-201021 Instrument ID: WC\_SHI2

Client Matrix: Water Prep Batch: N/A Lab File ID: 111313.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/13/2013 2049 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

Total Organic Carbon - Average 0.167 J 0.16 1.0

Total Organic Carbon - Average 0.167 J 0.16

Lab Control Sample/ Method: 9060A
Lab Control Sample Duplicate Recovery Report - Batch: 280-201021 Preparation: N/A

LCS Lab Sample ID: LCS 280-201021/3 Analysis Batch: 280-201021 Instrument ID: WC\_SHI2

Client Matrix: Water Prep Batch: N/A Lab File ID: 111313.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/13/2013 2011 Units: mg/L Final Weight/Volume: 200 mL Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-201021/4 Analysis Batch: 280-201021 Instrument ID: WC\_

LCSD Lab Sample ID: LCSD 280-201021/4 Analysis Batch: 280-201021 Instrument ID: WC\_SHI2
Client Matrix: Water Prep Batch: N/A Lab File ID: 111313.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/13/2013 2030 Units: mg/L Final Weight/Volume: 200 mL

Prep Date: N/A
Leach Date: N/A

 % Rec.

 Analyte
 LCS
 LCSD
 Limit
 RPD
 RPD Limit
 LCS Qual
 LCSD Qual

Total Organic Carbon - Average 99 99 88 - 112 0 15

Laboratory Control/ Method: 9060A
Laboratory Duplicate Data Report - Batch: 280-201021 Preparation: N/A

LCS Lab Sample ID: LCS 280-201021/3 Units: mg/L LCSD Lab Sample ID: LCSD 280-201021/4

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/13/2013 2011 Analysis Date: 11/13/2013 2030

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD Spike Result/Qual Result/Qual Total Organic Carbon - Average 25.0 25.0 24.7 24.7

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Matrix Spike/ Method: 9060A

Matrix Spike Duplicate Recovery Report - Batch: 280-201021 Preparation: N/A

MS Lab Sample ID: 280-48516-5 Analysis Batch: 280-201021 Instrument ID: WC\_SHI2 Client Matrix: Water Prep Batch: N/A Lab File ID: 111313.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/14/2013 0234 Final Weight/Volume: 50 mL Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-201021 Instrument ID: WC\_SI

MSD Lab Sample ID: 280-48516-5 Analysis Batch: 280-201021 Instrument ID: WC\_SHI2 Client Matrix: Water Prep Batch: N/A Lab File ID: 111313.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/14/2013 0253 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

 Total Organic Carbon - Average
 101
 101
 88 - 112
 0
 15

Matrix Spike/ Method: 9060A

Matrix Spike Duplicate Recovery Report - Batch: 280-201021 Preparation: N/A

MS Lab Sample ID: 280-48516-5 Units: mg/L MSD Lab Sample ID: 280-48516-5

Client Matrix: Water Client Matrix: Water

Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/14/2013 0234 Analysis Date: 11/14/2013 0253

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Sample MS Spike MSD Spike MS MSD Result/Qual Amount Amount Result/Qual Result/Qual Analyte Total Organic Carbon - Average 25 25.0 25.0 49.9 49.7

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-199016 Method: SM 2320B Preparation: N/A

Lab Sample ID: MB 280-199016/6 Analysis Batch: 280-199016 Instrument ID: WC-AT3
Client Matrix: Water Prep Batch: N/A Lab File ID: 110113a.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/01/2013 1428 Units: mg/L Final Weight/Volume:

Prep Date: N/A Leach Date: N/A

| Analyte                         | Result | Qual | MDL | RL  |  |
|---------------------------------|--------|------|-----|-----|--|
| Total Alkalinity as CaCO3       | 1.13   | J    | 1.1 | 5.0 |  |
| Bicarbonate Alkalinity as CaCO3 | 1.13   | J    | 1.1 | 5.0 |  |
| Carbonate Alkalinity as CaCO3   | ND     |      | 1.1 | 5.0 |  |

Lab Control Sample/ Method: SM 2320B
Lab Control Sample Duplicate Recovery Report - Batch: 280-199016 Preparation: N/A

LCS Lab Sample ID: LCS 280-199016/4 Analysis Batch: 280-199016 Instrument ID: WC-AT3
Client Matrix: Water Prep Batch: N/A Lab File ID: 110113a.TXT

Client Matrix: Water Prep Batch: N/A Lab File ID: 11011

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/01/2013 1419 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-199016/5 Analysis Batch: 280-199016 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 110113a.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/01/2013 1424 Units: mg/L Final Weight/Volume:

Analysis Date: 11/01/2013 1424 Units: mg/L Final Weight/Volume: Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Alkalinity as CaCO3 101 101 90 - 110 0 10

Laboratory Control/ Method: SM 2320B
Laboratory Duplicate Data Report - Batch: 280-199016 Preparation: N/A

LCS Lab Sample ID: LCS 280-199016/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-199016/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/01/2013 1419 Analysis Date: 11/01/2013 1424

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Total Alkalinity as CaCO3 200 200 203 202

Final Weight/Volume:

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Method Blank - Batch: 280-199930 Method: SM 2320B Preparation: N/A

Units:

Lab Sample ID: MB 280-199930/6 Analysis Batch: 280-199930 Instrument ID: WC-AT3
Client Matrix: Water Prep Batch: N/A Lab File ID: 110713b.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Prep Date: N/A Leach Date: N/A

Analysis Date:

11/07/2013 2029

Analyte Result Qual MDL RL Total Alkalinity as CaCO3 1.50 1.1 5.0 Bicarbonate Alkalinity as CaCO3 1.50 J 1.1 5.0 Carbonate Alkalinity as CaCO3 ND 1.1 5.0

mg/L

Lab Control Sample/ Method: SM 2320B
Lab Control Sample Duplicate Recovery Report - Batch: 280-199930 Preparation: N/A

LCS Lab Sample ID: LCS 280-199930/4 Analysis Batch: 280-199930 Instrument ID: WC-AT3

Client Matrix: Water Prep Batch: N/A Lab File ID: 110713b.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 11/07/2013 2020 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-199930/5 Analysis Batch: 280-199930 Instrument ID: WC-AT3
Client Matrix: Water Prep Batch: N/A Lab File ID: 110713b.TXT

Client Matrix: Water Prep Batch: N/A Lab File ID: 110713b.TXT Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/07/2013 2025 Units: mg/L Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

Analyte \frac{\% \text{Rec.}}{\text{LCS}} LCSD \text{Limit} \text{RPD} \text{RPD Limit LCS Qual LCSD Qual}

Total Alkalinity as CaCO3 100 100 90 - 110 0 10

Laboratory Control/ Method: SM 2320B
Laboratory Duplicate Data Report - Batch: 280-199930 Preparation: N/A

LCS Lab Sample ID: LCS 280-199930/4 Units: mg/L LCSD Lab Sample ID: LCSD 280-199930/5

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 11/07/2013 2020 Analysis Date: 11/07/2013 2025

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS Result/Qual Result/Qual

Total Alkalinity as CaCO3 200 200 200 199

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

Duplicate - Batch: 280-199930 Method: SM 2320B Preparation: N/A

Lab Sample ID:280-48516-7Analysis Batch:280-199930Instrument ID:WC-AT3Client Matrix:WaterPrep Batch:N/ALab File ID:110713b.TXT

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 11/07/2013 2059 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Alkalinity as CaCO3 3.6 J 1.67 72 10 J

Job Number: 280-48516-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 280-198932 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-198932/1 280-198932 Instrument ID: Analysis Batch: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: Initial Weight/Volume: 100 mL 11/01/2013 1338 Units: Final Weight/Volume: 100 mL Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

**Total Dissolved Solids** ND 4.7 10

Lab Control Sample/ Method: SM 2540C Lab Control Sample Duplicate Recovery Report - Batch: 280-198932 Preparation: N/A

LCS 280-198932/2 Analysis Batch: 280-198932 Instrument ID: LCS Lab Sample ID: No Equipment Assigned

Client Matrix: Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 11/01/2013 1338 Analysis Date: Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-198932/3 Analysis Batch: 280-198932 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1 0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 11/01/2013 1338 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

% Rec. LCS RPD LCS Qual LCSD Qual Analyte **LCSD** Limit **RPD Limit** 

**Total Dissolved Solids** 96 95 86 - 110 20

**Laboratory Control/** Method: SM 2540C Laboratory Duplicate Data Report - Batch: 280-198932 Preparation: N/A

LCS Lab Sample ID: LCS 280-198932/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-198932/3

Client Matrix: Water Client Matrix: Water Dilution: 1 0 Dilution: 1 0

Analysis Date: 11/01/2013 1338 Analysis Date: 11/01/2013 1338

Prep Date: N/A Prep Date: N/A Leach Date: N/A Leach Date: N/A

LCS LCSD LCS Spike LCSD Spike Analyte **Amount** Amount Result/Qual Result/Qual **Total Dissolved Solids** 500 500 478 476

## **DATA REPORTING QUALIFIERS**

Client: Ecology and Environment, Inc. Job Number: 280-48516-1

| Lab Section       | Qualifier | Description                                                                                                                                               |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC/MS VOA         |           |                                                                                                                                                           |
|                   | В         | Compound was found in the blank and sample.                                                                                                               |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
|                   | X         | Surrogate is outside control limits                                                                                                                       |
| GC VOA            |           |                                                                                                                                                           |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
| GC Semi VOA       |           |                                                                                                                                                           |
|                   | X         | Surrogate is outside control limits                                                                                                                       |
| Metals            |           |                                                                                                                                                           |
|                   | В         | Compound was found in the blank and sample.                                                                                                               |
|                   | 4         | MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. |
|                   | F         | MS/MSD Recovery and/or RPD exceeds the control limits                                                                                                     |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
| General Chemistry |           |                                                                                                                                                           |
|                   | В         | Compound was found in the blank and sample.                                                                                                               |
|                   | F         | MS/MSD Recovery and/or RPD exceeds the control limits                                                                                                     |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
|                   | Н         | Sample was prepped or analyzed beyond the specified holding time                                                                                          |



### ANALYTICAL REPORT

Job Number: 280-48516-2

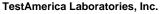
Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release. Patrick J McEntee Senior Project Manager 12/6/2013 5:34 PM


Patrick J McEntee, Senior Project Manager 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 12/06/2013

Datul J. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





## **Table of Contents**

| Cover Title Page                 | 1  |
|----------------------------------|----|
| Data Summaries                   | 3  |
| Report Narrative                 | 3  |
| Sample Summary                   | 4  |
| Method Summary                   | 5  |
| Subcontracted Data               | 6  |
| Shipping and Receiving Documents | 11 |
| Client Chain of Custody          | 12 |
| Sample Receipt Checklist         | 14 |

#### **CASE NARRATIVE**

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-48516-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 10/29/2013 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 6 coolers at receipt time were 0.3° C, 1.2° C, 2.7° C, 3.2° C, 3.8° C and 4.2° C.

The sample IDs on the container labels have a "-2013" suffix, i.e. MW-04-2013. The IDs on the COC do not, i.e. MW-04. The sample IDs were logged per the COC.

This report represents the analysis of samples MW04 and MW05 for Stable Water Isotopes and Oxygen, Stable Water Isotopes and Carbon and Radiocarbon Analysis of Water. The other analyses requested on the COC are reported under separate cover (280-48516-1). Per client instruction on 11/1/2013, samples MW04 and MW05 were logged for Stable Water Isotopes and Oxygen, Stable Water Isotopes and Carbon and Radiocarbon Analysis of Water. This analysis was performed by IsoTech Laboratories, Inc., located at 1308 Parkland Court, Champaign IL, 61821-1826, TEL (217) 398-3490. The analytical report is presented in it's entirety.

### **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-48516-2

|               |                  |               | Date/Time       | Date/Time       |
|---------------|------------------|---------------|-----------------|-----------------|
| Lab Sample ID | Client Sample ID | Client Matrix | Sampled         | Received        |
| 280-48516-5   | MW-04            | Water         | 10/25/2013 1430 | 10/29/2013 0900 |
| 280-48516-6   | MW-05            | Water         | 10/25/2013 1445 | 10/29/2013 0900 |

### **METHOD SUMMARY**

Job Number: 280-48516-2

Client: Ecology and Environment, Inc.

 Description
 Lab Location
 Method
 Preparation Method

 Matrix:
 Water

 General Sub Contract Method
 Isotech
 Subcontract

Lab References:

Isotech = Isotech Laboratories Inc

**Method References:** 

# Subcontract Data



392695

Lab Number:

## A N A L Y S I S R E P O R T

Job Number: 23440

IS-67948

## **Water Analysis**

| Submitter Sample Name:         | MW-04 (280    | 0-48516-5) |                        |            |
|--------------------------------|---------------|------------|------------------------|------------|
| Submitter Sample ID:           |               |            |                        |            |
| Submitter Job #:               |               |            |                        |            |
| Company:                       | TestAmerica   | a          |                        |            |
| Field or Site:                 | TomCo, Uta    | ah         |                        |            |
| Location:                      |               |            |                        |            |
| Depth/Formation:               |               |            |                        |            |
| Container Type:                | 1 Liter Plast | ic Bottle  |                        |            |
| Sample Collected:              | 10/25/2013    | R          | Results Reported:      | 11/26/2013 |
| δD of water                    |               | -129.0 ‰   | relative to VSMOW      |            |
| $\delta^{18}\text{O}$ of water |               | -16.31 ‰   | relative to VSMOW      |            |
| Tritium content of water       |               | na         |                        |            |
| $\delta^{13}C$ of DIC          |               | -6.8 ‰ rel | ative to VPDB          |            |
| <sup>14</sup> C content of DIC |               | 15.9 ± 0   | .1 percent modern carb | on         |
| $\delta^{15}N$ of nitrate      |               | na         |                        |            |
| $\delta^{18}O$ of nitrate      |               | na         |                        |            |
| $\delta^{34}S$ of sulfate      |               | na         |                        |            |
| $\delta^{18}O$ of sulfate      |               | na         |                        |            |
| Remarks:                       |               |            |                        |            |



392696

Lab Number:

## A N A L Y S I S R E P O R T

Job Number: 23440

IS-67948

## **Water Analysis**

| Submitter Sample Name            | MW-05 (280    | 0-48516-6)                      |            |  |  |  |  |
|----------------------------------|---------------|---------------------------------|------------|--|--|--|--|
| Submitter Sample ID:             |               |                                 |            |  |  |  |  |
| Submitter Job #:                 |               |                                 |            |  |  |  |  |
| Company:                         | TestAmeric    | a                               |            |  |  |  |  |
| Field or Site:                   | TomCo, Uta    | TomCo, Utah                     |            |  |  |  |  |
| Location:                        |               |                                 |            |  |  |  |  |
| Depth/Formation:                 |               |                                 |            |  |  |  |  |
| Container Type:                  | 1 Liter Plast | tic Bottle                      |            |  |  |  |  |
| Sample Collected:                | 10/25/2013    | Results Reported:               | 11/26/2013 |  |  |  |  |
| δD of water                      |               | -129.0 % relative to VSMOW      |            |  |  |  |  |
| $\delta^{18}\text{O}$ of water   |               | -16.33 % relative to VSMOW      |            |  |  |  |  |
| Tritium content of water         |               | na                              |            |  |  |  |  |
| $\delta^{13}C$ of DIC            |               | -6.8 ‰ relative to VPDB         |            |  |  |  |  |
| <sup>14</sup> C content of DIC   |               | 15.8 ± 0.1 percent modern carbo | n          |  |  |  |  |
| $\delta^{15}N$ of nitrate        |               | na                              |            |  |  |  |  |
| $\delta^{18}\text{O}$ of nitrate |               | na                              |            |  |  |  |  |
| $\delta^{34}S$ of sulfate        |               | na                              |            |  |  |  |  |
| $\delta^{18}\text{O}$ of sulfate |               | na                              |            |  |  |  |  |
| Remarks:                         |               |                                 |            |  |  |  |  |

## **Packer Test Groundwater Samples**



## **ANALYTICAL REPORT**

Job Number: 280-47192-1

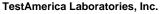
Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release Patrick J McEntee Project Manager II 10/17/2013 8:30 AM


Patrick J McEntee, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 10/17/2013

atul f. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





## **Table of Contents**

| Cc  | over Title Page           | 1  |
|-----|---------------------------|----|
| Da  | ata Summaries             | 4  |
|     | Report Narrative          | 4  |
|     | Sample Summary            | 5  |
|     | Executive Summary         | 6  |
|     | Method Summary            | 7  |
|     | Method / Analyst Summary  | 8  |
|     | Sample Datasheets         | 9  |
|     | QC Data Summary           | 11 |
|     | Data Qualifiers           | 14 |
|     | QC Association Summary    | 15 |
|     | Lab Chronicle             | 16 |
|     | Reagent Traceability      | 18 |
|     | COAs                      | 20 |
|     | Certification Summary     | 23 |
| Inc | organic Sample Data       | 25 |
|     | General Chemistry Data    | 25 |
|     | Gen Chem Cover Page       | 26 |
|     | Gen Chem Sample Data      | 28 |
|     | Gen Chem QC Data          | 32 |
|     | Gen Chem ICV/CCV          | 32 |
|     | Gen Chem Blanks           | 33 |
|     | Gen Chem LCS/LCSD         | 35 |
|     | Gen Chem MDL              | 38 |
|     | Gen Chem Preparation Log  | 44 |
|     | Gen Chem Analysis Run Log | 45 |

## **Table of Contents**

|     | Gen Chem Raw Data             | 49 |
|-----|-------------------------------|----|
|     | Gen Chem Prep Data            | 84 |
| Sub | ocontracted Data              | 89 |
| Shi | pping and Receiving Documents | 90 |
| (   | Client Chain of Custody       | 91 |
| ;   | Sample Receipt Checklist      | 92 |

### **CASE NARRATIVE**

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-47192-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 9/27/2013 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.0° C.

### HEM (Oil & Grease)

Samples PT-04 (280-47192-1) and PT-03 (280-47192-2) were analyzed for HEM (Oil & Grease) in accordance with EPA Method 1664A. The samples were prepared and analyzed on 10/07/2013.

No difficulties were encountered during the HEM (Oil & Grease) analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL DISSOLVED SOLIDS**

Samples PT-04 (280-47192-1) and PT-03 (280-47192-2) were analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 09/30/2013.

The following sample(s) was received with insufficient time remaining to perform the analysis within holding time: PT-03 (280-47192-2). The sample was collected on 9/22/2013 and received on 9/27/2013. Every effort was made to analyze the sample prior to the exipration of the 7 day holding time.

Constant weight was not achieved after 3 drying cycles for the following sample(s): PT-04 (280-47192-1)

No other difficulties were encountered during the TDS analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL ORGANIC CARBON**

Samples PT-04 (280-47192-1) and PT-03 (280-47192-2) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 10/07/2013.

Sample PT-03 (280-47192-2)[14X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

### **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

|               |                  |               | Date/Time       | Date/Time       |  |
|---------------|------------------|---------------|-----------------|-----------------|--|
| Lab Sample ID | Client Sample ID | Client Matrix | Sampled         | Received        |  |
| 280-47192-1   | PT-04            | Water         | 09/23/2013 1300 | 09/27/2013 1000 |  |
| 280-47192-2   | PT-03            | Water         | 09/22/2013 0920 | 09/27/2013 1000 |  |

### **EXECUTIVE SUMMARY - Detections**

Job Number: 280-47192-1

Client: Ecology and Environment, Inc.

| Lab Sample ID<br>Analyte | Client Sample ID | Result | Qualifier | Reporting<br>Limit | Units | Method   |
|--------------------------|------------------|--------|-----------|--------------------|-------|----------|
| 280-47192-1              | PT-04            |        |           |                    |       |          |
| HEM (Oil & Greas         | se)              | 1.3    | J         | 3.8                | mg/L  | 1664A    |
| Total Organic Car        | bon - Average    | 41     |           | 1.0                | mg/L  | 9060A    |
| Total Dissolved S        | olids            | 920    |           | 10                 | mg/L  | SM 2540C |
|                          |                  |        |           |                    |       |          |
| 280-47192-2              | PT-03            |        |           |                    |       |          |
| Total Organic Car        | bon - Average    | 660    |           | 14                 | mg/L  | 9060A    |
| Total Dissolved S        | olids            | 4900   | Н         | 40                 | mg/L  | SM 2540C |

### **METHOD SUMMARY**

Job Number: 280-47192-1

Client: Ecology and Environment, Inc.

| Description                           | Lab Location       | Method      | Preparation Method |  |  |
|---------------------------------------|--------------------|-------------|--------------------|--|--|
| Matrix: Water                         |                    |             |                    |  |  |
| Organic Carbon, Total (TOC)           | TAL DEN            | SW846 9060A |                    |  |  |
| Solids, Total Dissolved (TDS)         | TAL DEN            | SM SM 2540C |                    |  |  |
| HEM and SGT-HEM HEM and SGT-HEM (SPE) | TAL NSH<br>TAL NSH | 1664A 1664A | 1664A 1664A        |  |  |

### Lab References:

TAL DEN = TestAmerica Denver

TAL NSH = TestAmerica Nashville

### **Method References:**

1664A = EPA-821-98-002

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

## METHOD / ANALYST SUMMARY

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

| Method      | Analyst          | Analyst ID |
|-------------|------------------|------------|
| 1664A 1664A | Dunn, Bradley    | BAD        |
| SW846 9060A | Bandy, Darlene F | DFB        |
| SM SM 2540C | Newcome, Robin D | RDN        |

### **Analytical Data**

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

#### **General Chemistry** Client Sample ID: PT-04 Lab Sample ID: 280-47192-1 Date Sampled: 09/23/2013 1300 Client Matrix: Date Received: 09/27/2013 1000 Water RL Analyte MDL Dil Method Result Qual Units HEM (Oil & Grease) 1.3 J mg/L 1.3 3.8 1.0 1664A Analysis Batch: 490-112433 Analysis Date: 10/07/2013 1043 Prep Batch: 490-112429 Prep Date: 10/07/2013 1043 Total Organic Carbon - Average 41 mg/L 1.0 1.0 9060A 0.16 Analysis Batch: 280-194721 Analysis Date: 10/07/2013 0115 **Total Dissolved Solids** 920 mg/L 4.7 10 1.0 SM 2540C Analysis Batch: 280-193767 Analysis Date: 09/30/2013 1557

### **Analytical Data**

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

#### **General Chemistry** Client Sample ID: PT-03 Lab Sample ID: 280-47192-2 Date Sampled: 09/22/2013 0920 Client Matrix: Date Received: 09/27/2013 1000 Water Analyte MDL RLDil Method Result Qual Units HEM (Oil & Grease) ND mg/L 1.3 3.8 1.0 1664A Analysis Batch: 490-112433 Analysis Date: 10/07/2013 1043 Prep Batch: 490-112429 Prep Date: 10/07/2013 1043 Total Organic Carbon - Average mg/L 2.2 14 14 9060A 660 Analysis Batch: 280-194721 Analysis Date: 10/07/2013 0207 **Total Dissolved Solids** 4900 Н mg/L 40 1.0 SM 2540C Analysis Batch: 280-193767 Analysis Date: 09/30/2013 1557

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

Method Blank - Batch: 490-112429 Method: 1664A Preparation: 1664A

Lab Sample ID: MB 490-112429/1-A Analysis Batch: 490-112433 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-112429 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL

Applysic Date: 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 1043 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Lights Page 10/07/2013 Li

Analysis Date: 10/07/2013 1043 Units: mg/L Final Weight/Volume: 960 mL

Prep Date: 10/07/2013 1043 Leach Date: N/A

N/A

Leach Date:

 Analyte
 Result
 Qual
 MDL
 RL

 HEM (Oil & Grease)
 ND
 1.4
 4.0

Lab Control Sample - Batch: 490-112429 Method: 1664A
Preparation: 1664A

Lab Sample ID: LCS 490-112429/2-A Analysis Batch: 490-112433 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-112429 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL

Analysis Date: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL Final Weight/Volume: 960 mL Final Weight/Volume: 960 mL

Prep Date: 10/07/2013 1043

Analyte Spike Amount Result % Rec. Limit Qual

HEM (Oil & Grease) 41.7 36.3 87 78 - 114

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

Method Blank - Batch: 280-194721 Method: 9060A
Preparation: N/A

Lab Sample ID: MB 280-194721/5 Analysis Batch: 280-194721 Instrument ID: WC\_SHI3

Client Matrix: Water Prop Ratch: N/A Lab File ID: 100613 tot

Client Matrix: Water Prep Batch: N/A Lab File ID: 100613.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/06/2013 1940 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Leach Date:

N/A

Analyte Result Qual MDL RL

Total Organic Carbon - Average ND 0.16 1.0

Lab Control Sample/ Method: 9060A
Lab Control Sample Duplicate Recovery Report - Batch: 280-194721 Preparation: N/A

LCS Lab Sample ID: LCS 280-194721/3 Analysis Batch: 280-194721 Instrument ID: WC\_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 100613.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/06/2013 1911 Units: mg/L Final Weight/Volume: 200 mL Prep Date: N/A

LCSD Lab Sample ID: LCSD 280-194721/4 Analysis Batch: 280-194721 Instrument ID: WC\_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 100613.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/06/2013 1925 Units: mg/L Final Weight/Volume: 200 mL Prep Date: N/A

Leach Date: N/A

Analyte \( \frac{\% \text{Rec.}}{\text{LCS}} \)
LCS \( \text{LCSD} \) Limit \( \text{RPD} \) RPD Limit \( \text{LCS Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD

Total Organic Carbon - Average 101 101 88 - 112 0 15

Laboratory Control/ Method: 9060A
Laboratory Duplicate Data Report - Batch: 280-194721 Preparation: N/A

LCS Lab Sample ID: LCS 280-194721/3 Units: mg/L LCSD Lab Sample ID: LCSD 280-194721/4

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/06/2013 1911 Analysis Date: 10/06/2013 1925

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Organic Carbon - Average 25.0 25.0 25.3 25.2

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

Method Blank - Batch: 280-193767 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-193767/1 Analysis Batch: 280-193767 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: Initial Weight/Volume: 100 mL 1.0 Analysis Date: 09/30/2013 1557 Units: Final Weight/Volume: 100 mL mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

Total Dissolved Solids ND 4.7 10

Lab Control Sample/ Method: SM 2540C
Lab Control Sample Duplicate Recovery Report - Batch: 280-193767 Preparation: N/A

LCS Lab Sample ID: LCS 280-193767/2 Analysis Batch: 280-193767 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 09/30/2013 1557 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 09/30/2
Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-193767/3 Analysis Batch: 280-193767 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 Analysis Date: 09/30/2013 1557 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Dissolved Solids 95 96 86 - 110 1 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-193767

Method: SM 2540C

Preparation: N/A

LCS Lab Sample ID: LCS 280-193767/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-193767/3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 09/30/2013 1557 Analysis Date: 09/30/2013 1557

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Dissolved Solids 506 506 482 487

## **DATA REPORTING QUALIFIERS**

Client: Ecology and Environment, Inc. Job Number: 280-47192-1

| Lab Section       | Qualifier | Description                                                                                                    |
|-------------------|-----------|----------------------------------------------------------------------------------------------------------------|
| General Chemistry |           |                                                                                                                |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
|                   | Н         | Sample was prepped or analyzed beyond the specified holding time                                               |

Job Number: 280-47192-1

Client: Ecology and Environment, Inc.

## **QC Association Summary**

|                        |                              | Report |               |          |            |
|------------------------|------------------------------|--------|---------------|----------|------------|
| Lab Sample ID          | Client Sample ID             | Basis  | Client Matrix | Method   | Prep Batch |
| General Chemistry      |                              |        |               |          |            |
| Prep Batch: 490-112429 | )                            |        |               |          |            |
| LCS 490-112429/2-A     | Lab Control Sample           | Т      | Water         | 1664A    |            |
| MB 490-112429/1-A      | Method Blank                 | Т      | Water         | 1664A    |            |
| 280-47192-1            | PT-04                        | Т      | Water         | 1664A    |            |
| 280-47192-2            | PT-03                        | Т      | Water         | 1664A    |            |
| Analysis Batch:490-112 | 2433                         |        |               |          |            |
| LCS 490-112429/2-A     | Lab Control Sample           | Т      | Water         | 1664A    | 490-112429 |
| MB 490-112429/1-A      | Method Blank                 | Т      | Water         | 1664A    | 490-112429 |
| 280-47192-1            | PT-04                        | Т      | Water         | 1664A    | 490-112429 |
| 280-47192-2            | PT-03                        | Т      | Water         | 1664A    | 490-112429 |
| Analysis Batch:280-193 | 3767                         |        |               |          |            |
| LCS 280-193767/2       | Lab Control Sample           | Т      | Water         | SM 2540C |            |
| LCSD 280-193767/3      | Lab Control Sample Duplicate | Т      | Water         | SM 2540C |            |
| MB 280-193767/1        | Method Blank                 | Т      | Water         | SM 2540C |            |
| 280-47192-1            | PT-04                        | Т      | Water         | SM 2540C |            |
| 280-47192-2            | PT-03                        | Т      | Water         | SM 2540C |            |
| Analysis Batch:280-194 | 1721                         |        |               |          |            |
| LCS 280-194721/3       | Lab Control Sample           | Т      | Water         | 9060A    |            |
| LCSD 280-194721/4      | Lab Control Sample Duplicate | Т      | Water         | 9060A    |            |
| MB 280-194721/5        | Method Blank                 | Т      | Water         | 9060A    |            |
| 280-47192-1            | PT-04                        | Т      | Water         | 9060A    |            |
| 280-47192-2            | PT-03                        | Т      | Water         | 9060A    |            |

### Report Basis

T = Total

Job Number: 280-47192-1

Client: Ecology and Environment, Inc.

#### **Laboratory Chronicle**

Lab ID: 280-47192-1 Client ID: PT-04

Sample Date/Time: 09/23/2013 13:00 Received Date/Time: 09/27/2013 10:00

|            |                 |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|-----------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID       | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | 280-47192-A-1-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:1664A    | 280-47192-A-1-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:9060A    | 280-47192-C-1   |     | 280-194721 |            | 10/07/2013 01:15 | 1   | TAL DEN | DFB     |
| A:SM 2540C | 280-47192-B-1   |     | 280-193767 |            | 09/30/2013 15:57 | 1   | TAL DEN | RDN     |

Lab ID: 280-47192-2 Client ID: PT-03

Sample Date/Time: 09/22/2013 09:20 Received Date/Time: 09/27/2013 10:00

|            |                 |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|-----------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID       | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | 280-47192-A-2-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:1664A    | 280-47192-A-2-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:9060A    | 280-47192-C-2   |     | 280-194721 |            | 10/07/2013 02:07 | 14  | TAL DEN | DFB     |
| A:SM 2540C | 280-47192-B-2   |     | 280-193767 |            | 09/30/2013 15:57 | 1   | TAL DEN | RDN     |

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                   |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|-------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID         | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | MB 490-112429/1-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:1664A    | MB 490-112429/1-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:9060A    | MB 280-194721/5   |     | 280-194721 |            | 10/06/2013 19:40 | 1   | TAL DEN | DFB     |
| A:SM 2540C | MB 280-193767/1   |     | 280-193767 |            | 09/30/2013 15:57 | 1   | TAL DEN | RDN     |

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | LCS 490-112429/2-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:1664A    | LCS 490-112429/2-A |     | 490-112433 | 490-112429 | 10/07/2013 10:43 | 1   | TAL NSH | BAD     |
| A:9060A    | LCS 280-194721/3   |     | 280-194721 |            | 10/06/2013 19:11 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCS 280-193767/2   |     | 280-193767 |            | 09/30/2013 15:57 | 1   | TAL DEN | RDN     |

TestAmerica Denver A = Analytical Method P = Prep Method

Client: Ecology and Environment, Inc.

Job Number: 280-47192-1

# **Laboratory Chronicle**

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                   |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|-------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID         | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| A:9060A    | LCSD 280-194721/4 |     | 280-194721 |            | 10/06/2013 19:25 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCSD 280-193767/3 |     | 280-193767 |            | 09/30/2013 15:57 | 1   | TAL DEN | RDN     |

#### Lab References:

TAL DEN = TestAmerica Denver TAL NSH = TestAmerica Nashville

TestAmerica Denver A = Analytical Method P = Prep Method



# ANALYTICAL REPORT

Job Number: 280-47554-1

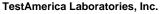
Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release Patrick J McEntee Project Manager II 10/29/2013 5:13 PM


Patrick J McEntee, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 10/29/2013

Jatul J. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





# **Table of Contents**

| Cc  | over Title Page          | 1  |
|-----|--------------------------|----|
| Da  | ata Summaries            | 4  |
|     | Report Narrative         | 4  |
|     | Sample Summary           | 5  |
|     | Executive Summary        | 6  |
|     | Method Summary           | 7  |
|     | Method / Analyst Summary | 8  |
|     | Sample Datasheets        | 9  |
|     | QC Data Summary          | 12 |
|     | Data Qualifiers          | 17 |
|     | QC Association Summary   | 18 |
|     | Lab Chronicle            | 19 |
|     | Reagent Traceability     | 21 |
|     | COAs                     | 23 |
|     | Certification Summary    | 26 |
| Inc | organic Sample Data      | 28 |
|     | General Chemistry Data   | 28 |
|     | Gen Chem Cover Page      | 29 |
|     | Gen Chem Sample Data     | 31 |
|     | Gen Chem QC Data         | 37 |
|     | Gen Chem ICV/CCV         | 37 |
|     | Gen Chem Blanks          | 38 |
|     | Gen Chem Duplicates      | 40 |
|     | Gen Chem LCS/LCSD        | 41 |
|     | Gen Chem MDL             | 44 |
|     | Gen Chem Preparation Log | 50 |

# **Table of Contents**

|        | Gen Chem Analysis Run Log   | 51  |
|--------|-----------------------------|-----|
|        | Gen Chem Raw Data           | 56  |
|        | Gen Chem Prep Data          | 104 |
| Subco  | ontracted Data              | 112 |
| Shippi | ing and Receiving Documents | 113 |
| Clie   | ent Chain of Custody        | 114 |
| Sar    | mple Receipt Checklist      | 115 |

#### **CASE NARRATIVE**

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-47554-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 10/8/2013 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

Except:

Sample PT-05 was received on the 6th day of the 7 day holding time for TDS analysis.

#### **HEM (Oil & Grease)**

Samples PT-05 (280-47554-1), PT-10 (280-47554-2) and PT-20 (280-47554-3) were analyzed for HEM (Oil & Grease) in accordance with EPA Method 1664A. The samples were prepared and analyzed on 10/24/2013.

The following sample(s) was improperly preserved in the field: PT-05 (280-47554-1), PT-10 (280-47554-2), PT-20 (280-47554-3). Sample(s) was received with a PH of 7 and preserved in lab to <2.

No other difficulties were encountered during the HEM analysis.

All other quality control parameters were within the acceptance limits.

#### **TOTAL DISSOLVED SOLIDS**

Samples PT-05 (280-47554-1), PT-10 (280-47554-2) and PT-20 (280-47554-3) were analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 10/09/2013 and 10/11/2013.

No difficulties were encountered during the TDS analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL ORGANIC CARBON**

Samples PT-05 (280-47554-1), PT-10 (280-47554-2) and PT-20 (280-47554-3) were analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 10/22/2013.

The following sample(s) was improperly preserved in the field: PT-10 (280-47554-2), PT-20 (280-47554-3). The samples were acidified to pH < 2 at the bench prior to analysis.

Samples PT-05 (280-47554-1)[1.8X], PT-10 (280-47554-2)[10X] and PT-20 (280-47554-3)[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the TOC analysis.

All other quality control parameters were within the acceptance limits.

# **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

|               |                  |               | Date/Time       | Date/Time       |
|---------------|------------------|---------------|-----------------|-----------------|
| Lab Sample ID | Client Sample ID | Client Matrix | Sampled         | Received        |
| 280-47554-1   | PT-05            | Water         | 10/02/2013 1605 | 10/08/2013 0900 |
| 280-47554-2   | PT-10            | Water         | 10/05/2013 1310 | 10/08/2013 0900 |
| 280-47554-3   | PT-20            | Water         | 10/05/2013 1450 | 10/08/2013 0900 |

# **EXECUTIVE SUMMARY - Detections**

Job Number: 280-47554-1

Client: Ecology and Environment, Inc.

| Lab Sample ID<br>Analyte | Client Sample ID | Result | Qualifier | Reporting<br>Limit | Units | Method   |
|--------------------------|------------------|--------|-----------|--------------------|-------|----------|
| 280-47554-1              | PT-05            |        |           |                    |       |          |
| HEM                      | 11.00            | 1.9    | J         | 3.8                | mg/L  | 1664A    |
| Total Organic Ca         | rbon - Average   | 71     | -         | 1.8                | mg/L  | 9060A    |
| Total Dissolved S        |                  | 2500   |           | 20                 | mg/L  | SM 2540C |
| 280-47554-2              | PT-10            |        |           |                    |       |          |
| HEM                      |                  | 9.3    |           | 4.0                | mg/L  | 1664A    |
| Total Organic Ca         | rbon - Average   | 440    |           | 10                 | mg/L  | 9060A    |
| Total Dissolved S        | Solids           | 15000  |           | 100                | mg/L  | SM 2540C |
| 280-47554-3              | PT-20            |        |           |                    |       |          |
| HEM                      |                  | 8.3    |           | 3.7                | mg/L  | 1664A    |
| Total Organic Ca         | rbon - Average   | 420    |           | 10                 | mg/L  | 9060A    |
| Total Dissolved S        | Solids           | 15000  |           | 100                | mg/L  | SM 2540C |

#### **METHOD SUMMARY**

Job Number: 280-47554-1

Client: Ecology and Environment, Inc.

| Description                   | Lab Location       | Method      | Preparation Method |
|-------------------------------|--------------------|-------------|--------------------|
| Matrix: Water                 |                    |             |                    |
| Organic Carbon, Total (TOC)   | TAL DEN            | SW846 9060A |                    |
| Solids, Total Dissolved (TDS) | TAL DEN            | SM SM 2540C |                    |
| HEM and SGT-HEM (SPE)         | TAL NSH<br>TAL NSH | 1664A 1664A | 1664A 1664A        |

#### Lab References:

TAL DEN = TestAmerica Denver

TAL NSH = TestAmerica Nashville

#### **Method References:**

1664A = EPA-821-98-002

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# METHOD / ANALYST SUMMARY

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

| Method      | Analyst          | Analyst ID |
|-------------|------------------|------------|
| 1664A 1664A | Dunn, Bradley    | BAD        |
| SW846 9060A | Bandy, Darlene F | DFB        |
| SM SM 2540C | Newcome, Robin D | RDN        |

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

#### **General Chemistry** Client Sample ID: PT-05 Lab Sample ID: 280-47554-1 Date Sampled: 10/02/2013 1605 Client Matrix: Water Date Received: 10/08/2013 0900 RL Analyte MDL Dil Method Result Qual Units HEM 1.9 J mg/L 1.3 3.8 1.0 1664A Analysis Batch: 490-116693 Analysis Date: 10/24/2013 1034 Prep Batch: 490-116691 Prep Date: 10/24/2013 1034 Total Organic Carbon - Average mg/L 0.28 1.8 1.8 9060A 71 Analysis Batch: 280-197160 Analysis Date: 10/22/2013 0712 **Total Dissolved Solids** 2500 mg/L 9.4 20 1.0 SM 2540C

Analysis Date: 10/09/2013 1039

Analysis Batch: 280-195133

SM 2540C

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

#### **General Chemistry** Client Sample ID: PT-10 Lab Sample ID: 280-47554-2 Date Sampled: 10/05/2013 1310 Client Matrix: Water Date Received: 10/08/2013 0900 Analyte MDL RLDil Method Result Qual Units HEM 9.3 mg/L 1.4 4.0 1.0 1664A Analysis Batch: 490-116693 Analysis Date: 10/24/2013 1034 Prep Batch: 490-116691 Prep Date: 10/24/2013 1034 Total Organic Carbon - Average mg/L 10 10 9060A 440 1.6 Analysis Batch: 280-197160 Analysis Date: 10/22/2013 0727

mg/L

Analysis Date: 10/11/2013 1034

100

1.0

15000

Analysis Batch: 280-195592

**Total Dissolved Solids** 

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

#### **General Chemistry** Client Sample ID: PT-20 Lab Sample ID: 280-47554-3 Date Sampled: 10/05/2013 1450 Client Matrix: Water Date Received: 10/08/2013 0900 Analyte MDL RLDil Method Result Qual Units HEM 8.3 mg/L 1.3 3.7 1.0 1664A Analysis Batch: 490-116693 Analysis Date: 10/24/2013 1034 Prep Batch: 490-116691 Prep Date: 10/24/2013 1034 Total Organic Carbon - Average mg/L 1.6 10 10 9060A 420 Analysis Batch: 280-197160 Analysis Date: 10/22/2013 0741 **Total Dissolved Solids** 15000 mg/L 100 1.0 SM 2540C Analysis Batch: 280-195592 Analysis Date: 10/11/2013 1034

RL

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

Method Blank - Batch: 490-116691 Method: 1664A Preparation: 1664A

Lab Sample ID: MB 490-116691/1-A Analysis Batch: 490-116693 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-116691 Lab File ID: Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 960 mL Analysis Date: 10/24/2013 1034 Units: mg/L Final Weight/Volume: 960 mL

Prep Date: 10/24/2013 1034

Leach Date: N/A

Analyte HEM ND 1.4 4.0

Qual

MDL

Result

Lab Control Sample - Batch: 490-116691 Method: 1664A Preparation: 1664A

LCS 490-116691/2-A Lab Sample ID: Analysis Batch: 490-116693 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-116691 Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 960 mL 960 mL

Analysis Date: 10/24/2013 1034 Units: Final Weight/Volume: mg/L Prep Date: 10/24/2013 1034

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual HEM 41.7 39.6 95 78 - 114

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

Method Blank - Batch: 280-197160 Method: 9060A Preparation: N/A

Lab Sample ID: MB 280-197160/37 Analysis Batch: 280-197160 Instrument ID: WC\_SHI3

Client Matrix: Water Prop Batch: N/A Lab File ID: 102113 tvt

Client Matrix: Water Prep Batch: N/A Lab File ID: 102113.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 0208 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual MDL RL

Total Organic Carbon - Average ND 0.16 1.0

Lab Control Sample/ Method: 9060A

Lab Control Sample / Method: 9060A

Lab Control Sample Duplicate Recovery Report - Batch: 280-197160 Preparation: N/A

LCS Lab Sample ID: LCS 280-197160/35 Analysis Batch: 280-197160 Instrument ID: WC\_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 102113.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 0138 Units: mg/L Final Weight/Volume: 200 mL

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-197160/36 Analysis Batch: 280-197160 Instrument ID: WC\_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 102113.txt

Dilution: 1.0 Leach Batch: N/A Lab File ID: 102 113.txt

N/A Lab File ID: 102 113.txt

N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 0153 Units: mg/L Final Weight/Volume: 200 mL

Prep Date: N/A
Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Organic Carbon - Average 101 101 88 - 112 0 15

Laboratory Control/ Method: 9060A
Laboratory Duplicate Data Report - Batch: 280-197160 Preparation: N/A

LCS Lab Sample ID: LCS 280-197160/35 Units: mg/L LCSD Lab Sample ID: LCSD 280-197160/36

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/22/2013 0138 Analysis Date: 10/22/2013 0153

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Organic Carbon - Average 25.0 25.0 25.3 25.4

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

Method Blank - Batch: 280-195133 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-195133/1 Analysis Batch: 280-195133 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: Initial Weight/Volume: 100 mL 10/09/2013 1039 Units: Final Weight/Volume: 100 mL Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

Total Dissolved Solids ND 4.7 10

Lab Control Sample/ Method: SM 2540C
Lab Control Sample Duplicate Recovery Report - Batch: 280-195133 Preparation: N/A

LCS Lab Sample ID: LCS 280-195133/2 Analysis Batch: 280-195133 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 10/09/2013 1039 Analysis Date: Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-195133/3 Analysis Batch: 280-195133 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 10/09/2013 1039 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Dissolved Solids 96 98 86 - 110 1 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-195133

Method: SM 2540C
Preparation: N/A

LCS Lab Sample ID: LCS 280-195133/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-195133/3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/09/2013 1039 Analysis Date: 10/09/2013 1039

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Dissolved Solids 500 500 482 488

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

Duplicate - Batch: 280-195133 Method: SM 2540C Preparation: N/A

Lab Sample ID: 280-47554-1 Analysis Batch: 280-195133 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: Dilution: Leach Batch: N/A Initial Weight/Volume: 50 mL 1.0 Units: Final Weight/Volume: Analysis Date: 10/09/2013 1039 mg/L 100 mL

Prep Date: N/A Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Total Dissolved Solids 2500 2540 0.2 10

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

Method Blank - Batch: 280-195592 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-195592/1 Analysis Batch: 280-195592 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: Initial Weight/Volume: 100 mL Analysis Date: 10/11/2013 1034 Units: Final Weight/Volume: 100 mL mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

Total Dissolved Solids ND 4.7 10

Lab Control Sample/ Method: SM 2540C
Lab Control Sample Duplicate Recovery Report - Batch: 280-195592 Preparation: N/A

LCS Lab Sample ID: LCS 280-195592/2 Analysis Batch: 280-195592 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 10/11/2013 1034 Analysis Date: Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-195592/3 Analysis Batch: 280-195592 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 10/11/2013 1034 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A

Leach Date: N/A

Analyte \( \frac{\% \text{Rec.}}{\text{LCSD}} \) Limit \( \text{RPD} \) RPD Limit \( \text{LCS Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Qual LCSD Q

Total Dissolved Solids 95 98 86 - 110 3 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-195592

Method: SM 2540C

Preparation: N/A

LCS Lab Sample ID: LCS 280-195592/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-195592/3

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/11/2013 1034 Analysis Date: 10/11/2013 1034

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Dissolved Solids 500 500 474 488

# **DATA REPORTING QUALIFIERS**

Client: Ecology and Environment, Inc. Job Number: 280-47554-1

| Lab Section       | Qualifier | Description                                                                                                    |
|-------------------|-----------|----------------------------------------------------------------------------------------------------------------|
| General Chemistry |           |                                                                                                                |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

Job Number: 280-47554-1

Client: Ecology and Environment, Inc.

# **QC Association Summary**

| Lab Sample ID           | Client Sample ID             | Report<br>Basis | Client Matrix | Method   | Prep Batch |
|-------------------------|------------------------------|-----------------|---------------|----------|------------|
| General Chemistry       | ·                            |                 |               |          | •          |
| Prep Batch: 490-116691  |                              |                 |               |          |            |
| LCS 490-116691/2-A      | Lab Control Sample           | Т               | Water         | 1664A    |            |
| MB 490-116691/1-A       | Method Blank                 | Т               | Water         | 1664A    |            |
| 280-47554-1             | PT-05                        | Т               | Water         | 1664A    |            |
| 280-47554-2             | PT-10                        | Т               | Water         | 1664A    |            |
| 280-47554-3             | PT-20                        | Т               | Water         | 1664A    |            |
| Analysis Batch:490-1166 | 93                           |                 |               |          |            |
| LCS 490-116691/2-A      | Lab Control Sample           | Т               | Water         | 1664A    | 490-116691 |
| MB 490-116691/1-A       | Method Blank                 | Т               | Water         | 1664A    | 490-116691 |
| 280-47554-1             | PT-05                        | Т               | Water         | 1664A    | 490-116691 |
| 280-47554-2             | PT-10                        | Т               | Water         | 1664A    | 490-116691 |
| 280-47554-3             | PT-20                        | Т               | Water         | 1664A    | 490-116691 |
| Analysis Batch:280-1951 | 33                           |                 |               |          |            |
| LCS 280-195133/2        | Lab Control Sample           | Т               | Water         | SM 2540C |            |
| LCSD 280-195133/3       | Lab Control Sample Duplicate | Т               | Water         | SM 2540C |            |
| MB 280-195133/1         | Method Blank                 | Т               | Water         | SM 2540C |            |
| 280-47554-1             | PT-05                        | Т               | Water         | SM 2540C |            |
| 280-47554-1DU           | Duplicate                    | Т               | Water         | SM 2540C |            |
| Analysis Batch:280-1955 | 92                           |                 |               |          |            |
| LCS 280-195592/2        | Lab Control Sample           | Т               | Water         | SM 2540C |            |
| LCSD 280-195592/3       | Lab Control Sample Duplicate | T               | Water         | SM 2540C |            |
| MB 280-195592/1         | Method Blank                 | Т               | Water         | SM 2540C |            |
| 280-47554-2             | PT-10                        | Т               | Water         | SM 2540C |            |
| 280-47554-3             | PT-20                        | Т               | Water         | SM 2540C |            |
| Analysis Batch:280-1971 | 60                           |                 |               |          |            |
| LCS 280-197160/35       | Lab Control Sample           | Т               | Water         | 9060A    |            |
| LCSD 280-197160/36      | Lab Control Sample Duplicate | Т               | Water         | 9060A    |            |
| MB 280-197160/37        | Method Blank                 | Т               | Water         | 9060A    |            |
| 280-47554-1             | PT-05                        | Т               | Water         | 9060A    |            |
| 280-47554-2             | PT-10                        | Т               | Water         | 9060A    |            |
| 280-47554-3             | PT-20                        | Т               | Water         | 9060A    |            |

#### Report Basis

T = Total

Job Number: 280-47554-1

Client: Ecology and Environment, Inc.

#### **Laboratory Chronicle**

Lab ID: 280-47554-1 Client ID: PT-05

Sample Date/Time: 10/02/2013 16:05 Received Date/Time: 10/08/2013 09:00

|            |                 |     | Analysis   |            | Date Prepared /  | Date Prepared / |         |         |
|------------|-----------------|-----|------------|------------|------------------|-----------------|---------|---------|
| Method     | Bottle ID       | Run | Batch      | Prep Batch | Analyzed         | Dil             | Lab     | Analyst |
| P:1664A    | 280-47554-A-1-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1               | TAL NSH | BAD     |
| A:1664A    | 280-47554-A-1-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1               | TAL NSH | BAD     |
| A:9060A    | 280-47554-C-1   |     | 280-197160 |            | 10/22/2013 07:12 | 1.8             | TAL DEN | DFB     |
| A:SM 2540C | 280-47554-B-1   |     | 280-195133 |            | 10/09/2013 10:39 | 1               | TAL DEN | RDN     |

Lab ID: 280-47554-1 DU Client ID: PT-05

Sample Date/Time: 10/02/2013 16:05 Received Date/Time: 10/08/2013 09:00

**Analysis** Date Prepared / Batch Analyzed **Bottle ID** Prep Batch Dil Method Run Lab Analyst A:SM 2540C 280-47554-B-1 DU 280-195133 10/09/2013 10:39 1 TAL DEN RDN

Lab ID: 280-47554-2 Client ID: PT-10

Sample Date/Time: 10/05/2013 13:10 Received Date/Time: 10/08/2013 09:00

**Analysis** Date Prepared / Method **Bottle ID** Batch Analyzed Run Prep Batch Dil Lab Analyst 280-47554-A-2-A BAD P:1664A 490-116693 490-116691 10/24/2013 10:34 TAL NSH 490-116691 A:1664A 280-47554-A-2-A 490-116693 BAD 10/24/2013 10:34 1 TAL NSH A:9060A 280-47554-C-2 280-197160 10/22/2013 07:27 10 TAL DEN DFB A:SM 2540C 280-47554-B-2 280-195592 10/11/2013 10:34 TAL DEN RDN

Lab ID: 280-47554-3 Client ID: PT-20

Sample Date/Time: 10/05/2013 14:50 Received Date/Time: 10/08/2013 09:00

**Analysis** Date Prepared / Method Bottle ID Run **Batch** Prep Batch Analyzed Dil Lab Analyst P:1664A 280-47554-A-3-A 490-116693 490-116691 10/24/2013 10:34 TAL NSH BAD A:1664A 280-47554-A-3-A 490-116693 490-116691 10/24/2013 10:34 1 TAL NSH BAD A:9060A 280-47554-C-3 280-197160 10/22/2013 07:41 TAL DEN DFB 10 A:SM 2540C 280-47554-B-3 280-195592 10/11/2013 10:34 1 TAL DEN RDN

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

Analysis Date Prepared / **Batch** Analyzed Method **Bottle ID** Run Prep Batch Dil Lab Analyst P:1664A TAL NSH BAD MB 490-116691/1-A 490-116693 490-116691 10/24/2013 10:34 A:1664A MB 490-116691/1-A 490-116693 490-116691 10/24/2013 10:34 1 TAL NSH **BAD** A:9060A MB 280-197160/37 280-197160 10/22/2013 02:08 1 TAL DEN DFB A:SM 2540C MB 280-195133/1 TAL DEN **RDN** 280-195133 10/09/2013 10:39 1 A:SM 2540C MB 280-195592/1 280-195592 10/11/2013 10:34 1 TAL DEN **RDN** 

Job Number: 280-47554-1

Client: Ecology and Environment, Inc.

# **Laboratory Chronicle**

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | LCS 490-116691/2-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A    | LCS 490-116691/2-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A    | LCS 280-197160/35  |     | 280-197160 |            | 10/22/2013 01:38 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCS 280-195133/2   |     | 280-195133 |            | 10/09/2013 10:39 | 1   | TAL DEN | RDN     |
| A:SM 2540C | LCS 280-195592/2   |     | 280-195592 |            | 10/11/2013 10:34 | 1   | TAL DEN | RDN     |

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| A:9060A    | LCSD 280-197160/36 |     | 280-197160 |            | 10/22/2013 01:53 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCSD 280-195133/3  |     | 280-195133 |            | 10/09/2013 10:39 | 1   | TAL DEN | RDN     |
| A:SM 2540C | LCSD 280-195592/3  |     | 280-195592 |            | 10/11/2013 10:34 | 1   | TAL DEN | RDN     |

#### Lab References:

TAL DEN = TestAmerica Denver

TAL NSH = TestAmerica Nashville

TestAmerica Denver A = Analytical Method P = Prep Method



# **ANALYTICAL REPORT**

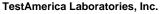
Job Number: 280-47715-1 Job Description: TomCo, Utah

For:

Ecology and Environment, Inc. 7440 S. Creek Road Suite 400 Sandy, UT 84093

Attention: Mr. Tom Ferarro

Approved for release Patrick J McEntee Project Manager II 10/29/2013 5:34 PM


Patrick J McEntee, Project Manager II 4955 Yarrow Street, Arvada, CO, 80002 (303)736-0107 patrick.mcentee@testamericainc.com 10/29/2013

atul f. M. Enter

The test results in this report relate only to the samples in this report and meet all requirements of NELAC, with any exceptions noted. Pursuant to NELAP, this report shall not be reproduced except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Denver Project Manager.

The Lab Certification ID# is E87667.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.





# **Table of Contents**

| Co  | over Title Page          | 1  |
|-----|--------------------------|----|
| Da  | ata Summaries            | 4  |
|     | Report Narrative         | 4  |
|     | Sample Summary           | 5  |
|     | Executive Summary        | 6  |
|     | Method Summary           | 7  |
|     | Method / Analyst Summary | 8  |
|     | Sample Datasheets        | 9  |
|     | QC Data Summary          | 10 |
|     | Data Qualifiers          | 15 |
|     | QC Association Summary   | 16 |
|     | Lab Chronicle            | 17 |
|     | Reagent Traceability     | 19 |
|     | COAs                     | 21 |
|     | Certification Summary    | 24 |
| Inc | organic Sample Data      | 26 |
|     | General Chemistry Data   | 26 |
|     | Gen Chem Cover Page      | 27 |
|     | Gen Chem Sample Data     | 29 |
|     | Gen Chem QC Data         | 31 |
|     | Gen Chem ICV/CCV         | 31 |
|     | Gen Chem Blanks          | 32 |
|     | Gen Chem MS/MSD/PDS      | 34 |
|     | Gen Chem LCS/LCSD        | 38 |
|     | Gen Chem MDL             | 41 |
|     | Gen Chem Preparation Log | 47 |

# **Table of Contents**

| Gen Chem Analysis Run Log        | 48 |
|----------------------------------|----|
| Gen Chem Raw Data                | 52 |
| Gen Chem Prep Data               | 83 |
| Subcontracted Data               | 89 |
| Shipping and Receiving Documents | 90 |
| Client Chain of Custody          | 91 |
| Sample Receipt Checklist         | 92 |

#### **CASE NARRATIVE**

Client: Ecology and Environment, Inc.

Project: TomCo, Utah

Report Number: 280-47715-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 10/9/2013 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C.

#### Except:

1of 2 250ml AG bottles was received broken upon receipt. Sufficient volume remains to complete the requested analysis.

#### HEM (Oil & Grease)

Sample PT-11 (280-47715-1) was analyzed for HEM (Oil & Grease) in accordance with EPA Method 1664A. The samples were prepared and analyzed on 10/24/2013.

No difficulties were encountered during the HEM analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL DISSOLVED SOLIDS**

Sample PT-11 (280-47715-1) was analyzed for total dissolved solids in accordance with SM20 2540C. The samples were analyzed on 10/14/2013.

No difficulties were encountered during the TDS analysis.

All quality control parameters were within the acceptance limits.

#### **TOTAL ORGANIC CARBON**

Sample PT-11 (280-47715-1) was analyzed for total organic carbon in accordance with EPA SW-846 Method 9060A. The samples were analyzed on 10/22/2013.

No difficulties were encountered during the TOC analysis.

All quality control parameters were within the acceptance limits.

# **SAMPLE SUMMARY**

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

|                |                  |               | Date/Time       | Date/Time       |
|----------------|------------------|---------------|-----------------|-----------------|
| Lab Sample ID  | Client Sample ID | Client Matrix | Sampled         | Received        |
| 280-47715-1    | PT-11            | Water         | 10/07/2013 0909 | 10/09/2013 0900 |
| 280-47715-1MS  | PT-11            | Water         | 10/07/2013 0909 | 10/09/2013 0900 |
| 280-47715-1MSD | PT-11            | Water         | 10/07/2013 0909 | 10/09/2013 0900 |

# **EXECUTIVE SUMMARY - Detections**

Client: Ecology and Environment, Inc.

Job Number: 280-47715-1

| Lab Sample ID<br>Analyte                                 | Client Sample ID | Result    | Qualifier | Reporting<br>Limit | Units        | Method            |
|----------------------------------------------------------|------------------|-----------|-----------|--------------------|--------------|-------------------|
| <b>280-47715-1</b> Total Organic Carb Total Dissolved So | · ·              | 37<br>940 |           | 1.0<br>10          | mg/L<br>mg/L | 9060A<br>SM 2540C |

#### **METHOD SUMMARY**

Job Number: 280-47715-1

Client: Ecology and Environment, Inc.

| Description                           | Lab Location       | Method      | Preparation Method |
|---------------------------------------|--------------------|-------------|--------------------|
| Matrix: Water                         |                    |             |                    |
| Organic Carbon, Total (TOC)           | TAL DEN            | SW846 9060A |                    |
| Solids, Total Dissolved (TDS)         | TAL DEN            | SM SM 2540C |                    |
| HEM and SGT-HEM HEM and SGT-HEM (SPE) | TAL NSH<br>TAL NSH | 1664A 1664A | 1664A 1664A        |

#### Lab References:

TAL DEN = TestAmerica Denver

TAL NSH = TestAmerica Nashville

#### **Method References:**

1664A = EPA-821-98-002

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# METHOD / ANALYST SUMMARY

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

| Method      | Analyst          | Analyst ID |
|-------------|------------------|------------|
| 1664A 1664A | Dunn, Bradley    | BAD        |
| SW846 9060A | Bandy, Darlene F | DFB        |
| SM SM 2540C | Newcome, Robin D | RDN        |

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

#### **General Chemistry**

Client Sample ID: PT-11

Lab Sample ID: 280-47715-1 Date Sampled: 10/07/2013 0909

Client Matrix: Water Date Received: 10/09/2013 0900

| Analyte                        | Result   | Qual           | Units      | MDL  | RL  | Dil | Method   |
|--------------------------------|----------|----------------|------------|------|-----|-----|----------|
| HEM                            | ND       |                | mg/L       | 1.3  | 3.7 | 1.0 | 1664A    |
| Analysis Batch: 490            | 0-116693 | Analysis Date: | 10/24/2013 | 1034 |     |     |          |
| Prep Batch: 490-11             | 6691     | Prep Date: 10/ | 24/2013 10 | 34   |     |     |          |
| Total Organic Carbon - Average | 37       |                | mg/L       | 0.16 | 1.0 | 1.0 | 9060A    |
| Analysis Batch: 280            | 0-197370 | Analysis Date: | 10/22/2013 | 2304 |     |     |          |
| Total Dissolved Solids         | 940      |                | mg/L       | 4.7  | 10  | 1.0 | SM 2540C |
| Analysis Batch: 280            | 0-195872 | Analysis Date: | 10/14/2013 | 1141 |     |     |          |

Job Number: 280-47715-1 Client: Ecology and Environment, Inc.

Method Blank - Batch: 490-116691 Method: 1664A Preparation: 1664A

Lab Sample ID: MB 490-116691/1-A 490-116693 Instrument ID: Analysis Batch: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-116691 Lab File ID: 1.0 Dilution: Leach Batch: N/A Initial Weight/Volume: 960 mL

10/24/2013 1034 Units: Final Weight/Volume: 960 mL Analysis Date: mg/L Prep Date: 10/24/2013 1034

Leach Date: N/A

Leach Date:

Leach Date:

Leach Date:

N/A

N/A

Analyte Result Qual MDL RL HEM ND 1.4 4.0

Lab Control Sample - Batch: 490-116691 Method: 1664A Preparation: 1664A

Lab Sample ID: LCS 490-116691/2-A Analysis Batch: 490-116693 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: 490-116691 Lab File ID: N/A Water Leach Batch: Dilution: N/A Initial Weight/Volume: 960 mL 1.0

10/24/2013 1034 Analysis Date: Units: mg/L Final Weight/Volume: 960 mL Prep Date: 10/24/2013 1034

% Rec. Limit Qual Analyte Spike Amount Result HEM 39.6 95 78 - 114 41.7

Method: 1664A Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 490-116691 Preparation: 1664A

490-116693 Instrument ID: MS Lab Sample ID: 280-47715-1 Analysis Batch: No Equipment Assigned Client Matrix: Water Prep Batch: 490-116691 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 1020 mL 10/24/2013 1034 Final Weight/Volume: 960 mL

Analysis Date: Prep Date: 10/24/2013 1034

MSD Lab Sample ID: 280-47715-1 Analysis Batch: 490-116693 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: 490-116691 Lab File ID: N/A Dilution: Leach Batch: N/A 980 mL Initial Weight/Volume:

Analysis Date: 10/24/2013 1034 Final Weight/Volume: 960 mL

Prep Date: 10/24/2013 1034

% Rec. Analyte MS MSD Limit **RPD RPD Limit** MS Qual MSD Qual

HEM 81 84 78 - 114 8 18

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

Matrix Spike/ Method: 1664A

Matrix Spike Duplicate Recovery Report - Batch: 490-116691 Preparation: 1664A

MS Lab Sample ID: 280-47715-1 Units: mg/L MSD Lab Sample ID: 280-47715-1 Client Matrix: Water Client Matrix: Water Dilution: 1.0 Dilution: 1.0

 Dilution:
 1.0
 Dilution:
 1.0

 Analysis Date:
 10/24/2013 1034
 Analysis Date:
 10/24/2013 1034

 Prep Date:
 10/24/2013 1034
 Prep Date:
 10/24/2013 1034

Leach Date: N/A Leach Date: N/A

| Analyte | Sample<br>Result/Qual | MS Spike<br>Amount | MSD Spike<br>Amount | MS<br>Result/Qual | MSD<br>Result/Qual |  |
|---------|-----------------------|--------------------|---------------------|-------------------|--------------------|--|
| HEM     | ND                    | 39.2               | 40.8                | 31.8              | 34.5               |  |

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

Method Blank - Batch: 280-197370 Method: 9060A Preparation: N/A

Lab Sample ID: MB 280-197370/19 Analysis Batch: 280-197370 Instrument ID: WC\_SHI3
Client Matrix: Water Prop Batch: N/A Lab File ID: 102213 tvt

Client Matrix: Water Prep Batch: N/A Lab File ID: 102213.txt Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 2232 Units: mg/L Final Weight/Volume: Prep Date: N/A

Leach Date: N/A

Analyte Result Qual MDL RL

Total Organic Carbon - Average ND 0.16 1.0

Lab Control Sample/ Method: 9060A

Lab Control Sample Duplicate Recovery Report - Batch: 280-197370 Preparation: N/A

LCS Lab Sample ID: LCS 280-197370/17 Analysis Batch: 280-197370 Instrument ID: WC\_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 102213.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 2203 Units: mg/L Final Weight/Volume: 200 mL
Prep Date: N/A

Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-197370/18 Analysis Batch: 280-197370 Instrument ID: WC SHI3

LCSD Lab Sample ID: LCSD 280-197370/18 Analysis Batch: 280-197370 Instrument ID: WC\_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 102213.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 2218 Units: mg/L Final Weight/Volume: 200 mL Prep Date: N/A

Leach Date: N/A

% Rec.

Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual

Total Organic Carbon - Average 100 100 88 - 112 0 15

Laboratory Control/ Method: 9060A
Laboratory Duplicate Data Report - Batch: 280-197370 Preparation: N/A

LCS Lab Sample ID: LCS 280-197370/17 Units: mg/L LCSD Lab Sample ID: LCSD 280-197370/18

Client Matrix: Water Client Matrix: Water
Dilution: 1.0 Dilution: 1.0

Analysis Date: 10/22/2013 2203 Analysis Date: 10/22/2013 2218

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Organic Carbon - Average 25.0 25.0 25.1 25.1

50 mL

Ε

Ε

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

Matrix Spike/ Method: 9060A

Matrix Spike Duplicate Recovery Report - Batch: 280-197370 Preparation: N/A

MS Lab Sample ID: 280-47715-1 Analysis Batch: 280-197370 Instrument ID: WC\_SHI3
Client Matrix: Water Prep Batch: N/A Lab File ID: 102213.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 2321 Final Weight/Volume:

Prep Date: N/A

Leach Date: N/A

MSD Lab Sample ID: 280-47715-1 Analysis Batch: 280-197370 Instrument ID: WC\_SHI3

Client Matrix: Water Prep Batch: N/A Lab File ID: 102213.txt

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/22/2013 2335 Final Weight/Volume: 50 mL

Prep Date: N/A
Leach Date: N/A

Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual

88 - 112

1

15

Matrix Spike/ Method: 9060A

Matrix Spike Duplicate Recovery Report - Batch: 280-197370 Preparation: N/A

96

Total Organic Carbon - Average

MS Lab Sample ID: 280-47715-1 Units: mg/L MSD Lab Sample ID: 280-47715-1

98

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/22/2013 2321 Analysis Date: 10/22/2013 2335

 Prep Date:
 N/A
 Prep Date:
 N/A

 Leach Date:
 N/A
 Leach Date:
 N/A

Sample MS Spike MSD Spike MS MSD Result/Qual Amount Amount Result/Qual Result/Qual Analyte Total Organic Carbon - Average 37 25.0 25.0 60.8 Ε 61.2 Ε

LCS Qual

LCSD Qual

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

Method Blank - Batch: 280-195872 Method: SM 2540C Preparation: N/A

Lab Sample ID: MB 280-195872/1 Analysis Batch: 280-195872 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: Initial Weight/Volume: 100 mL 10/14/2013 1141 Units: Final Weight/Volume: 100 mL Analysis Date: mg/L

Prep Date: N/A Leach Date: N/A

Analyte Result Qual MDL RL

Total Dissolved Solids ND 4.7 10

Lab Control Sample/ Method: SM 2540C
Lab Control Sample Duplicate Recovery Report - Batch: 280-195872 Preparation: N/A

LCS Lab Sample ID: LCS 280-195872/2 Analysis Batch: 280-195872 Instrument ID: No Equipment Assigned

Client Matrix: Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 100 mL 1.0 10/14/2013 1141 Units: mg/L Final Weight/Volume: 100 mL

Analysis Date: 10/14/201
Prep Date: N/A
Leach Date: N/A

LCSD Lab Sample ID: LCSD 280-195872/3 Analysis Batch: 280-195872 Instrument ID: No Equipment Assigned

Client Matrix: Water Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 100 mL Analysis Date: 10/14/2013 1141 Units: mg/L Final Weight/Volume: 100 mL

Prep Date: N/A Leach Date: N/A

 $\frac{\% \ \text{Rec.}}{\text{Analyte}} \\ \text{LCS} \quad \text{LCSD} \quad \text{Limit} \quad \text{RPD} \quad \text{RPD Limit}$ 

Total Dissolved Solids 93 93 86 - 110 0 20

Laboratory Control/
Laboratory Duplicate Data Report - Batch: 280-195872

Method: SM 2540C

Preparation: N/A

LCS Lab Sample ID: LCS 280-195872/2 Units: mg/L LCSD Lab Sample ID: LCSD 280-195872/3

Client Matrix:WaterClient Matrix:WaterDilution:1.0Dilution:1.0

Analysis Date: 10/14/2013 1141 Analysis Date: 10/14/2013 1141

Prep Date:N/APrep Date:N/ALeach Date:N/ALeach Date:N/A

Analyte LCS Spike LCSD Spike LCS LCSD
Amount Amount Result/Qual Result/Qual

Total Dissolved Solids 500 500 465 465

## **DATA REPORTING QUALIFIERS**

Client: Ecology and Environment, Inc. Job Number: 280-47715-1

| Lab Section       | Qualifier | Description                        |
|-------------------|-----------|------------------------------------|
| General Chemistry |           |                                    |
|                   | E         | Result exceeded calibration range. |

Job Number: 280-47715-1

Client: Ecology and Environment, Inc.

## **QC Association Summary**

|                        |                              | Report |               |          |                        |
|------------------------|------------------------------|--------|---------------|----------|------------------------|
| Lab Sample ID          | Client Sample ID             | Basis  | Client Matrix | Method   | Prep Batch             |
| General Chemistry      |                              |        |               |          |                        |
| Prep Batch: 490-116691 |                              |        |               |          |                        |
| LCS 490-116691/2-A     | Lab Control Sample           | Т      | Water         | 1664A    |                        |
| MB 490-116691/1-A      | Method Blank                 | Т      | Water         | 1664A    |                        |
| 280-47715-1            | PT-11                        | Т      | Water         | 1664A    |                        |
| 280-47715-1MS          | Matrix Spike                 | Т      | Water         | 1664A    |                        |
| 280-47715-1MSD         | Matrix Spike Duplicate       | T      | Water         | 1664A    |                        |
| Analysis Batch:490-116 | 693                          |        |               |          |                        |
| LCS 490-116691/2-A     | Lab Control Sample           | Т      | Water         | 1664A    | 490-11669              |
| MB 490-116691/1-A      | Method Blank                 | Т      | Water         | 1664A    | 490-11669              |
| 280-47715-1            | PT-11                        | Т      | Water         | 1664A    | 490-11669              |
| 280-47715-1MS          | Matrix Spike                 | Т      | Water         | 1664A    | 490-11669 <sup>-</sup> |
| 280-47715-1MSD         | Matrix Spike Duplicate       | Т      | Water         | 1664A    | 490-11669 <sup>-</sup> |
| Analysis Batch:280-195 | 872                          |        |               |          |                        |
| LCS 280-195872/2       | Lab Control Sample           | Т      | Water         | SM 2540C |                        |
| LCSD 280-195872/3      | Lab Control Sample Duplicate | Т      | Water         | SM 2540C |                        |
| MB 280-195872/1        | Method Blank                 | Т      | Water         | SM 2540C |                        |
| 280-47715-1            | PT-11                        | Т      | Water         | SM 2540C |                        |
| Analysis Batch:280-197 | 370                          |        |               |          |                        |
| LCS 280-197370/17      | Lab Control Sample           | Т      | Water         | 9060A    |                        |
| LCSD 280-197370/18     | Lab Control Sample Duplicate | Т      | Water         | 9060A    |                        |
| MB 280-197370/19       | Method Blank                 | Т      | Water         | 9060A    |                        |
| 280-47715-1            | PT-11                        | Т      | Water         | 9060A    |                        |
| 280-47715-1MS          | Matrix Spike                 | Т      | Water         | 9060A    |                        |
| 280-47715-1MSD         | Matrix Spike Duplicate       | Т      | Water         | 9060A    |                        |

#### Report Basis

T = Total

Job Number: 280-47715-1

Client: Ecology and Environment, Inc.

### **Laboratory Chronicle**

Lab ID: 280-47715-1 Client ID: PT-11

Sample Date/Time: 10/07/2013 09:09 Received Date/Time: 10/09/2013 09:00

|            |                 | Analysis |            |            | Date Prepared /  |     |         |         |
|------------|-----------------|----------|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID       | Run      | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | 280-47715-A-1-A |          | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A    | 280-47715-A-1-A |          | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A    | 280-47715-G-1   |          | 280-197370 |            | 10/22/2013 23:04 | 1   | TAL DEN | DFB     |
| A:SM 2540C | 280-47715-F-1   |          | 280-195872 |            | 10/14/2013 11:41 | 1   | TAL DEN | RDN     |

Lab ID: 280-47715-1 Client ID: PT-11

Sample Date/Time: 10/07/2013 09:09 Received Date/Time: 10/09/2013 09:00

|         |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|---------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A | 280-47715-A-1-B MS |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A | 280-47715-A-1-B MS |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A | 280-47715-G-1 MS   |     | 280-197370 |            | 10/22/2013 23:21 | 1   | TAL DEN | DFB     |

Lab ID: 280-47715-1 Client ID: PT-11

Sample Date/Time: 10/07/2013 09:09 Received Date/Time: 10/09/2013 09:00

|         |                        |     | Analysis   |            | Date Prepared /  |     |         |         |
|---------|------------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID              | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A | 280-47715-A-1-C<br>MSD |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A | 280-47715-A-1-C<br>MSD |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A | 280-47715-G-1 MSD      |     | 280-197370 |            | 10/22/2013 23:35 | 1   | TAL DEN | DFB     |

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                   |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|-------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID         | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | MB 490-116691/1-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A    | MB 490-116691/1-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A    | MB 280-197370/19  |     | 280-197370 |            | 10/22/2013 22:32 | 1   | TAL DEN | DFB     |
| A:SM 2540C | MB 280-195872/1   |     | 280-195872 |            | 10/14/2013 11:41 | 1   | TAL DEN | RDN     |

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:1664A    | LCS 490-116691/2-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:1664A    | LCS 490-116691/2-A |     | 490-116693 | 490-116691 | 10/24/2013 10:34 | 1   | TAL NSH | BAD     |
| A:9060A    | LCS 280-197370/17  |     | 280-197370 |            | 10/22/2013 22:03 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCS 280-195872/2   |     | 280-195872 |            | 10/14/2013 11:41 | 1   | TAL DEN | RDN     |

TestAmerica Denver A = Analytical Method P = Prep Method

## **Quality Control Results**

Client: Ecology and Environment, Inc.

Job Number: 280-47715-1

## **Laboratory Chronicle**

Lab ID: LCSD Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|            |                    |     | Analysis   |            | Date Prepared /  |     |         |         |
|------------|--------------------|-----|------------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID          | Run | Batch      | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| A:9060A    | LCSD 280-197370/18 |     | 280-197370 |            | 10/22/2013 22:18 | 1   | TAL DEN | DFB     |
| A:SM 2540C | LCSD 280-195872/3  |     | 280-195872 |            | 10/14/2013 11:41 | 1   | TAL DEN | RDN     |

#### Lab References:

TAL DEN = TestAmerica Denver TAL NSH = TestAmerica Nashville

TestAmerica Denver A = Analytical Method P = Prep Method

# APPENDIX F MONITOR WELL AGE DATING CALCULATIONS

#### **ESTIMATED GROUNDWATER AGE CLACULATIONS (MW-04)**

## MW-04 measured parameters (see Appendix E for analytical results)

$$^{14}$$
C DIC (pMC) = 15.9  $\delta^{13}$ C DIC (%) = -6.8

### Groundwater age equation (Muennich 1957 and 1968)

$$t = \frac{\tau}{\ln 2} . \ln(\frac{N}{No})$$

where:

t = age of water based in equation

 $\tau = \text{half life of}^{14}\text{C (5730 years)}$ 

N = measured <sup>14</sup>C of sample (reported in pMC (percent modern carbon))

 $N_o$  = initial <sup>14</sup>C of biogenic CO<sub>2</sub>, assumed to have <sup>14</sup>C activity of 100 pMC

#### **Calculations**

#### 1- No data correction

$$t = \frac{5730}{\ln 2} \cdot \ln(\frac{15.9}{100})$$

$$t = -8267 \times ln (0.159) = 15,201 years$$

#### 2- No Corrected estimation

Although  $N_o$  values of <sup>14</sup>C can be assumed to be 100 pMC, in reality, in closed (e.g. groundwater) systems, initial <sup>14</sup>C ( $N_o$ ) values can range from 54 – 84 pMC (Geyh 2000).

If 
$$N_o = 54 \text{ pMC}$$
:

$$t = \frac{5730}{\ln 2} \cdot \ln(\frac{15.9}{54})$$

$$t = -8267 \times ln (0.294) = 10,120 years$$

If 
$$N_o = 84 \text{ pMC}$$
:

$$t = \frac{5730}{\ln 2} \cdot \ln(\frac{15.9}{84})$$

#### 3- Incorporation of stable carbon isotope values

Stable carbon isotope values ( $\delta^{13}$ C) can be applied in a mixing model that allows for the incorporation of  $^{14}$ C-active DIC during carbonate dissolution when exposed to atmospheric conditions (i.e. open system) and subsequent  $^{14}$ C dilution belowground (i.e. closed-system conditions). The revised equation is:

$$t = \frac{\tau}{\ln 2} . \ln(\frac{N}{q. No})$$

where q = correction factor based on carbon isotope mass-balance calculation and defined as:

$$q = \frac{\delta^{13} C_{DIC} - \delta^{13} C_{carb}}{\delta^{13} C_{soil} - \delta^{13} C_{carb}}$$

 $\delta^{13}C_{DIC}$  = measured value (6.8%)

 $\delta^{13}C_{carb} = \delta^{13}C$  of the calcite being dissolved, usually close to 0‰ for old carbonate formations  $\delta^{13}C_{soil} = \delta^{13}C$  of the soil  $CO_2$  (usually close to and assumed to be -23‰)

At higher (7 – 10) pH values however, the DIC in equilibrium with the  $CO_2$  is enriched in  $^{13}C$ . Deep groundwater from the area has been shown to be approximately pH = 7.4 (Kimball 1981). The correction ( $\epsilon^{13}C_{DIC-CO}^2$ (soil)) factor, based on the pH is approximately +6‰ (based on Clark and Fritz 1997).

The revised, pH-corrected equation is:

$$q = \frac{\delta^{13} C_{DIC} - \delta^{13} C_{carb}}{\delta^{13} C_{rech} - \delta^{13} C_{carb}}$$

where  $\delta^{13} C_{\text{rech}\,=\,\delta}^{\,13} C_{\text{soil}} + \epsilon^{13} C_{\text{DIC-CO}}^{\,\,\,\,\,\,\,\,\,\,\,}$ 

For  $\delta^{13}C_{DIC} = -6.8\%$ ,  $\delta^{13}C_{carb} = 0\%$ ,  $\delta^{13}C_{soil} = -23\%$ , and  $\varepsilon^{13}C_{DIC-CO}(soil) = +6\%$ :

$$q = \frac{-6.8 - 0}{(-23 + 6) - 0} = 0.4$$

Thus, given N = 15.9 pMC, the revised t is:

$$t = \frac{\tau}{\ln 2} . \ln(\frac{N}{q. \, No})$$

$$t = \frac{5730}{\ln 2} \cdot \ln(\frac{15.9}{0.4 \text{ (100 pMC)}})$$

$$t = \frac{5730}{\ln 2} \cdot \ln(0.3975)$$

t = 7,626 years

#### References

Clark I.D. and Fritz P. 1997. Environmental isotopes in hydrogeology. CRC Press, Boca Raton, FL. 328 p.

Geyh M.A. 2000. An overview of <sup>14</sup>C analysis in the study of groundwater. Radiocarbon. 42(1):99-114.

Kimball B.A. 1981. Geochemistry of Spring Water, southeastern Uinta Basin, Utah and Colorado. Geological Survey Water Supply Paper 2074. 28 p.

Muennich K.O. 1957. Messung des <sup>14</sup>C-Gehaltes von hartem grundwasser. Naturwissenschaften 34:32-3.

Muennich K.O. 1968. Isotopen-Datierun von grundwasser. Naturwissenchaften. 55:158-63.

# APPENDIX G SPLP LEACHATE ANALYSIS



John Wallace IGES 4153 South Commerce Drive Salt Lake City, UT 84107

TEL: (801) 270-9400

RE: Red Leaf ECOSHALE / 01109-013

Dear John Wallace:

Lab Set ID: 1110545

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 3 sample(s) on 10/27/2011 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 All analyses were performed in accordance to The NELAC Institute protocols unless noted otherwise. American West Analytical Laboratories is certified by The NELAC Institute in Utah and Texas; and is state certified in Colorado, Idaho, and Missouri. Certification document is available upon request. If you have any questions or concerns regarding this report please feel free to call.

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

11/7/2011: This is a revision to a report originally issued 11/2/2011. Pages 1, 8-34, 46, and 51-79 have been revised.

11/9/2011: Pages 1 and 7 have been revised for cosmetic corrections.

Thank You,

Kyle F. Digitally signed by Kyle F. Gross DN: cnelkyle F. Gross, o=AWAL, ou=AWAL, email=kyle@awal-labs,com, c=US Date: 2011.11.09 10:15:32-07'00'

Approved by:

Laboratory Director or designee



Client: IGES

Project: Red Leaf ECOSHALE / 01109-013

Lab Sample ID: 1110545-001 Client Sample ID: R11-122 #1

**Collection Date:** 10/27/2011 0930h **Received Date:** 10/27/2011 1346h

**Analytical Results** 

SPLP METALS Method 1312

Contact: John Wallace

|                            | SPLP Prep Date: |       | Date             | Date         |       | Method  | Reporting | Analytical |      |
|----------------------------|-----------------|-------|------------------|--------------|-------|---------|-----------|------------|------|
| 463 West 3600 South        | Compound        | Units | Prepared         | Analyze      | ed    | Used    | Limit     | Result     | Qual |
| Salt Lake City, UT 84115   | Antimony        | mg/L  | 10/28/2011 1422h | 10/29/2011 0 | 029h  | SW6020A | 0.00500   | 0.00923    |      |
|                            | Arsenic         | mg/L  | 10/28/2011 1422h | 10/29/2011 0 | 0029h | SW6020A | 0.00300   | 0.0367     |      |
|                            | Barium          | mg/L  | 10/28/2011 1422h | 10/29/2011 0 | 0029h | SW6020A | 0.00200   | 0.0483     |      |
| Phone: (801) 263-8686      | Beryllium       | mg/L  | 10/28/2011 14221 | 10/29/2011 0 | 0029h | SW6020A | 0.00300   | < 0.00300  | 4    |
| Toll Free: (888) 263-8686  | Boron           | mg/L  | 10/28/2011 14221 | 10/31/2011 1 | 214h  | SW6010C | 0.500     | 0.840      |      |
| Fax: (801) 263-8687        | Cadmium         | mg/L  | 10/28/2011 1422h | 10/29/2011 0 | 0029h | SW6020A | 0.000900  | < 0.000900 | *    |
| e-mail: awal@awal-labs.com | Calcium         | mg/L  | 10/28/2011 14221 | 10/31/2011 1 | 1214h | SW6010C | 1.00      | 3.44       |      |
|                            | Chromium        | mg/L  | 10/28/2011 14221 | 10/31/2011 1 | 214h  | SW6010C | 0.0100    | < 0.0100   |      |
| web: www.awal-labs.com     | Copper          | mg/L  | 10/28/2011 14221 | 10/29/2011 0 | 0029h | SW6020A | 0.00400   | < 0.00400  | *    |
|                            | Iron            | mg/L  | 10/28/2011 14221 | 10/31/2011 1 | 1214h | SW6010C | 0.100     | < 0.100    |      |
| 107 at 12 (07 11 a)        | Lead            | mg/L  | 10/28/2011 1422  | 10/29/2011 0 | 0029h | SW6020A | 0.00200   | < 0.00200  |      |
| Kyle F. Gross              | Lithium         | mg/L  | 10/28/2011 14221 | 11/1/2011 1  | 1932h | SW6010C | 0.100     | < 0.100    | ~    |
| Laboratory Director        | Magnesium       | mg/L  | 10/28/2011 14221 | 10/31/2011 1 | 1214h | SW6010C | 1.00      | 1.14       |      |
| Jose Rocha                 | Manganese       | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.00600   | < 0.00600  | *    |
| QA Officer                 | Mercury         | mg/L  | 10/28/2011 14001 | 10/31/2011   | 1010h | SW7470A | 0.00100   | < 0.00100  |      |
| QA Officer                 | Molybdenum      | mg/L  | 10/28/2011 14221 | 10/31/2011   | 1640h | SW6010C | 0.0200    | 0.129      |      |
|                            | Nickel          | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.00400   | < 0.00400  |      |
|                            | Potassium       | mg/L  | 10/28/2011 14221 | 10/31/2011   | 1640h | SW6010C | 1.00      | 4.23       |      |
|                            | Selenium        | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.00400   | 0.00786    |      |
|                            | Silver          | mg/L  | 10/28/2011 14221 | 1 10/29/2011 | 0029h | SW6020A | 0.00200   | < 0.00200  | *    |
|                            | Sodium          | mg/L  | 10/28/2011 14221 | 1 10/31/2011 | 1214h | SW6010C | 1.00      | 36.9       |      |
|                            | Strontium       | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.00400   | 0.0686     |      |
|                            | Thallium        | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.00200   | < 0.00200  | 16   |
|                            | Tin             | mg/L  | 10/28/2011 14221 | 10/31/2011   | 1214h | SW6010C | 0.500     | < 0.500    |      |
|                            | Vanadium        | mg/L  | 10/28/2011 14221 | 10/31/2011   | 1214h | SW6010C | 0.0500    | 0.0638     |      |
|                            | Zinc            | mg/L  | 10/28/2011 14221 | 10/29/2011   | 0029h | SW6020A | 0.0250    | < 0.0250   |      |

<sup>\* -</sup> The reporting limits were raised due to sample matrix interferences.

<sup>--</sup> The above result was not performed in accordance with NELAP requirements.



Client: IGES

Red Leaf ECOSHALE / 01109-013

Project: Lab Sample ID:

**Lab Sample ID:** 1110545-002 **Client Sample ID:** R11-122 #2

Collection Date: Received Date: 10/27/2011 0935h 10/27/2011 1346h

**Analytical Results** 

SPLP METALS Method 1312

Contact: John Wallace

|                                                 | SPLP Prep Date:<br>Compound | 10/27/2011 18<br>Units | 000h Date<br>Prepared | Date<br>Analy: |       | Method<br>Used | Reporting<br>Limit | Analytical<br>Result | Qual |
|-------------------------------------------------|-----------------------------|------------------------|-----------------------|----------------|-------|----------------|--------------------|----------------------|------|
| 463 West 3600 South<br>Salt Lake City, UT 84115 | Antimony                    | mg/L                   | 10/28/2011 1422       | h 10/29/2011   | 0058h | SW6020A        | 0.00500            | 0.00761              |      |
| Sait Lake City, UT 84113                        | Arsenic                     | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        | 0.00300            | 0.0371               |      |
|                                                 | Barium                      | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        | 0.00200            | 0.0479               |      |
| n                                               | Beryllium                   | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        | 0.00300            | < 0.00300            | *    |
| Phone: (801) 263-8686                           | Boron                       | mg/L                   | 10/28/2011 1422       |                |       | SW6010C        | 0.500              | 0.832                |      |
| Γoll Free: (888) 263-8686                       | Cadmium                     | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        | 0.000900           | < 0.000900           | +    |
| Fax: (801) 263-8687                             | Calcium                     |                        | 10/28/2011 1422       |                |       | SW6010C        | 1.00               | 3.64                 |      |
| e-mail; awal@awal-labs.com                      |                             | mg/L                   |                       |                |       | SW6010C        | 0.0100             | < 0.0100             |      |
| web: www.awal-labs.com                          | Chromium                    | mg/L                   | 10/28/2011 1422       |                |       |                | 0.00400            | < 0.00400            |      |
| web. www.awai-iabs.com                          | Copper                      | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        |                    | < 0.100              |      |
|                                                 | Iron                        | mg/L                   | 10/28/2011 1422       |                |       | SW6010C        | 0.100              |                      | *    |
| Kyle F. Gross                                   | Lead                        | mg/L                   | 10/28/2011 1422       |                |       | SW6020A        | 0.00200            | < 0.00200            | *    |
| Laboratory Director                             | Lithium                     | mg/L                   | 10/28/2011 1422       | th 11/1/2011   | 1935h | SW6010C        | 0.100              | < 0.100              | ~    |
| dammin' course                                  | Magnesium                   | mg/L                   | 10/28/2011 1422       | th 10/31/2011  | 1230h | SW6010C        | 1.00               | 1.25                 |      |
| Jose Rocha                                      | Manganese                   | mg/L                   | 10/28/2011 1422       | th 10/29/2011  | 0058h | SW6020A        | 0.00600            | < 0.00600            | *    |
| QA Officer                                      | Mercury                     | mg/L                   | 10/28/2011 1400       | oh 10/31/2011  | 1021h | SW7470A        | 0.00100            | < 0.00100            |      |
|                                                 | Molybdenum                  | mg/L                   | 10/28/2011 142        | 2h 10/31/2011  | 1705h | SW6010C        | 0.0200             | < 0.0200             |      |
|                                                 | Nickel                      | mg/L                   | 10/28/2011 142:       | 2h 10/29/2011  | 0058h | SW6020A        | 0.00400            | < 0.00400            | *    |
|                                                 | Potassium                   | mg/L                   | 10/28/2011 142        | 2h 10/31/2011  | 1705h | SW6010C        | 1.00               | < 1.00               |      |
|                                                 | Selenium                    | mg/L                   | 10/28/2011 142:       | 2h 10/29/2011  | 0058h | SW6020A        | 0.00400            | 0.00753              |      |
|                                                 | Silver                      | mg/L                   | 10/28/2011 142        | 2h 10/29/2011  | 0058h | SW6020A        | 0.00200            | < 0.00200            | *    |
|                                                 | Sodium                      | mg/L                   | 10/28/2011 142        | 2h 10/31/2011  | 1230h | SW6010C        | 1.00               | 33.5                 |      |
|                                                 | Strontium                   | mg/L                   | 10/28/2011 142        | 2h 10/29/2011  | 0058h | SW6020A        | 0.00400            | 0.0707               |      |
|                                                 | Thallium                    | mg/L                   | 10/28/2011 142        |                |       | SW6020A        | 0.00200            | < 0.00200            | *    |
|                                                 | Tin                         | mg/L                   | 10/28/2011 142        |                |       | SW6010C        | 0.500              | < 0.500              |      |
|                                                 | Vanadium                    | mg/L                   | 10/28/2011 142        |                |       | SW6010C        | 0.0500             | 0.0640               |      |
|                                                 | Zinc                        | mg/L                   | 10/28/2011 142        |                |       | SW6020A        | 0.0250             | < 0.0250             | *    |

<sup>\* -</sup> The reporting limits were raised due to sample matrix interferences.

<sup>~ -</sup> The above result was not performed in accordance with NELAP requirements.



Client:

IGES

Contact: John Wallace

Project:

Red Leaf ECOSHALE / 01109-013

Lab Sample ID: Client Sample ID: R11-122 #3

1110545-003

Collection Date:

10/27/2011 0940h

Received Date:

10/27/2011 1346h

**Analytical Results** 

SPLP METALS Method 1312

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPLP Prep Date: | 10/27/2011 18<br>Units | 00h Date<br>Prepared | Date<br>Analyzed | Method<br>Used | Reporting<br>Limit | Analytical<br>Result | Qual |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------|------------------|----------------|--------------------|----------------------|------|
| 463 West 3600 South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compound        | Units                  | rrepared             | Analyzed         | Oseu           |                    | 41 - 417             | ~    |
| Salt Lake City, UT 84115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Antimony        | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.00500            | 0.00929              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arsenic         | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.00300            | 0.0391               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Barium          | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.00200            | 0.0410               |      |
| Phone: (801) 263-8686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Beryllium       | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.00300            | < 0.00300            | *    |
| Toll Free: (888) 263-8686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Boron           | mg/L                   | 10/28/2011 1422h     | 10/31/2011 123   | 4h SW6010C     | 0.500              | 0.878                |      |
| Fax: (801) 263-8687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cadmium         | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.000900           | < 0.000900           | d    |
| e-mail: awal@awal-labs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calcium         | mg/L                   | 10/28/2011 1422h     | 10/31/2011 123   | 4h SW6010C     | 1.00               | 3.48                 |      |
| A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | Chromium        | mg/L                   | 10/28/2011 14221     | 10/31/2011 123   | 4h SW6010C     | 0.0100             | < 0.0100             |      |
| web: www.awal-labs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Copper          | mg/L                   | 10/28/2011 1422h     | 10/29/2011 010   | 3h SW6020A     | 0.00400            | < 0.00400            | +    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iron            | mg/L                   | 10/28/2011 1422h     | 10/31/2011 123   | 34h SW6010C    | 0.100              | < 0.100              |      |
| 2002 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lead            | mg/L                   | 10/28/2011 14221     | 10/29/2011 010   | 03h SW6020A    | 0.00200            | < 0.00200            |      |
| Kyle F. Gross                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lithium         | mg/L                   | 10/28/2011 14221     | 11/1/2011 193    | 37h SW6010C    | 0.100              | < 0.100              | ~    |
| Laboratory Director                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Magnesium       | mg/L                   | 10/28/2011 14221     | 10/31/2011 12:   | 34h SW6010C    | 1.00               | < 1.00               |      |
| Jose Rocha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Manganese       | mg/L                   | 10/28/2011 14221     | 10/29/2011 010   | 03h SW6020A    | 0.00600            | < 0.00600            |      |
| QA Officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mercury         | mg/L                   | 10/28/2011 14001     | 10/31/2011 102   | 23h SW7470A    | 0.00100            | < 0.00100            |      |
| QA Officer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Molybdenum      | mg/L                   | 10/28/2011 14221     | 10/31/2011 17    | 09h SW6010C    | 0.0200             | 0.159                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nickel          | mg/L                   | 10/28/2011 1422      | 10/29/2011 01    | 03h SW6020A    | 0.00400            | < 0.00400            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Potassium       | mg/L                   | 10/28/2011 14221     | 10/31/2011 17    | 09h SW6010C    | 1.00               | 4.28                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selenium        | mg/L                   | 10/28/2011 14221     | 10/29/2011 01    | 03h SW6020A    | 0.00400            | 0.00725              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silver          | mg/L                   | 10/28/2011 14221     | 10/29/2011 01    | 03h SW6020A    | 0.00200            | < 0.00200            | *    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sodium          | mg/L                   | 10/28/2011 14221     | 10/31/2011 12    | 34h SW6010C    | 1.00               | 37.4                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strontium       | mg/L                   | 10/28/2011 14221     | 10/29/2011 01    | 03h SW6020A    | 0.00400            | 0.0640               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Thallium        | mg/L                   | 10/28/2011 1422      | 10/29/2011 01    | 03h SW6020A    | 0.00200            | < 0.00200            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tin             | mg/L                   | 10/28/2011 1422      | 1 10/31/2011 12  | 34h SW6010C    | 0.500              | < 0.500              |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vanadium        | mg/L                   | 10/28/2011 1422      | 1 10/31/2011 12  | 34h SW6010C    | 0.0500             | 0.0666               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zinc            | mg/L                   | 10/28/2011 1422      | 10/29/2011 01    | 03h SW6020A    | 0.0250             | < 0.0250             | *    |

<sup>\* -</sup> The reporting limits were raised due to sample matrix interferences.

<sup>--</sup> The above result was not performed in accordance with NELAP requirements.



Client:

**IGES** 

1110545-001

Contact: John Wallace

Project:

Red Leaf ECOSHALE / 01109-013

Lab Sample ID: Client Sample ID: R11-122 #1

Collection Date:

10/27/2011 0930h Received Date: 10/27/2011 1346h

**Analytical Results** 

|      | 463  | West  | 3600 | South |
|------|------|-------|------|-------|
| Salt | Lake | City, | UT   | 84115 |

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

| Compound               | Units    | Date<br>Prepared | Date<br>Analy |       | Method<br>Used | Reporting<br>Limit | Analytical<br>Result | Qual |
|------------------------|----------|------------------|---------------|-------|----------------|--------------------|----------------------|------|
| Alkalinity (as CaCO3)  | mg/L     |                  | 10/31/2011    | 0730h | SM2320B        | 40.0               | 68.9                 |      |
| Chloride               | mg/L     |                  | 11/1/2011     | 1321h | SM4500-CI-E    | 5.00               | < 5.00               | '@   |
| Fluoride               | mg/L     |                  | 10/31/2011    | 0840h | SM4500-F-C     | 0.100              | 1.56                 |      |
| Nitrate/Nitrite (as N) | mg/L     |                  | 10/31/2011    | 1148h | E353.2         | 0.0100             | 0.0106               | В    |
| Oil & Grease           | mg/L     |                  | 10/28/2011    | 1250h | E1664A         | 3.00               | < 3.00               |      |
| рН @ 25° С             | pH Units |                  | 10/28/2011    | 1715h | SM4500-H+B     | 1.00               | 9.92                 |      |
| Sulfate                | mg/L     |                  | 10/29/2011    | 0940h | SM4500-SO4-E   | 5.00               | 17.4                 |      |
| Total Dissolved Solids | mg/L     |                  | 10/28/2011    | 1300h | SM2540C        | 20.0               | 172                  |      |

Analysis performed on an SPLP extract.

Kyle F. Gross Laboratory Director

<sup>@ -</sup> High RPD due to suspected sample non-homogeneity or matrix interference.

<sup>&#</sup>x27; - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

B - This analyte was also detected in the SPLP blank at 0.0189 mg/L.



Contact: John Wallace

Client:

Project:

Red Leaf ECOSHALE / 01109-013

**Lab Sample ID:** 1110545-002 **Client Sample ID:** R11-122 #2

Collection Date: 10/27/2011 0935h Received Date: 10/27/2011 1346h

**IGES** 

**Analytical Results** 

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

| Compound               | Units    | Date<br>Prepared | Date<br>Analy | 7     | Method<br>Used | Reporting<br>Limit | Analytical<br>Result | Qual |
|------------------------|----------|------------------|---------------|-------|----------------|--------------------|----------------------|------|
| Alkalinity (as CaCO3)  | mg/L     |                  | 10/31/2011    | 0730h | SM2320B        | 40.0               | 82.0                 |      |
| Chloride               | mg/L     |                  | 11/1/2011     | 1324h | SM4500-CI-E    | 5.00               | < 5.00               |      |
| Fluoride               | mg/L     |                  | 10/31/2011    | 0840h | SM4500-F-C     | 0.100              | 1.64                 |      |
| Nitrate/Nitrite (as N) | mg/L     |                  | 10/31/2011    | 1152h | E353.2         | 0.0100             | 0.0251               | В    |
| Oil & Grease           | mg/L     |                  | 10/28/2011    | 1250h | E1664A         | 3.00               | < 3.00               |      |
| рН @ 25° С             | pH Units |                  | 10/28/2011    | 1715h | SM4500-H+B     | 1.00               | 9.99                 |      |
| Sulfate                | mg/L     |                  | 10/29/2011    | 0940h | SM4500-SO4-E   | 5.00               | 18.5                 |      |
| Total Dissolved Solids | mg/L     |                  | 10/28/2011    | 1300h | SM2540C        | 20.0               | 220                  |      |

Analysis performed on an SPLP extract.

B - This analyte was also detected in the SPLP blank at 0.0189 mg/L.

Kyle F. Gross Laboratory Director



Client:

**IGES** 

Contact: John Wallace

Project:

Red Leaf ECOSHALE / 01109-013

Lab Sample ID: Client Sample ID: R11-122 #3

1110545-003

Collection Date:

10/27/2011 0940h

Received Date:

10/27/2011 1346h

**Analytical Results** 

Salt Lake City, UT 84115

463 West 3600 South Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

| Compound               | Units    | Date<br>Prepared | Date<br>Analy | 00    | Method<br>Used | Reporting<br>Limit | Analytical<br>Result | Qual |
|------------------------|----------|------------------|---------------|-------|----------------|--------------------|----------------------|------|
| Alkalinity (as CaCO3)  | mg/L     |                  | 10/31/2011    | 0730h | SM2320B        | 40.0               | 78.7                 |      |
| Chloride               | mg/L     |                  | 11/1/2011     | 1325h | SM4500-CI-E    | 5.00               | < 5.00               |      |
| Fluoride               | mg/L     |                  | 10/31/2011    | 0840h | SM4500-F-C     | 0.100              | 1.84                 |      |
| Nitrate/Nitrite (as N) | mg/L     |                  | 10/31/2011    | 1153h | E353.2         | 0.0100             | 0.0142               | В    |
| Oil & Grease           | mg/L     |                  | 10/28/2011    | 1250h | E1664A         | 3.00               | < 3.00               |      |
| pH @ 25° C             | pH Units |                  | 10/28/2011    | 1715h | SM4500-H+B     | 1.00               | 10.2                 |      |
| Sulfate                | mg/L     |                  | 10/29/2011    | 1045h | SM4500-SO4-E   | 5.00               | 19.8                 |      |
| Total Dissolved Solids | mg/L     |                  | 10/28/2011    | 1300h | SM2540C        | 20.0               | 220                  |      |

Analysis performed on an SPLP extract.

B - This analyte was also detected in the SPLP blank at 0.0189 mg/L.

Kyle F. Gross Laboratory Director



IGES Contact: John Wallace Client:

Project: Red Leaf ECOSHALE / 01109-013

1110545-001A Lab Sample ID: Client Sample ID: R11-122 #1 10/27/2011 0930h Collection Date:

Received Date: 10/27/2011 1346h Method: SW8270D

SVOA SPLP by GC/MS Method 8270D/1312/3510C **Analytical Results** 11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700h Analyzed: 11/4/2011 1759h Extracted:

Units: mg/L

2-Nitrophenol

| 463 West 3600 South<br>Salt Lake City, UT 84115 | Dilution Factor: 1<br>Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |
|-------------------------------------------------|--------------------------------|---------------|--------------------|----------------------|------|
|                                                 | 1,1'-Biphenyl                  | 92-52-4       | 0.0100             | < 0.0100             |      |
|                                                 | 1,2,4,5-Tetrachlorobenzene     | 95-94-3       | 0.0100             | < 0.0100             |      |
| Phone: (801) 263-8686                           | 1,2,4-Trichlorobenzene         | 120-82-1      | 0.0100             | < 0.0100             |      |
| Toll Free: (888) 263-8686                       | 1,2-Dichlorobenzene            | 95-50-1       | 0.0100             | < 0.0100             |      |
| Fax: (801) 263-8687                             | 1,3,5-Trinitrobenzene          | 99-35-4       | 0.0100             | < 0.0100             |      |
| e-mail; awal@awal-labs.com                      | 1,4-Naphthoquinone             | 130-15-4      | 0.0100             | < 0.0100             |      |
|                                                 | 1,3-Dichlorobenzene            | 541-73-1      | 0.0100             | < 0.0100             |      |
| web: www.awal-labs.com                          | 1,3-Dinitrobenzene             | 99-65-0       | 0.0100             | < 0.0100             |      |
|                                                 | 1,4-Dichlorobenzene            | 106-46-7      | 0.0100             | < 0.0100             |      |
|                                                 | 1,4-Phenylenediamine           | 106-50-3      | 0.0100             | < 0.0100             |      |
| Kyle F. Gross                                   | I-Chloronaphthalene            | 90-13-1       | 0.0100             | < 0.0100             |      |
| Laboratory Director                             | 1-Methylnaphthalene            | 90-12-0       | 0.0100             | < 0.0100             |      |
| Jose Rocha                                      | 1-Naphthylamine                | 134-32-7      | 0.0100             | < 0.0100             |      |
| QA Officer                                      | 2,3,4,6-Tetrachlorophenol      | 58-90-2       | 0.0100             | < 0.0100             |      |
| QA Officer                                      | 2,4,5-Trichlorophenol          | 95-95-4       | 0.0100             | < 0.0100             |      |
|                                                 | 2,4,6-Trichlorophenol          | 88-06-2       | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dichlorophenol             | 120-83-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dimethylphenol             | 105-67-9      | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dinitrophenol              | 51-28-5       | 0.0200             | < 0.0200             |      |
|                                                 | 2,4-Dinitrotoluene             | 121-14-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2,6-Dichlorophenol             | 87-65-0       | 0.0100             | < 0.0100             |      |
|                                                 | 2,6-Dinitrotoluene             | 606-20-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2-Acetylaminofluorene          | 53-96-3       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Chloronaphthalene            | 91-58-7       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Chlorophenol                 | 95-57-8       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Methylnaphthalene            | 91-57-6       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Methylphenol                 | 95-48-7       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Naphthylamine                | 91-59-8       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Nitroaniline                 | 88-74-4       | 0.0100             | < 0.0100             |      |

Report Date: 11/7/2011 Page 8 of 79

< 0.0100

88-75-5

0.0100



1110545-001A Lab Sample ID: Client Sample ID: R11-122 #1

11/3/2011 1700h Analyzed: 11/4/2011 1759h 11/4/2011 1050h SPLP Prep Date: Extracted: Units: mg/L Dilution Factor: 1 Reporting CAS Analytical Qual Result Compound Number Limit 2-Picoline 109-06-8 0.0100 < 0.0100 0.0100 < 0.0100 3&4-Methylphenol 91-94-1 0.0100 < 0.0100 3,3'-Dichlorobenzidine < 0.0100 119-93-7 0.0100 3,3'-Dimethylbenzidine 56-49-5 0.0100 < 0.0100 3-Methylcholanthrene 463 West 3600 South < 0.0100 3-Nitroaniline 99-09-2 0.0100 Salt Lake City, UT 84115 534-52-1 0.0100 < 0.0100 4,6-Dinitro-2-methylphenol 92-67-1 0.0100 < 0.0100 4-Aminobiphenyl < 0.0100 101-55-3 0.0100 4-Bromophenyl phenyl ether Phone: (801) 263-8686 0.0100 < 0.0100 59-50-7 4-Chloro-3-methylphenol Toll Free: (888) 263-8686 106-47-8 0.0100 < 0.0100 4-Chloroaniline Fax: (801) 263-8687 < 0.0100 7005-72-3 0.0100 4-Chlorophenyl phenyl ether e-mail: awal@awal-labs.com 100-01-6 0.0100 < 0.0100 4-Nitroaniline 100-02-7 0.0100 < 0.0100 4-Nitrophenol web: www.awal-labs.com 99-55-8 0.0100 < 0.0100 5-Nitro-o-toluidine < 0.0100 57-97-6 0.0100 7,12-Dimethylbenz(a)anthracene 0.0100 < 0.0100 a,a-Dimethylphenethylamine 122-09-8 Kyle F. Gross 83-32-9 0.0100 < 0.0100 Acenaphthene Laboratory Director 208-96-8 0.0100 < 0.0100 Acenaphthylene 0.0100 < 0.0100 Jose Rocha 98-86-2 Acetophenone < 0.0100 QA Officer 98-55-5 0.0100 alpha-Terpineol < 0.0100 62-53-3 0.0100 Aniline 0.0100 < 0.0100 120-12-7 Anthracene 140-57-8 0.0100 < 0.0100 Aramite 103-33-3 0.0100 < 0.0100 Azobenzene 0.0100 < 0.0100 56-55-3 Benz(a)anthracene 92-87-5 0.0100 < 0.0100 Benzidine 50-32-8 0.0100 < 0.0100 Benzo(a)pyrene Benzo(b)fluoranthene 205-99-2 0.0100 < 0.0100 191-24-2 0.0100 < 0.0100 Benzo(g,h,i)perylene < 0.0100 207-08-9 0.0100 Benzo(k)fluoranthene 0.0200 0.0326 Benzoic acid 65-85-0 < 0.0100 100-51-6 0.0100 Benzyl alcohol 111-91-1 0.0100 < 0.0100 Bis(2-chloroethoxy)methane Bis(2-chloroethyl) ether 111-44-4 0.0100 < 0.0100 0.0100 < 0.0100 108-60-1 Bis(2-chloroisopropyl) ether



|                | Analyzed: 11/4/2011 1759h E<br>Units: mg/L | Extracted: | 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011            | 1700h |
|----------------|--------------------------------------------|------------|-----------------|--------------------|----------------------|-------|
| can West       | Dilution Factor: 1<br>Compound             |            | CAS<br>Number   | Reporting<br>Limit | Analytical<br>Result | Qual  |
| LANGRATORITE   | Bis(2-ethylhexyl) phthalate                |            | 117-81-7        | 0.0100             | < 0.0100             |       |
|                | bis(2-ethylhexyl)adipate                   |            | 103-23-1        | 0.0100             | < 0.0100             |       |
|                | Butyl benzyl phthalate                     |            | 85-68-7         | 0.0100             | < 0.0100             |       |
|                | Carbazole                                  |            | 86-74-8         | 0.0100             | < 0.0100             |       |
| est 3600 South | Chlorobenzilate                            |            | 510-15-6        | 0.0100             | < 0.0100             |       |
| ity, UT 84115  | Chrysene                                   |            | 218-01-9        | 0.0100             | < 0.0100             |       |
| W4.00 2.000    | Di-n-butyl phthalate                       |            | 84-74-2         | 0.0100             | < 0.0100             |       |
|                | Di-n-octyl phthalate                       |            | 117-84-0        | 0.0100             | < 0.0100             |       |
| 901) 262 9696  | Diallate (cis or trans)                    |            | 2303-16-4       | 0.0100             | < 0.0100             |       |
| 801) 263-8686  | Dibenz(a,h)anthracene                      |            | 53-70-3         | 0.0100             | < 0.0100             |       |
| 888) 263-8686  | Dibenzofuran                               |            | 132-64-9        | 0.0100             | < 0.0100             |       |
| 801) 263-8687  | Diethyl phthalate                          |            | 84-66-2         | 0.0100             | < 0.0100             |       |
| @awal-labs.com | Dimethoate                                 |            | 60-51-5         | 0.0100             | < 0.0100             |       |
| awal-labs.com  | Dimethyl phthalate                         |            | 131-11-3        | 0.0100             | < 0.0100             |       |
| awai-iabs.com  | Dimethylaminoazobenzene                    |            | 60-11-7         | 0.0100             | < 0.0100             |       |
|                | Dinoseb                                    |            | 88-85-7         | 0.0100             | < 0.0100             |       |
| Kyle F. Gross  | Diphenylamine                              |            | 122-39-4        | 0.0100             | < 0.0100             |       |
| atory Director | Disulfoton                                 |            | 298-04-4        | 0.0100             | < 0.0100             |       |
| 10.3           | Ethyl methanesulfonate                     |            | 62-50-0         | 0.0100             | < 0.0100             |       |
| Jose Rocha     | Famphur                                    |            | 52-85-7         | 0.0100             | < 0.0100             |       |
| QA Officer     | Fluoranthene                               |            | 206-44-0        | 0.0100             | < 0.0100             |       |
|                | Fluorene                                   |            | 86-73-7         | 0.0100             | < 0.0100             |       |
|                | Hexachlorobenzene                          |            | 118-74-1        | 0.0100             | < 0.0100             |       |
|                | Hexachlorobutadiene                        |            | 87-68-3         | 0.0100             | < 0.0100             |       |
|                | Hexachlorocyclopentadiene                  |            | 77-47-4         | 0.0100             | < 0.0100             |       |
|                | Hexachloroethane                           |            | 67-72-1         | 0.0100             | < 0.0100             |       |
|                | Hexachlorophene                            |            | 70-30-4         | 0.0100             | < 0.0100             |       |
|                | Hexachloropropene                          |            | 1888-71-7       | 0.0100             | < 0.0100             |       |
|                | Indene                                     |            | 95-13-6         | 0.0100             | < 0.0100             |       |
|                | Indeno(1,2,3-cd)pyrene                     |            | 193-39-5        | 0.0100             | < 0.0100             |       |
|                | Isodrin                                    |            | 465-73-6        | 0.0100             | < 0.0100             |       |
|                | Isophorone                                 |            | 78-59-1         | 0.0100             | < 0.0100             |       |
|                | Isosafrole                                 |            | 120-58-1        | 0.0100             | < 0.0100             |       |
|                | Kepone                                     |            | 143-50-0        | 0.0100             | < 0.0100             |       |
|                | Methapyrilene                              |            | 91-80-5         | 0.0100             | < 0.0100             |       |
|                | Methyl methanesulfonate                    |            | 66-27-3         | 0.0100             | < 0.0100             |       |



Lab Sample ID: 1110545-001A

|            | Analyzed: 11/4/2011 1759h Extr<br>Units: mg/L | racted: 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011 1700           |
|------------|-----------------------------------------------|-------------------------|--------------------|--------------------------|
| an West    | Dilution Factor: 1 Compound                   | CAS<br>Number           | Reporting<br>Limit | Analytical<br>Result Qua |
| HAIDRIES   | n-Decane                                      | 124-18-5                | 0.0100             | < 0.0100                 |
|            | N-Nitrosodi-n-butylamine                      | 924-16-3                | 0.0100             | < 0.0100                 |
|            | N-Nitrosodiethylamine                         | 55-18-5                 | 0.0100             | < 0.0100                 |
|            | N-Nitrosodimethylamine                        | 62-75-9                 | 0.0100             | < 0.0100                 |
| 0 South    | N-Nitrosodiphenylamine                        | 86-30-6                 | 0.0100             | < 0.0100                 |
| 84115      | N-Nitrosodi-n-propylamine                     | 621-64-7                | 0.0100             | < 0.0100                 |
| 9.1.10     | N-Nitrosomethylethylamine                     | 10595-95-6              | 0.0100             | < 0.0100                 |
|            | N-Nitrosomorpholine                           | 59-89-2                 | 0.0100             | < 0.0100                 |
|            | N-Nitrosopiperidine                           | 100-75-4                | 0.0100             | < 0.0100                 |
| 63-8686    | N-Nitrosopyrrolidine                          | 930-55-2                | 0.0100             | < 0.0100                 |
| 63-8686    | n-Octadecane                                  | 593-45-3                | 0.0100             | < 0.0100                 |
| 263-8687   | Naphthalene                                   | 91-20-3                 | 0.0100             | < 0.0100                 |
| -labs.com  | Nitrobenzene                                  | 98-95-3                 | 0.0100             | < 0.0100                 |
| T. Account | Nitroquinoline-1-oxide                        | 56-57-5                 | 0.0100             | < 0.0100                 |
| labs.com   | O,O,O-Triethyl phosphorothioate               | 126-68-1                | 0.0100             | < 0.0100                 |
|            | o-Toluidine                                   | 95-53-4                 | 0.0100             | < 0.0100                 |
| F. Gross   | Parathion                                     | 56-38-2                 | 0.0100             | < 0.0100                 |
| Director   | Methyl parathion                              | 298-00-0                | 0.0100             | < 0.0100                 |
| niector    | Pentachlorobenzene                            | 608-93-5                | 0.0100             | < 0.0100                 |
| e Rocha    | Pentachloronitrobenzene                       | 82-68-8                 | 0.0100             | < 0.0100                 |
| Officer    | Pentachlorophenol                             | 87-86-5                 | 0.0100             | < 0.0100                 |
| Officer    | Phenacetin                                    | 62-44-2                 | 0.0100             | < 0.0100                 |
|            | Phenanthrene                                  | 85-01-8                 | 0.0100             | < 0.0100                 |
|            |                                               | 108-95-2                | 0.0100             | < 0.0100                 |
|            | Phenol                                        | 298-02-2                | 0.0100             | < 0.0100                 |
|            | Phorate<br>Pronamide                          | 23950-58-5              |                    | < 0.0100                 |
|            |                                               | 129-00-0                | 0.0100             | < 0.0100                 |
|            | Pyrene                                        | 110-86-1                | 0.0100             | < 0.0100                 |
|            | Pyridine                                      | 91-22-5                 | 0.0100             | < 0.0100                 |
|            | Quinoline                                     | 94-59-7                 | 0.0100             | < 0.0100                 |
|            | Safrole  Tetransky I diskipanyan kombata      | 3689-24-5               | 0.0100             | < 0.0100                 |
|            | Tetraethyl dithiopyrophosphate                | 3689-24-3<br>297-97-2   |                    | < 0.0100                 |
|            | Thionazin                                     |                         | 0.0100             |                          |
|            | Surr: 2,4,6-Tribromophenol                    | 118-79-6                | 10-159             | 65.6                     |
|            | Surr: 2-Fluorobiphenyl                        | 321-60-8                | 10-124             | 46.9                     |
|            | Surr: 2-Fluorophenol                          | 367-12-4                | 14-106             | 31.8                     |
|            | Surr: Nitrobenzene-d5                         | 4165-60-0               | 10-180             | 43.6                     |



11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700h Analyzed: 11/4/2011 1759h Extracted:

Units: mg/L

Dilution Factor: 1 CAS Reporting Analytical Result Qual Limit Compound Number Surr: Phenol-d6 13127-88-3 10-122 24.8 10-199 114 Surr: Terphenyl-d14 1718-51-0

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director



Contact: John Wallace IGES Client:

Project: Red Leaf ECOSHALE / 01109-013

Lab Sample ID: 1110545-002A Client Sample ID: R11-122 #2 10/27/2011 0935h Collection Date:

Received Date: 10/27/2011 1346h Method: SW8270D

SVOA SPLP by GC/MS Method 8270D/1312/3510C **Analytical Results** 

11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700h Analyzed: 11/4/2011 1825h Extracted:

Units: mg/L

| 463 West 3600 South<br>Salt Lake City, UT 84115 | Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |
|-------------------------------------------------|-----------------------------|---------------|--------------------|----------------------|------|
|                                                 | 1,1*-Biphenyl               | 92-52-4       | 0.0100             | < 0.0100             |      |
|                                                 | 1,2,4,5-Tetrachlorobenzene  | 95-94-3       | 0.0100             | < 0.0100             |      |
| Phone: (801) 263-8686                           | 1,2,4-Trichlorobenzene      | 120-82-1      | 0.0100             | < 0.0100             |      |
| Toll Free: (888) 263-8686                       | 1,2-Dichlorobenzene         | 95-50-1       | 0.0100             | < 0.0100             |      |
| Fax: (801) 263-8687                             | 1,3,5-Trinitrobenzene       | 99-35-4       | 0.0100             | < 0.0100             |      |
| e-mail: awal@awal-labs.com                      | 1,4-Naphthoquinone          | 130-15-4      | 0.0100             | < 0.0100             |      |
|                                                 | 1,3-Dichlorobenzene         | 541-73-1      | 0.0100             | < 0.0100             |      |
| web: www.awal-labs.com                          | 1,3-Dinitrobenzene          | 99-65-0       | 0.0100             | < 0.0100             |      |
|                                                 | 1,4-Dichlorobenzene         | 106-46-7      | 0.0100             | < 0.0100             |      |
| 100,000,000,000                                 | 1,4-Phenylenediamine        | 106-50-3      | 0.0100             | < 0.0100             |      |
| Kyle F. Gross                                   | 1-Chloronaphthalene         | 90-13-1       | 0.0100             | < 0.0100             |      |
| Laboratory Director                             | 1-Methylnaphthalene         | 90-12-0       | 0.0100             | < 0.0100             |      |
| Jana Danka                                      | 1-Naphthylamine             | 134-32-7      | 0.0100             | < 0.0100             |      |
| Jose Rocha                                      | 2,3,4,6-Tetrachlorophenol   | 58-90-2       | 0.0100             | < 0.0100             |      |
| QA Officer                                      | 2,4,5-Trichlorophenol       | 95-95-4       | 0.0100             | < 0.0100             |      |
|                                                 | 2,4,6-Trichlorophenol       | 88-06-2       | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dichlorophenol          | 120-83-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dimethylphenol          | 105-67-9      | 0.0100             | < 0.0100             |      |
|                                                 | 2,4-Dinitrophenol           | 51-28-5       | 0.0200             | < 0.0200             |      |
|                                                 | 2,4-Dinitrotoluene          | 121-14-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2,6-Dichlorophenol          | 87-65-0       | 0.0100             | < 0.0100             |      |
|                                                 | 2,6-Dinitrotoluene          | 606-20-2      | 0.0100             | < 0.0100             |      |
|                                                 | 2-Acetylaminofluorene       | 53-96-3       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Chloronaphthalene         | 91-58-7       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Chlorophenol              | 95-57-8       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Methylnaphthalene         | 91-57-6       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Methylphenol              | 95-48-7       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Naphthylamine             | 91-59-8       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Nitroaniline              | 88-74-4       | 0.0100             | < 0.0100             |      |
|                                                 | 2-Nitrophenol               | 88-75-5       | 0.0100             | < 0.0100             |      |

Report Date: 11/7/2011 Page 13 of 79



|                                                                                                                                                                           | Analyzed: 11/4/2011 1825h Extract<br>Units: mg/L | ed: 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011            | 1700h |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------|--------------------|----------------------|-------|
| can West                                                                                                                                                                  | Dilution Factor: 1<br>Compound                   | CAS<br>Number       | Reporting<br>Limit | Analytical<br>Result | Qual  |
| 3 West 3600 South ke City, UT 84115  ne: (801) 263-8686 ee: (888) 263-8686 ax: (801) 263-8687 awal@awal-labs.com  Kyle F. Gross aboratory Director  Jose Rocha QA Officer | 2-Picoline                                       | 109-06-8            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 3&4-Methylphenol                                 |                     | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 3,3'-Dichlorobenzidine                           | 91-94-1             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 3,3'-Dimethylbenzidine                           | 119-93-7            | 0.0100             | < 0.0100             |       |
| est 3600 South                                                                                                                                                            | 3-Methylcholanthrene                             | 56-49-5             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 3-Nitroaniline                                   | 99-09-2             | 0.0100             | < 0.0100             |       |
| .,, 01 07115                                                                                                                                                              | 4,6-Dinitro-2-methylphenol                       | 534-52-1            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 4-Aminobiphenyl                                  | 92-67-1             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 4-Bromophenyl phenyl ether                       | 101-55-3            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 4-Chloro-3-methylphenol                          | 59-50-7             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 4-Chloroaniline                                  | 106-47-8            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 4-Chlorophenyl phenyl ether                      | 7005-72-3           | 0.0100             | < 0.0100             |       |
| @awal-labs.com                                                                                                                                                            | 4-Nitroaniline                                   | 100-01-6            | 0.0100             | < 0.0100             |       |
| awal laba aam                                                                                                                                                             | 4-Nitrophenol                                    | 100-02-7            | 0.0100             | < 0.0100             |       |
| awai-iaos.com                                                                                                                                                             | 5-Nitro-o-toluidine                              | 99-55-8             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | 7,12-Dimethylbenz(a)anthracene                   | 57-97-6             | 0.0100             | < 0.0100             |       |
| Kyle F. Gross                                                                                                                                                             | a,a-Dimethylphenethylamine                       | 122-09-8            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Acenaphthene                                     | 83-32-9             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Acenaphthylene                                   | 208-96-8            | 0.0100             | < 0.0100             |       |
| Jose Rocha                                                                                                                                                                | Acetophenone                                     | 98-86-2             | 0.0100             | < 0.0100             |       |
| QA Officer                                                                                                                                                                | alpha-Terpineol                                  | 98-55-5             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Aniline                                          | 62-53-3             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Anthracene                                       | 120-12-7            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Aramite                                          | 140-57-8            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Azobenzene                                       | 103-33-3            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benz(a)anthracene                                | 56-55-3             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzidine                                        | 92-87-5             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzo(a)pyrene                                   | 50-32-8             | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzo(b)fluoranthene                             | 205-99-2            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzo(g,h,i)perylene                             | 191-24-2            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzo(k)fluoranthene                             | 207-08-9            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Benzoic acid                                     | 65-85-0             | 0.0200             | 0.0354               |       |
|                                                                                                                                                                           | Benzyl alcohol                                   | 100-51-6            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Bis(2-chloroethoxy)methane                       | 111-91-1            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Bis(2-chloroethyl) ether                         | 111-44-4            | 0.0100             | < 0.0100             |       |
|                                                                                                                                                                           | Bis(2-chloroisopropyl) ether                     | 108-60-1            | 0.0100             | < 0.0100             |       |



|                      | Analyzed: 11/4/2011 1825h Extracted:    | 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011 1700       |      |
|----------------------|-----------------------------------------|-----------------|--------------------|----------------------|------|
| merican West         | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number   | Reporting<br>Limit | Analytical<br>Result | Qual |
| LYTICAL LABORATORIES | Bis(2-ethylhexyl) phthalate             | 117-81-7        | 0.0100             | < 0.0100             |      |
|                      | bis(2-ethylhexyl)adipate                | 103-23-1        | 0.0100             | < 0.0100             |      |
|                      | Butyl benzyl phthalate                  | 85-68-7         | 0.0100             | < 0.0100             |      |
|                      | Carbazole                               | 86-74-8         | 0.0100             | < 0.0100             |      |
| 63 West 3600 South   | Chlorobenzilate                         | 510-15-6        | 0.0100             | < 0.0100             |      |
| ake City, UT 84115   | Chrysene                                | 218-01-9        | 0.0100             | < 0.0100             |      |
| and only, or overs   | Di-n-butyl phthalate                    | 84-74-2         | 0.0100             | < 0.0100             |      |
|                      | Di-n-octyl phthalate                    | 117-84-0        | 0.0100             | < 0.0100             |      |
| omoundada kalis      | Diallate (cis or trans)                 | 2303-16-4       | 0.0100             | < 0.0100             |      |
| one: (801) 263-8686  | Dibenz(a,h)anthracene                   | 53-70-3         | 0.0100             | < 0.0100             |      |
| Free: (888) 263-8686 | Dibenzofuran                            | 132-64-9        | 0.0100             | < 0.0100             |      |
| Fax: (801) 263-8687  | Diethyl phthalate                       | 84-66-2         | 0.0100             | < 0.0100             |      |
| awal@awal-labs.com   | Dimethoate                              | 60-51-5         | 0.0100             | < 0.0100             |      |
| and the rate of the  | Dimethyl phthalate                      | 131-11-3        | 0.0100             | < 0.0100             |      |
| www.awal-labs.com    | Dimethylaminoazobenzene                 | 60-11-7         | 0.0100             | < 0.0100             |      |
|                      | Dinoseb                                 | 88-85-7         | 0.0100             | < 0.0100             |      |
| Kyle F. Gross        | Diphenylamine                           | 122-39-4        | 0.0100             | < 0.0100             |      |
| Laboratory Director  | Disulfoton                              | 298-04-4        | 0.0100             | < 0.0100             |      |
| saboratory Director  | Ethyl methanesulfonate                  | 62-50-0         | 0.0100             | < 0.0100             |      |
| Jose Rocha           | Famphur                                 | 52-85-7         | 0.0100             | < 0.0100             |      |
| QA Officer           | Fluoranthene                            | 206-44-0        | 0.0100             | < 0.0100             |      |
| Q/I Officer          | Fluorene                                | 86-73-7         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorobenzene                       | 118-74-1        | 0.0100             | < 0.0100             |      |
|                      | Hexachlorobutadiene                     | 87-68-3         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorocyclopentadiene               | 77-47-4         | 0.0100             | < 0.0100             |      |
|                      | Hexachloroethane                        | 67-72-1         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorophene                         | 70-30-4         | 0.0100             | < 0.0100             |      |
|                      | Hexachloropropene                       | 1888-71-7       | 0.0100             | < 0.0100             |      |
|                      | Indene                                  | 95-13-6         | 0.0100             | < 0.0100             |      |
|                      | Indeno(1,2,3-cd)pyrene                  | 193-39-5        | 0.0100             | < 0.0100             |      |
|                      | Isodrin                                 | 465-73-6        | 0.0100             | < 0.0100             |      |
|                      |                                         | 78-59-1         | 0.0100             | < 0.0100             |      |
|                      | Isophorone                              | 120-58-1        | 0.0100             | < 0.0100             |      |
|                      | Isosafrole                              | 143-50-0        | 0.0100             | < 0.0100             |      |
|                      | Kepone                                  | 91-80-5         | 0.0100             | < 0.0100             |      |
|                      | Methapyrilene Methyl methanesulfonate   | 66-27-3         | 0.0100             | < 0.0100             |      |



|                     | Analyzed: 11/4/2011 1825h Extract       | red: 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011 1700h      |      |
|---------------------|-----------------------------------------|----------------------|--------------------|----------------------|------|
| rican West          | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number        | Reporting<br>Limit | Analytical<br>Result | Qual |
| CAL LABORATORIES    | n-Decane                                | 124-18-5             | 0.0100             | < 0.0100             |      |
|                     | N-Nitrosodi-n-butylamine                | 924-16-3             | 0.0100             | < 0.0100             |      |
|                     | N-Nitrosodiethylamine                   | 55-18-5              | 0.0100             | < 0.0100             |      |
|                     | N-Nitrosodimethylamine                  | 62-75-9              | 0.0100             | < 0.0100             |      |
| West 3600 South     | N-Nitrosodiphenylamine                  | 86-30-6              | 0.0100             | < 0.0100             |      |
| Lake City, UT 84115 | N-Nitrosodi-n-propylamine               | 621-64-7             | 0.0100             | < 0.0100             |      |
| city, cr. ottis     | N-Nitrosomethylethylamine               | 10595-95-6           | 0.0100             | < 0.0100             |      |
|                     | N-Nitrosomorpholine                     | 59-89-2              | 0.0100             | < 0.0100             |      |
| (001) 2/2 0/0/      | N-Nitrosopiperidine                     | 100-75-4             | 0.0100             | < 0.0100             |      |
| : (801) 263-8686    | N-Nitrosopyrrolidine                    | 930-55-2             | 0.0100             | < 0.0100             |      |
| : (888) 263-8686    | n-Octadecane                            | 593-45-3             | 0.0100             | < 0.0100             |      |
| : (801) 263-8687    | Naphthalene                             | 91-20-3              | 0.0100             | < 0.0100             |      |
| al@awal-labs.com    | Nitrobenzene                            | 98-95-3              | 0.0100             | < 0.0100             |      |
| w.awal-labs.com     | Nitroquinoline-1-oxide                  | 56-57-5              | 0.0100             | < 0.0100             |      |
| w.awai-labs.com     | O,O,O-Triethyl phosphorothioate         | 126-68-1             | 0.0100             | < 0.0100             |      |
|                     | o-Toluidine                             | 95-53-4              | 0.0100             | < 0.0100             |      |
| Kyle F. Gross       | Parathion                               | 56-38-2              | 0.0100             | < 0.0100             |      |
| poratory Director   | Methyl parathion                        | 298-00-0             | 0.0100             | < 0.0100             |      |
| manie aniete        | Pentachlorobenzene                      | 608-93-5             | 0.0100             | < 0.0100             |      |
| Jose Rocha          | Pentachloronitrobenzene                 | 82-68-8              | 0.0100             | < 0.0100             |      |
| QA Officer          | Pentachlorophenol                       | 87-86-5              | 0.0100             | < 0.0100             |      |
|                     | Phenacetin                              | 62-44-2              | 0.0100             | < 0.0100             |      |
|                     | Phenanthrene                            | 85-01-8              | 0.0100             | < 0.0100             |      |
|                     | Phenol                                  | 108-95-2             | 0.0100             | < 0.0100             |      |
|                     | Phorate                                 | 298-02-2             | 0.0100             | < 0.0100             |      |
|                     | Pronamide                               | 23950-58-5           | 0.0100             | < 0.0100             |      |
|                     | Pyrene                                  | 129-00-0             | 0.0100             | < 0.0100             |      |
|                     | Pyridine                                | 110-86-1             | 0.0100             | < 0.0100             |      |
|                     | Quinoline                               | 91-22-5              | 0.0100             | < 0.0100             |      |
|                     | Safrole                                 | 94-59-7              | 0.0100             | < 0.0100             |      |
|                     | Tetraethyl dithiopyrophosphate          | 3689-24-5            | 0.0100             | < 0.0100             |      |
|                     | Thionazin                               | 297-97-2             | 0.0100             | < 0.0100             |      |
|                     | Surr: 2,4,6-Tribromophenol              | 118-79-6             | 10-159             | 85.9                 |      |
|                     | Surr: 2-Fluorobiphenyl                  | 321-60-8             | 10-124             | 42.7                 |      |
|                     | Surr: 2-Fluorophenol                    | 367-12-4             | 14-106             | 31.6                 |      |
|                     | Surr: Nitrobenzene-d5                   | 4165-60-0            | 10-180             | 65.6                 |      |



Analyzed: 11/4/2011 1825h Extracted: 11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700h

Units: mg/L

Dilution Factor: 1 CAS Analytical Reporting Limit Result Qual Compound Number 13127-88-3 10-122 22.3 Surr: Phenol-d6 Surr: Terphenyl-d14 1718-51-0 10-199 106

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director



Client: IGES Contact: John Wallace

Project: Red Leaf ECOSHALE / 01109-013

Lab Sample ID: 1110545-003A Client Sample ID: R11-122 #3 Collection Date: 10/27/2011 0940h

Received Date: 10/27/2011 1346h Method: SW8270D

Analytical Results SVOA SPLP by GC/MS Method 8270D/1312/3510C

Analyzed: 11/4/2011 1851h Extracted: 11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700l

| 463 West 3600 South<br>Salt Lake City, UT 84115 | Analyzed: 11/4/2011 1851h Extracted: Units: mg/L Dilution Factor: 1 Compound | 11/4/2011 1050h<br>CAS<br>Number | SPLP Prep Date:  Reporting Limit | Analytical<br>Result | 1700h<br>Qual |
|-------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------|---------------|
|                                                 | 1,1'-Biphenyl                                                                | 92-52-4                          | 0.0100                           | < 0.0100             |               |
|                                                 | 1,2,4,5-Tetrachlorobenzene                                                   | 95-94-3                          | 0.0100                           | < 0.0100             |               |
| Phone: (801) 263-8686                           | 1,2,4-Trichlorobenzene                                                       | 120-82-1                         | 0.0100                           | < 0.0100             |               |
| Toll Free: (888) 263-8686                       | 1,2-Dichlorobenzene                                                          | 95-50-1                          | 0.0100                           | < 0.0100             |               |
| Fax: (801) 263-8687                             | 1,3,5-Trinitrobenzene                                                        | 99-35-4                          | 0.0100                           | < 0.0100             |               |
| e-mail: awal@awal-labs.com                      | 1,4-Naphthoquinone                                                           | 130-15-4                         | 0.0100                           | < 0.0100             |               |
|                                                 | 1,3-Dichlorobenzene                                                          | 541-73-1                         | 0.0100                           | < 0.0100             |               |
| web: www.awal-labs.com                          | 1,3-Dinitrobenzene                                                           | 99-65-0                          | 0.0100                           | < 0.0100             |               |
|                                                 | 1,4-Dichlorobenzene                                                          | 106-46-7                         | 0.0100                           | < 0.0100             |               |
| W.I. F. C.                                      | 1,4-Phenylenediamine                                                         | 106-50-3                         | 0.0100                           | < 0.0100             |               |
| Kyle F. Gross                                   | 1-Chloronaphthalene                                                          | 90-13-1                          | 0.0100                           | < 0.0100             |               |
| Laboratory Director                             | 1-Methylnaphthalene                                                          | 90-12-0                          | 0.0100                           | < 0.0100             |               |
| Jose Rocha                                      | 1-Naphthylamine                                                              | 134-32-7                         | 0.0100                           | < 0.0100             |               |
| QA Officer                                      | 2,3,4,6-Tetrachlorophenol                                                    | 58-90-2                          | 0.0100                           | < 0.0100             |               |
| QA Officer                                      | 2,4,5-Trichlorophenol                                                        | 95-95-4                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2,4,6-Trichlorophenol                                                        | 88-06-2                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2,4-Dichlorophenol                                                           | 120-83-2                         | 0.0100                           | < 0.0100             |               |
|                                                 | 2,4-Dimethylphenol                                                           | 105-67-9                         | 0.0100                           | < 0.0100             |               |
|                                                 | 2,4-Dinitrophenol                                                            | 51-28-5                          | 0.0200                           | < 0.0200             |               |
|                                                 | 2,4-Dinitrotoluene                                                           | 121-14-2                         | 0.0100                           | < 0.0100             |               |
|                                                 | 2,6-Dichlorophenol                                                           | 87-65-0                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2,6-Dinitrotoluene                                                           | 606-20-2                         | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Acetylaminofluorene                                                        | 53-96-3                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Chloronaphthalene                                                          | 91-58-7                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Chlorophenol                                                               | 95-57-8                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Methylnaphthalene                                                          | 91-57-6                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Methylphenol                                                               | 95-48-7                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Naphthylamine                                                              | 91-59-8                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Nitroaniline                                                               | 88-74-4                          | 0.0100                           | < 0.0100             |               |
|                                                 | 2-Nitrophenol                                                                | 88-75-5                          | 0.0100                           | < 0.0100             |               |



|                    | Analyzed: 11/4/2011 1851h Extracted:    | 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011            | 1700h |
|--------------------|-----------------------------------------|-----------------|--------------------|----------------------|-------|
| rican West         | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number   | Reporting<br>Limit | Analytical<br>Result | Qual  |
| CAL LANGHATORIES   | 2-Picoline                              | 109-06-8        | 0.0100             | < 0.0100             |       |
|                    | 3&4-Methylphenol                        |                 | 0.0100             | < 0.0100             |       |
|                    | 3,3'-Dichlorobenzidine                  | 91-94-1         | 0.0100             | < 0.0100             |       |
|                    | 3,3'-Dimethylbenzidine                  | 119-93-7        | 0.0100             | < 0.0100             |       |
| West 3600 South    | 3-Methylcholanthrene                    | 56-49-5         | 0.0100             | < 0.0100             |       |
| ake City, UT 84115 | 3-Nitroaniline                          | 99-09-2         | 0.0100             | < 0.0100             |       |
|                    | 4,6-Dinitro-2-methylphenol              | 534-52-1        | 0.0100             | < 0.0100             |       |
|                    | 4-Aminobiphenyl                         | 92-67-1         | 0.0100             | < 0.0100             |       |
| (901) 262 0606     | 4-Bromophenyl phenyl ether              | 101-55-3        | 0.0100             | < 0.0100             |       |
| (801) 263-8686     | 4-Chloro-3-methylphenol                 | 59-50-7         | 0.0100             | < 0.0100             |       |
| (888) 263-8686     | 4-Chloroaniline                         | 106-47-8        | 0.0100             | < 0.0100             |       |
| (801) 263-8687     | 4-Chlorophenyl phenyl ether             | 7005-72-3       | 0.0100             | < 0.0100             |       |
| al@awal-labs.com   | 4-Nitroaniline                          | 100-01-6        | 0.0100             | < 0.0100             |       |
| w.awal-labs.com    | 4-Nitrophenol                           | 100-02-7        | 0.0100             | < 0.0100             |       |
| manual mosicom     | 5-Nitro-o-toluidine                     | 99-55-8         | 0.0100             | < 0.0100             |       |
|                    | 7,12-Dimethylbenz(a)anthracene          | 57-97-6         | 0.0100             | < 0.0100             |       |
| Kyle F. Gross      | a,a-Dimethylphenethylamine              | 122-09-8        | 0.0100             | < 0.0100             |       |
| oratory Director   | Acenaphthene                            | 83-32-9         | 0.0100             | < 0.0100             |       |
| 4.00               | Acenaphthylene                          | 208-96-8        | 0.0100             | < 0.0100             |       |
| Jose Rocha         | Acetophenone                            | 98-86-2         | 0.0100             | < 0.0100             |       |
| QA Officer         | alpha-Terpineol                         | 98-55-5         | 0.0100             | < 0.0100             |       |
|                    | Aniline                                 | 62-53-3         | 0.0100             | < 0.0100             |       |
|                    | Anthracene                              | 120-12-7        | 0.0100             | < 0.0100             |       |
|                    | Aramite                                 | 140-57-8        | 0.0100             | < 0.0100             |       |
|                    | Azobenzene                              | 103-33-3        | 0.0100             | < 0.0100             |       |
|                    | Benz(a)anthracene                       | 56-55-3         | 0.0100             | < 0.0100             |       |
|                    | Benzidine                               | 92-87-5         | 0.0100             | < 0.0100             |       |
|                    | Benzo(a)pyrene                          | 50-32-8         | 0.0100             | < 0.0100             |       |
|                    | Benzo(b)fluoranthene                    | 205-99-2        | 0.0100             | < 0.0100             |       |
|                    | Benzo(g,h,i)perylene                    | 191-24-2        | 0.0100             | < 0.0100             |       |
|                    | Benzo(k)fluoranthene                    | 207-08-9        | 0.0100             | < 0.0100             |       |
|                    | Benzoic acid                            | 65-85-0         | 0.0200             | 0.0259               |       |
|                    | Benzyl alcohol                          | 100-51-6        | 0.0100             | < 0.0100             |       |
|                    | Bis(2-chloroethoxy)methane              | 111-91-1        | 0.0100             | < 0.0100             |       |
|                    | Bis(2-chloroethyl) ether                | 111-44-4        | 0.0100             | < 0.0100             |       |
|                    | Bis(2-chloroisopropyl) ether            | 108-60-1        | 0.0100             | < 0.0100             |       |



|                      | Analyzed: 11/4/2011 1851h Extracted:    | 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011 1700h      |      |
|----------------------|-----------------------------------------|-----------------|--------------------|----------------------|------|
| nerican West         | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number   | Reporting<br>Limit | Analytical<br>Result | Qual |
| YTICAL LABORATORIES  | Bis(2-ethylhexyl) phthalate             | 117-81-7        | 0.0100             | < 0.0100             |      |
|                      | bis(2-ethylhexyl)adipate                | 103-23-1        | 0.0100             | < 0.0100             |      |
|                      | Butyl benzyl phthalate                  | 85-68-7         | 0.0100             | < 0.0100             |      |
|                      | Carbazole                               | 86-74-8         | 0.0100             | < 0.0100             |      |
| 3 West 3600 South    | Chlorobenzilate                         | 510-15-6        | 0.0100             | < 0.0100             |      |
| ke City, UT 84115    | Chrysene                                | 218-01-9        | 0.0100             | < 0.0100             |      |
| are entry, or orange | Di-n-butyl phthalate                    | 84-74-2         | 0.0100             | < 0.0100             |      |
|                      | Di-n-octyl phthalate                    | 117-84-0        | 0.0100             | < 0.0100             |      |
| Santi des des        | Diallate (cis or trans)                 | 2303-16-4       | 0.0100             | < 0.0100             |      |
| one: (801) 263-8686  | Dibenz(a,h)anthracene                   | 53-70-3         | 0.0100             | < 0.0100             |      |
| ree: (888) 263-8686  | Dibenzofuran                            | 132-64-9        | 0.0100             | < 0.0100             |      |
| Cax: (801) 263-8687  | Diethyl phthalate                       | 84-66-2         | 0.0100             | < 0.0100             |      |
| awal@awal-labs.com   | Dimethoate                              | 60-51-5         | 0.0100             | < 0.0100             |      |
| vww.awal-labs.com    | Dimethyl phthalate                      | 131-11-3        | 0.0100             | < 0.0100             |      |
| ww.awai-iabs.com     | Dimethylaminoazobenzene                 | 60-11-7         | 0.0100             | < 0.0100             |      |
|                      | Dinoseb                                 | 88-85-7         | 0.0100             | < 0.0100             |      |
| Kyle F. Gross        | Diphenylamine                           | 122-39-4        | 0.0100             | < 0.0100             |      |
| Laboratory Director  | Disulfoton                              | 298-04-4        | 0.0100             | < 0.0100             |      |
| Sacotatory Enterior  | Ethyl methanesulfonate                  | 62-50-0         | 0.0100             | < 0.0100             |      |
| Jose Rocha           | Famphur                                 | 52-85-7         | 0.0100             | < 0.0100             |      |
| QA Officer           | Fluoranthene                            | 206-44-0        | 0.0100             | < 0.0100             |      |
| 4. March 1970        | Fluorene                                | 86-73-7         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorobenzene                       | 118-74-1        | 0.0100             | < 0.0100             |      |
|                      | Hexachlorobutadiene                     | 87-68-3         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorocyclopentadiene               | 77-47-4         | 0.0100             | < 0.0100             |      |
|                      | Hexachloroethane                        | 67-72-1         | 0.0100             | < 0.0100             |      |
|                      | Hexachlorophene                         | 70-30-4         | 0.0100             | < 0.0100             |      |
|                      | Hexachloropropene                       | 1888-71-7       | 0.0100             | < 0.0100             |      |
|                      | Indene                                  | 95-13-6         | 0.0100             | < 0.0100             |      |
|                      | Indeno(1,2,3-cd)pyrene                  | 193-39-5        | 0.0100             | < 0.0100             |      |
|                      | Isodrin                                 | 465-73-6        | 0.0100             | < 0.0100             |      |
|                      | Isophorone                              | 78-59-1         | 0.0100             | < 0.0100             |      |
|                      | Isosafrole                              | 120-58-1        | 0.0100             | < 0.0100             |      |
|                      | Kepone                                  | 143-50-0        | 0.0100             | < 0.0100             |      |
|                      | Methapyrilene                           | 91-80-5         | 0.0100             | < 0.0100             |      |
|                      | Methyl methanesulfonate                 | 66-27-3         | 0.0100             | < 0.0100             |      |



|                  | Analyzed: 11/4/2011 1851h               | xtracted: | 11/4/2011 1050h | SPLP Prep Date:    | 11/3/2011 1700h      |      |
|------------------|-----------------------------------------|-----------|-----------------|--------------------|----------------------|------|
| rican West       | Units: mg/L Dilution Factor: 1 Compound |           | CAS<br>Number   | Reporting<br>Limit | Analytical<br>Result | Qual |
| AL LANGUATIONIES | n-Decane                                |           | 124-18-5        | 0.0100             | < 0.0100             |      |
|                  | N-Nitrosodi-n-butylamine                |           | 924-16-3        | 0.0100             | < 0.0100             |      |
|                  | N-Nitrosodiethylamine                   |           | 55-18-5         | 0.0100             | < 0.0100             |      |
|                  | N-Nitrosodimethylamine                  |           | 62-75-9         | 0.0100             | < 0.0100             |      |
| est 3600 South   | N-Nitrosodiphenylamine                  |           | 86-30-6         | 0.0100             | < 0.0100             |      |
| City, UT 84115   | N-Nitrosodi-n-propylamine               |           | 621-64-7        | 0.0100             | < 0.0100             |      |
| ,                | N-Nitrosomethylethylamine               |           | 10595-95-6      | 0.0100             | < 0.0100             |      |
|                  | N-Nitrosomorpholine                     |           | 59-89-2         | 0.0100             | < 0.0100             |      |
| (001) 073 0707   | N-Nitrosopiperidine                     |           | 100-75-4        | 0.0100             | < 0.0100             |      |
| (801) 263-8686   | N-Nitrosopyrrolidine                    |           | 930-55-2        | 0.0100             | < 0.0100             |      |
| (888) 263-8686   | n-Octadecane                            |           | 593-45-3        | 0.0100             | < 0.0100             |      |
| (801) 263-8687   | Naphthalene                             |           | 91-20-3         | 0.0100             | < 0.0100             |      |
| l@awal-labs.com  | Nitrobenzene                            |           | 98-95-3         | 0.0100             | < 0.0100             |      |
| awal-labs.com/   | Nitroquinoline-1-oxide                  |           | 56-57-5         | 0.0100             | < 0.0100             |      |
| .awai-iaos.com   | O,O,O-Triethyl phosphorothioate         |           | 126-68-1        | 0.0100             | < 0.0100             |      |
|                  | o-Toluidine                             |           | 95-53-4         | 0.0100             | < 0.0100             |      |
| Kyle F. Gross    | Parathion                               |           | 56-38-2         | 0.0100             | < 0.0100             |      |
| oratory Director | Methyl parathion                        |           | 298-00-0        | 0.0100             | < 0.0100             |      |
| 3000             | Pentachlorobenzene                      |           | 608-93-5        | 0.0100             | < 0.0100             |      |
| Jose Rocha       | Pentachloronitrobenzene                 |           | 82-68-8         | 0.0100             | < 0.0100             |      |
| QA Officer       | Pentachlorophenol                       |           | 87-86-5         | 0.0100             | < 0.0100             |      |
|                  | Phenacetin                              |           | 62-44-2         | 0.0100             | < 0.0100             |      |
|                  | Phenanthrene                            |           | 85-01-8         | 0.0100             | < 0.0100             |      |
|                  | Phenol                                  |           | 108-95-2        | 0.0100             | < 0.0100             |      |
|                  | Phorate                                 |           | 298-02-2        | 0.0100             | < 0.0100             |      |
|                  | Pronamide                               |           | 23950-58-5      | 0.0100             | < 0.0100             |      |
|                  | Pyrene                                  |           | 129-00-0        | 0.0100             | < 0.0100             |      |
|                  | Pyridine                                |           | 110-86-1        | 0.0100             | < 0.0100             |      |
|                  | Quinoline                               |           | 91-22-5         | 0.0100             | < 0.0100             |      |
|                  | Safrole                                 |           | 94-59-7         | 0.0100             | < 0.0100             |      |
|                  | Tetraethyl dithiopyrophosphate          |           | 3689-24-5       | 0.0100             | < 0.0100             |      |
|                  | Thionazin                               |           | 297-97-2        | 0.0100             | < 0.0100             |      |
|                  | Surr: 2,4,6-Tribromophenol              |           | 118-79-6        | 10-159             | 90.4                 |      |
|                  | Surr: 2-Fluorobiphenyl                  |           | 321-60-8        | 10-124             | 40.5                 |      |
|                  | Surr: 2-Fluorophenol                    |           | 367-12-4        | 14-106             | 32.3                 |      |
|                  | Surr: Nitrobenzene-d5                   |           | 4165-60-0       | 10-180             | 45.2                 |      |



Analyzed: 11/4/2011 1851h Extracted: 11/4/2011 1050h SPLP Prep Date: 11/3/2011 1700h

Units: mg/L

Dilution Factor: 1 CAS Reporting Analytical Result Qual Number Limit Compound 10-122 25.2 Surr: Phenol-d6 13127-88-3 Surr: Terphenyl-d14 1718-51-0 10-199 110

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

<sup>&</sup>lt;sup>t</sup> - Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.



Client: IGES Contact: John Wallace

Red Leaf ECOSHALE / 01109-013 Project:

Lab Sample ID: 1110545-001A Client Sample ID: R11-122 #1 Collection Date: 10/27/2011 0930h

Received Date: 10/27/2011 1346h Method: SW8260C

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C **Analytical Results** 

10/28/2011 1600h Analyzed: 11/3/2011 0435h SPLP Prep Date:

Units: mg/L

463 West 3600 South Dilution Factor: 1 CAS Reporting Analytical

| Salt Lake City, UT 84115             | Compound                              | Number   | Limit   | Result    | Qual |
|--------------------------------------|---------------------------------------|----------|---------|-----------|------|
|                                      | 1,1,1,2-Tetrachloroethane             | 630-20-6 | 0.00200 | < 0.00200 |      |
|                                      | 1,1,1-Trichloroethane                 | 71-55-6  | 0.00200 | < 0.00200 |      |
| Phone: (801) 263-8686                | 1,1,2,2-Tetrachloroethane             | 79-34-5  | 0.00200 | < 0.00200 |      |
| Toll Free: (888) 263-8686            | 1,1,2-Trichloro-1,2,2-trifluoroethane | 76-13-1  | 0.00200 | < 0.00200 |      |
| Fax: (801) 263-8687                  | 1,1,2-Trichloroethane                 | 79-00-5  | 0.00200 | < 0.00200 |      |
| e-mail: awal@awal-labs.com           | 1,1-Dichloropropene                   | 563-58-6 | 0.00200 | < 0.00200 |      |
| web: www.awal-labs.com               | 1,1-Dichloroethane                    | 75-34-3  | 0.00200 | < 0.00200 |      |
|                                      | 1,1-Dichloroethene                    | 75-35-4  | 0.00200 | < 0.00200 |      |
|                                      | 1,2,3-Trichlorobenzene                | 87-61-6  | 0.00200 | < 0.00200 |      |
| Kyle F. Gross<br>Laboratory Director | 1,2,3-Trichloropropane                | 96-18-4  | 0.00200 | < 0.00200 |      |
|                                      | 1,2,3-Trimethylbenzene                | 526-73-8 | 0.00200 | < 0.00200 |      |
|                                      | 1,2,4-Trichlorobenzene                | 120-82-1 | 0.00200 | < 0.00200 |      |
| Jose Rocha<br>QA Officer             | 1,2,4-Trimethylbenzene                | 95-63-6  | 0.00200 | < 0.00200 |      |
|                                      | 1,2-Dibromo-3-chloropropane           | 96-12-8  | 0.00500 | < 0.00500 |      |
|                                      | 1,2-Dibromoethane                     | 106-93-4 | 0.00200 | < 0.00200 |      |
|                                      | 1,2-Dichlorobenzene                   | 95-50-1  | 0.00200 | < 0.00200 |      |
|                                      |                                       |          |         |           |      |

107-06-2 0.00200 < 0.00200 1,2-Dichloroethane 1,2-Dichloropropane 78-87-5 0.00200 < 0.00200 108-67-8 0.00200 < 0.00200 1,3,5-Trimethylbenzene 541-73-1 0.00200 < 0.00200 1,3-Dichlorobenzene 142-28-9 0.00200 < 0.00200 1,3-Dichloropropane 1,4-Dichlorobenzene 106-46-7 0.00200 < 0.00200 123-91-1 0.0500 < 0.0500 1,4-Dioxane 2,2-Dichloropropane 594-20-7 0.00200 < 0.00200 < 0.0100 78-93-3 0.0100 2-Butanone 110-75-8 0.00500 < 0.00500 2-Chloroethyl vinyl ether 95-49-8 < 0.00200 0.00200 2-Chlorotoluene 591-78-6 0.00500 < 0.00500 2-Hexanone 79-46-9 0.00500 < 0.00500 2-Nitropropane 4-Chlorotoluene 106-43-4 0.00200 < 0.00200



|                       | Analyzed: 11/3/2011 0435h               |               | SPLP Prep Date:    | 10/28/2011           | 16001 |
|-----------------------|-----------------------------------------|---------------|--------------------|----------------------|-------|
| nerican West          | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual  |
| THICAL LANDING CORNER | 4-Isopropyltoluene                      | 99-87-6       | 0.00200            | < 0.00200            |       |
|                       | 4-Methyl-2-pentanone                    | 108-10-1      | 0.00500            | < 0.00500            |       |
|                       | Acetone                                 | 67-64-1       | 0.0100             | 0.0195               |       |
|                       | Acetonitrile                            | 75-05-8       | 0.00500            | 0.0171               |       |
| 63 West 3600 South    | Acrolein                                | 107-02-8      | 0.00500            | < 0.00500            |       |
| ake City, UT 84115    | Acrylonitrile                           | 107-13-1      | 0.0100             | < 0.0100             |       |
| 225-248-25, 2025-     | Allyl chloride                          | 107-05-1      | 0.00500            | < 0.00500            |       |
|                       | Benzene                                 | 71-43-2       | 0.00100            | < 0.00100            |       |
| (001) 262 0606        | Benzyl chloride                         | 100-44-7      | 0.00500            | < 0.00500            |       |
| one: (801) 263-8686   | Bis(2-chloroisopropyl) ether            | 108-60-1      | 0.00500            | < 0.00500            |       |
| ree: (888) 263-8686   | Bromobenzene                            | 108-86-1      | 0.00200            | < 0.00200            |       |
| Fax: (801) 263-8687   | Bromochloromethane                      | 74-97-5       | 0.00200            | < 0.00200            |       |
| awal@awal-labs.com    | Bromodichloromethane                    | 75-27-4       | 0.00200            | < 0.00200            |       |
| www.awal-labs.com     | Bromoform                               | 75-25-2       | 0.00200            | < 0.00200            |       |
| www.awai-iabs.com     | Bromomethane                            | 74-83-9       | 0.00500            | < 0.00500            |       |
|                       | Butyl acetate                           | 123-86-4      | 0.00500            | < 0.00500            |       |
| Kyle F. Gross         | Carbon disulfide                        | 75-15-0       | 0.00200            | < 0.00200            |       |
| Laboratory Director   | Carbon tetrachloride                    | 56-23-5       | 0.00200            | < 0.00200            |       |
|                       | Chlorobenzene                           | 108-90-7      | 0.00200            | < 0.00200            |       |
| Jose Rocha            | Chloroethane                            | 75-00-3       | 0.00200            | < 0.00200            |       |
| QA Officer            | Chloroform                              | 67-66-3       | 0.00200            | < 0.00200            |       |
|                       | Chloromethane                           | 74-87-3       | 0.00300            | < 0.00300            |       |
|                       | Chloroprene                             | 126-99-8      | 0.00200            | < 0.00200            |       |
|                       | cis-1,2-Dichloroethene                  | 156-59-2      | 0.00200            | < 0.00200            |       |
|                       | cis-1,3-Dichloropropene                 | 10061-01-5    | 0.00200            | < 0.00200            |       |
|                       | Cyclohexane                             | 110-82-7      | 0.00200            | < 0.00200            |       |
|                       | Cyclohexanone                           | 108-94-1      | 0.0500             | < 0.0500             |       |
|                       | Dibromochloromethane                    | 124-48-1      | 0.00200            | < 0.00200            |       |
|                       | Dibromomethane                          | 74-95-3       | 0.00200            | < 0.00200            |       |
|                       | Dichlorodifluoromethane                 | 75-71-8       | 0.00200            | < 0.00200            |       |
|                       | Ethyl acetate                           | 141-78-6      | 0.0100             | < 0.0100             |       |
|                       | Ethyl ether                             | 60-29-7       | 0.0100             | < 0.0100             |       |
|                       | Ethyl methacrylate                      | 97-63-2       | 0.00200            | < 0.00200            |       |
|                       | Ethylbenzene                            | 100-41-4      | 0.00200            | < 0.00200            |       |
|                       | Hexachlorobutadiene                     | 87-68-3       | 0.00200            | < 0.00200            |       |
|                       | Iodomethane                             | 74-88-4       | 0.00500            | < 0.00500            |       |



|                                              | Analyzed: 11/3/2011 0435h               |               | SPLP Prep Date: 10/28/20 |                      |      |  |
|----------------------------------------------|-----------------------------------------|---------------|--------------------------|----------------------|------|--|
| nerican West                                 | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit       | Analytical<br>Result | Qual |  |
| VIICAL LAHORATORIES                          | Isobutyl alcohol                        | 78-83-1       | 0.100                    | < 0.100              |      |  |
|                                              | Isopropyl acetate                       | 108-21-4      | 0.0200                   | < 0.0200             |      |  |
|                                              | Isopropyl alcohol                       | 67-63-0       | 0.0250                   | < 0.0250             |      |  |
|                                              | Isopropylbenzene                        | 98-82-8       | 0.00200                  | < 0.00200            |      |  |
| 3 West 3600 South                            | m,p-Xylene                              | 179601-23-1   | 0.00200                  | < 0.00200            |      |  |
| ke City, UT 84115                            | Methacrylonitrile                       | 126-98-7      | 0.00500                  | < 0.00500            |      |  |
| ne ankros rename.                            | Methyl Acetate                          | 79-20-9       | 0.00500                  | < 0.00500            |      |  |
|                                              | Methyl methacrylate                     | 80-62-6       | 0.00500                  | < 0.00500            |      |  |
| (801) 262 8686                               | Methyl tert-butyl ether                 | 1634-04-4     | 0.00200                  | < 0.00200            |      |  |
| ne: (801) 263-8686                           | Methylcyclohexane                       | 108-87-2      | 0.00200                  | < 0.00200            |      |  |
| ree: (888) 263-8686                          | Methylene chloride                      | 75-09-2       | 0.00200                  | < 0.00200            |      |  |
| ax: (801) 263-8687                           | n-Amyl acetate                          | 628-63-7      | 0.00200                  | < 0.00200            |      |  |
| awal@awal-labs.com                           | n-Butyl alcohol                         | 71-36-3       | 0.0500                   | < 0.0500             |      |  |
| www.awal-labs.com                            | n-Butylbenzene                          | 104-51-8      | 0.00200                  | < 0.00200            |      |  |
| www.awar-labs.com                            | n-Hexane                                | 110-54-3      | 0.00200                  | < 0.00200            |      |  |
|                                              | n-Octane                                | 111-65-9      | 0.00200                  | < 0.00200            |      |  |
| Kyle F. Gross                                | n-Propylbenzene                         | 103-65-1      | 0.00200                  | < 0.00200            |      |  |
| aboratory Director                           | Naphthalene                             | 91-20-3       | 0.00200                  | < 0.00200            |      |  |
| 2015 a 102 a 20 a 10 a 10 a 10 a 10 a 10 a 1 | o-Xylene                                | 95-47-6       | 0.00200                  | < 0.00200            |      |  |
| Jose Rocha                                   | Pentachloroethane                       | 76-01-7       | 0.00500                  | < 0.00500            |      |  |
| QA Officer                                   | Propionitrile                           | 107-12-0      | 0.0250                   | < 0.0250             |      |  |
|                                              | Propyl acetate                          | 109-60-4      | 0.00200                  | < 0.00200            |      |  |
|                                              | sec-Butylbenzene                        | 135-98-8      | 0.00200                  | < 0.00200            |      |  |
|                                              | Styrene                                 | 100-42-5      | 0.00200                  | < 0.00200            |      |  |
|                                              | tert-Butyl alcohol                      | 76-65-0       | 0.0200                   | < 0.0200             |      |  |
|                                              | tert-Butylbenzene                       | 98-06-6       | 0.00200                  | < 0.00200            |      |  |
|                                              | Tetrachloroethene                       | 127-18-4      | 0.00200                  | < 0.00200            |      |  |
|                                              | Tetrahydrofuran                         | 109-99-9      | 0.00200                  | < 0.00200            |      |  |
|                                              | Toluene                                 | 108-88-3      | 0.00200                  | < 0.00200            |      |  |
|                                              | trans-1,2-Dichloroethene                | 156-60-5      | 0.00200                  | < 0.00200            |      |  |
|                                              | trans-1,3-Dichloropropene               | 10061-02-6    | 0.00200                  | < 0.00200            |      |  |
|                                              | trans-1,4-Dichloro-2-butene             | 110-57-6      | 0.00200                  | < 0.00200            |      |  |
|                                              | Trichloroethene                         | 79-01-6       | 0.00200                  | < 0.00200            |      |  |
|                                              | Trichlorofluoromethane                  | 75-69-4       | 0.00200                  | < 0.00200            |      |  |
|                                              | Vinyl acetate                           | 108-05-4      | 0.0100                   | < 0.0100             |      |  |
|                                              | Vinyl chloride                          | 75-01-4       | 0.00100                  | < 0.00100            |      |  |



| Analyzed: 11/3/2011 0435h               |               | SPLP Prep Date:    | 10/28/2011           | 1600h |
|-----------------------------------------|---------------|--------------------|----------------------|-------|
| Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual  |
| Surr: 1,2-Dichloroethane-d4             | 17060-07-0    | 77-144             | 109                  |       |
| Surr: 4-Bromofluorobenzene              | 460-00-4      | 80-123             | 97.7                 |       |
| Surr: Dibromofluoromethane              | 1868-53-7     | 80-124             | 98.7                 |       |
| Surr: Toluene-d8                        | 2037-26-5     | 80-125             | 102                  |       |

463 West 3600 South Salt Lake City, UT 84115

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director



Contact: John Wallace

Client: IGES

Red Leaf ECOSHALE / 01109-013 Project:

Lab Sample ID: 1110545-002A Client Sample ID: R11-122 #2 Collection Date: 10/27/2011 0935h

Received Date: 10/27/2011 1346h Method: SW8260C

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C **Analytical Results** 

10/28/2011 1600h Analyzed: 11/3/2011 0457h SPLP Prep Date:

Units: mg/L

2-Chlorotoluene

2-Nitropropane 4-Chlorotoluene

2-Hexanone

463 West 3600 South Dilution Factor: 1 CAS Reporting Analytical Number Limit Result Qual Salt Lake City, UT 84115 Compound 630-20-6 0.00200 < 0.00200 1,1,1,2-Tetrachloroethane 71-55-6 0.00200 < 0.00200 1,1,1-Trichloroethane Phone: (801) 263-8686 79-34-5 0.00200 < 0.00200 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane Toll Free: (888) 263-8686 76-13-1 0.00200 < 0.00200 Fax: (801) 263-8687 79-00-5 0.00200 < 0.00200 1,1,2-Trichloroethane e-mail: awal@awal-labs.com 1,1-Dichloropropene 563-58-6 0.00200 < 0.00200 1.1-Dichloroethane 75-34-3 0.00200 < 0.00200 web: www.awal-labs.com 75-35-4 < 0.00200 1,1-Dichloroethene 0.00200 < 0.00200 1,2,3-Trichlorobenzene 87-61-6 0.00200 96-18-4 0.00200 < 0.00200 1,2,3-Trichloropropane Kyle F. Gross 526-73-8 0.00200 < 0.00200 1,2,3-Trimethylbenzene Laboratory Director 1,2,4-Trichlorobenzene 120-82-1 0.00200 < 0.00200 95-63-6 0.00200 < 0.00200 1,2,4-Trimethylbenzene Jose Rocha 96-12-8 < 0.00500 0.00500 1,2-Dibromo-3-chloropropane QA Officer 106-93-4 0.00200 < 0.00200 1,2-Dibromoethane 95-50-1 0.00200 < 0.00200 1,2-Dichlorobenzene 107-06-2 0.00200 < 0.00200 1,2-Dichloroethane 1,2-Dichloropropane 78-87-5 0.00200 < 0.00200 108-67-8 0.00200 < 0.00200 1,3,5-Trimethylbenzene 541-73-1 0.00200 < 0.00200 1,3-Dichlorobenzene 142-28-9 0.00200 < 0.00200 1,3-Dichloropropane < 0.00200 1,4-Dichlorobenzene 106-46-7 0.00200 123-91-1 0.0500 < 0.0500 1,4-Dioxane 2,2-Dichloropropane 594-20-7 0.00200 < 0.00200 78-93-3 0.0100 < 0.0100 2-Butanone 0.00500 < 0.00500 110-75-8 2-Chloroethyl vinyl ether

Report Date: 11/7/2011 Page 27 of 79

< 0.00200

< 0.00500

< 0.00500

< 0.00200

95-49-8

591-78-6

79-46-9

106-43-4

0.00200

0.00500

0.00500

0.00200



Lab Sample ID: 1110545-002A Client Sample ID: R11-122 #2

|                         | Analyzed: 11/3/2011 0457h               |               | SPLP Prep Date:    | 10/28/2011           | 1600h |
|-------------------------|-----------------------------------------|---------------|--------------------|----------------------|-------|
| American West           | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual  |
| MALTICAL TANDHALDHIES   | 4-Isopropyltoluene                      | 99-87-6       | 0.00200            | < 0.00200            |       |
|                         | 4-Methyl-2-pentanone                    | 108-10-1      | 0.00500            | < 0.00500            |       |
|                         | Acetone                                 | 67-64-1       | 0.0100             | 0.0178               |       |
|                         | Acetonitrile                            | 75-05-8       | 0.00500            | 0.0134               |       |
| 463 West 3600 South     | Acrolein                                | 107-02-8      | 0.00500            | < 0.00500            |       |
| Lake City, UT 84115     | Acrylonitrile                           | 107-13-1      | 0.0100             | < 0.0100             |       |
|                         | Allyl chloride                          | 107-05-1      | 0.00500            | < 0.00500            |       |
|                         | Benzene                                 | 71-43-2       | 0.00100            | < 0.00100            |       |
| DI                      | Benzyl chloride                         | 100-44-7      | 0.00500            | < 0.00500            |       |
| Phone: (801) 263-8686   | Bis(2-chloroisopropyl) ether            | 108-60-1      | 0.00500            | < 0.00500            |       |
| II Free: (888) 263-8686 | Bromobenzene                            | 108-86-1      | 0.00200            | < 0.00200            |       |
| Fax: (801) 263-8687     | Bromochloromethane                      | 74-97-5       | 0,00200            | < 0.00200            |       |
| ail: awal@awal-labs.com | Bromodichloromethane                    | 75-27-4       | 0.00200            | < 0.00200            |       |
| b: www.awal-labs.com    | Bromoform                               | 75-25-2       | 0.00200            | < 0.00200            |       |
| b. www.awar-iaos.com    | Bromomethane                            | 74-83-9       | 0.00500            | < 0.00500            |       |
|                         | Butyl acetate                           | 123-86-4      | 0.00500            | < 0.00500            |       |
| Kyle F. Gross           | Carbon disulfide                        | 75-15-0       | 0.00200            | < 0.00200            |       |
| Laboratory Director     | Carbon tetrachloride                    | 56-23-5       | 0.00200            | < 0.00200            |       |
|                         | Chlorobenzene                           | 108-90-7      | 0.00200            | < 0.00200            |       |
| Jose Rocha              | Chloroethane                            | 75-00-3       | 0.00200            | < 0.00200            |       |
| QA Officer              | Chloroform                              | 67-66-3       | 0.00200            | < 0.00200            |       |
|                         | Chloromethane                           | 74-87-3       | 0.00300            | < 0.00300            |       |
|                         | Chloroprene                             | 126-99-8      | 0.00200            | < 0.00200            |       |
|                         | cis-1,2-Dichloroethene                  | 156-59-2      | 0.00200            | < 0.00200            |       |
|                         | cis-1,3-Dichloropropene                 | 10061-01-5    | 0.00200            | < 0.00200            |       |
|                         | Cyclohexane                             | 110-82-7      | 0.00200            | < 0.00200            |       |
|                         | Cyclohexanone                           | 108-94-1      | 0.0500             | < 0.0500             |       |
|                         | Dibromochloromethane                    | 124-48-1      | 0.00200            | < 0.00200            |       |
|                         | Dibromomethane                          | 74-95-3       | 0.00200            | < 0.00200            |       |
|                         | Dichlorodifluoromethane                 | 75-71-8       | 0.00200            | < 0.00200            |       |
|                         | Ethyl acetate                           | 141-78-6      | 0.0100             | < 0.0100             |       |
|                         | Ethyl ether                             | 60-29-7       | 0.0100             | < 0.0100             |       |
|                         | Ethyl methacrylate                      | 97-63-2       | 0.00200            | < 0.00200            |       |
|                         | Ethylbenzene                            | 100-41-4      | 0.00200            | < 0.00200            |       |
|                         | Hexachlorobutadiene                     | 87-68-3       | 0.00200            | < 0.00200            |       |
|                         | Iodomethane                             | 74-88-4       | 0.00500            | < 0.00500            |       |



Lab Sample ID: 1110545-002A Client Sample ID: R11-122 #2

|               | Analyzed: 11/3/2011 0457h               |               | SPLP Prep Date:    | 10/28/2011 16        |      |  |
|---------------|-----------------------------------------|---------------|--------------------|----------------------|------|--|
| an West       | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |  |
| AHORATORIES   | Isobutyl alcohol                        | 78-83-1       | 0.100              | < 0.100              |      |  |
|               | Isopropyl acetate                       | 108-21-4      | 0.0200             | < 0.0200             |      |  |
|               | Isopropyl alcohol                       | 67-63-0       | 0.0250             | < 0.0250             |      |  |
|               | Isopropylbenzene                        | 98-82-8       | 0.00200            | < 0.00200            |      |  |
| 3600 South    | m,p-Xylene                              | 179601-23-1   | 0.00200            | < 0.00200            |      |  |
| UT 84115      | Methacrylonitrile                       | 126-98-7      | 0.00500            | < 0.00500            |      |  |
|               | Methyl Acetate                          | 79-20-9       | 0.00500            | < 0.00500            |      |  |
|               | Methyl methacrylate                     | 80-62-6       | 0.00500            | < 0.00500            |      |  |
| 1) 262 9696   | Methyl tert-butyl ether                 | 1634-04-4     | 0.00200            | < 0.00200            |      |  |
| 1) 263-8686   | Methylcyclohexane                       | 108-87-2      | 0.00200            | < 0.00200            |      |  |
| 3) 263-8686   | Methylene chloride                      | 75-09-2       | 0.00200            | < 0.00200            |      |  |
| 1) 263-8687   | n-Amyl acetate                          | 628-63-7      | 0.00200            | < 0.00200            |      |  |
| wal-labs.com  | n-Butyl alcohol                         | 71-36-3       | 0.0500             | < 0.0500             |      |  |
| al-labs.com   | n-Butylbenzene                          | 104-51-8      | 0.00200            | < 0.00200            |      |  |
| ar-1a05.COIII | n-Hexane                                | 110-54-3      | 0.00200            | < 0.00200            |      |  |
|               | n-Octane                                | 111-65-9      | 0.00200            | < 0.00200            |      |  |
| le F. Gross   | n-Propylbenzene                         | 103-65-1      | 0.00200            | < 0.00200            |      |  |
| ry Director   | Naphthalene                             | 91-20-3       | 0.00200            | < 0.00200            |      |  |
| * 2.02.000    | o-Xylene                                | 95-47-6       | 0.00200            | < 0.00200            |      |  |
| lose Rocha    | Pentachloroethane                       | 76-01-7       | 0.00500            | < 0.00500            |      |  |
| QA Officer    | Propionitrile                           | 107-12-0      | 0.0250             | < 0.0250             |      |  |
| in a transfer | Propyl acetate                          | 109-60-4      | 0.00200            | < 0.00200            |      |  |
|               | sec-Butylbenzene                        | 135-98-8      | 0.00200            | < 0.00200            |      |  |
|               | Styrene                                 | 100-42-5      | 0.00200            | < 0.00200            |      |  |
|               | tert-Butyl alcohol                      | 76-65-0       | 0.0200             | < 0.0200             |      |  |
|               | tert-Butylbenzene                       | 98-06-6       | 0.00200            | < 0.00200            |      |  |
|               | Tetrachloroethene                       | 127-18-4      | 0.00200            | < 0.00200            |      |  |
|               | Tetrahydrofuran                         | 109-99-9      | 0.00200            | < 0.00200            |      |  |
|               | Toluene                                 | 108-88-3      | 0.00200            | < 0.00200            |      |  |
|               | trans-1,2-Dichloroethene                | 156-60-5      | 0.00200            | < 0.00200            |      |  |
|               | trans-1,3-Dichloropropene               | 10061-02-6    | 0.00200            | < 0.00200            |      |  |
|               | trans-1,4-Dichloro-2-butene             | 110-57-6      | 0.00200            | < 0.00200            |      |  |
|               | Trichloroethene                         | 79-01-6       | 0.00200            | < 0.00200            |      |  |
|               | Trichlorofluoromethane                  | 75-69-4       | 0.00200            | < 0.00200            |      |  |
|               | Vinyl acetate                           | 108-05-4      | 0.0100             | < 0.0100             |      |  |
|               | Vinyl chloride                          | 75-01-4       | 0.00100            | < 0.00100            |      |  |



Lab Sample ID: 1110545-002A Client Sample ID: R11-122 #2

SPLP Prep Date: 10/28/2011 1600h Analyzed: 11/3/2011 0457h

Units: mg/L

| Dilution Factor: 1<br>Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |
|--------------------------------|---------------|--------------------|----------------------|------|
| Surr: 1,2-Dichloroethane-d4    | 17060-07-0    | 77-144             | 111                  |      |
| Surr: 4-Bromofluorobenzene     | 460-00-4      | 80-123             | 98.0                 |      |
| Surr: Dibromofluoromethane     | 1868-53-7     | 80-124             | 99.2                 |      |
| Surr: Toluene-d8               | 2037-26-5     | 80-125             | 101                  |      |

463 West 3600 South Salt Lake City, UT 84115

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer



# ORGANIC ANALYTICAL REPORT

Client: IGES Contact: John Wallace

Project: Red Leaf ECOSHALE / 01109-013

Lab Sample ID: 1110545-003A Client Sample ID: R11-122 #3 Collection Date: 10/27/2011 0940h

Received Date: 10/27/2011 1346h Method: SW8260C

Analytical Results VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

Analyzed: 11/3/2011 0519h SPLP Prep Date: 10/28/2011 1600h

Units: mg/L 463 West 3600 South Dilution Factor: 1 CAS Reporting Analytical Number Limit Result Qual Salt Lake City, UT 84115 Compound 1,1,1,2-Tetrachloroethane 630-20-6 0.00200 < 0.00200 71-55-6 0.00200 < 0.00200 1,1,1-Trichloroethane Phone: (801) 263-8686 < 0.00200 79-34-5 0.00200 1,1,2,2-Tetrachloroethane Toll Free: (888) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 0.00200 < 0.00200 Fax: (801) 263-8687 79-00-5 0.00200 < 0.00200 1,1,2-Trichloroethane e-mail: awal@awal-labs.com 1,1-Dichloropropene 563-58-6 0.00200 < 0.00200 1,1-Dichloroethane 75-34-3 0.00200 < 0.00200 web: www.awal-labs.com 75-35-4 0.00200 < 0.00200 1,1-Dichloroethene 87-61-6 0.00200 < 0.00200 1,2,3-Trichlorobenzene 96-18-4 0.00200 < 0.00200 1,2,3-Trichloropropane Kyle F. Gross 526-73-8 0.00200 < 0.00200 1,2,3-Trimethylbenzene Laboratory Director 1,2,4-Trichlorobenzene 120-82-1 0.00200 < 0.00200 95-63-6 0.00200 < 0.00200 1,2,4-Trimethylbenzene Jose Rocha 1,2-Dibromo-3-chloropropane 96-12-8 0.00500 < 0.00500 OA Officer 106-93-4 0.00200 < 0.00200 1,2-Dibromoethane 95-50-1 0.00200 < 0.00200 1,2-Dichlorobenzene 107-06-2 0.00200 < 0.00200 1,2-Dichloroethane 1,2-Dichloropropane 78-87-5 0.00200 < 0.00200 108-67-8 0.00200 < 0.00200 1,3,5-Trimethylbenzene 541-73-1 0.00200 < 0.00200 1,3-Dichlorobenzene 142-28-9 < 0.00200 1,3-Dichloropropane 0.00200 106-46-7 < 0.00200 1,4-Dichlorobenzene 0.00200 123-91-1 0.0500 < 0.0500 1,4-Dioxane 2,2-Dichloropropane 594-20-7 0.00200 < 0.00200 78-93-3 0.0100 < 0.0100 2-Butanone 110-75-8 0.00500 < 0.00500 2-Chloroethyl vinyl ether 95-49-8 0.00200 < 0.00200 2-Chlorotoluene 591-78-6 0.00500 < 0.00500 2-Hexanone 79-46-9 0.00500 < 0.00500 2-Nitropropane

< 0.00200

106-43-4

0.00200

4-Chlorotoluene



Lab Sample ID: 1110545-003A Client Sample ID: R11-122 #3

|                                 | Analyzed: 11/3/2011 0519h               |               | SPLP Prep Date:    | 10/28/2011 1600      |      |  |
|---------------------------------|-----------------------------------------|---------------|--------------------|----------------------|------|--|
| American West                   | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |  |
| ANALYTICAL LANGHATORIES         | 4-Isopropyltoluene                      | 99-87-6       | 0.00200            | < 0.00200            |      |  |
|                                 | 4-Methyl-2-pentanone                    | 108-10-1      | 0.00500            | < 0.00500            |      |  |
|                                 | Acetone                                 | 67-64-1       | 0.0100             | 0.0152               |      |  |
|                                 | Acetonitrile                            | 75-05-8       | 0.00500            | 0.0118               |      |  |
| 463 West 3600 South             | Acrolein                                | 107-02-8      | 0.00500            | < 0.00500            |      |  |
| Lake City, UT 84115             | Acrylonitrile                           | 107-13-1      | 0.0100             | < 0.0100             |      |  |
| contraction of the second state | Allyl chloride                          | 107-05-1      | 0.00500            | < 0.00500            |      |  |
|                                 | Benzene                                 | 71-43-2       | 0.00100            | < 0.00100            |      |  |
| 01                              | Benzyl chloride                         | 100-44-7      | 0.00500            | < 0.00500            |      |  |
| Phone: (801) 263-8686           | Bis(2-chloroisopropyl) ether            | 108-60-1      | 0.00500            | < 0.00500            |      |  |
| l Free: (888) 263-8686          | Bromobenzene                            | 108-86-1      | 0.00200            | < 0.00200            |      |  |
| Fax: (801) 263-8687             | Bromochloromethane                      | 74-97-5       | 0.00200            | < 0.00200            |      |  |
| ail: awal@awal-labs.com         | Bromodichloromethane                    | 75-27-4       | 0.00200            | < 0.00200            |      |  |
| b: www.awal-labs.com            | Bromoform                               | 75-25-2       | 0.00200            | < 0.00200            |      |  |
| b. www.awai-labs.com            | Bromomethane                            | 74-83-9       | 0.00500            | < 0.00500            |      |  |
|                                 | Butyl acetate                           | 123-86-4      | 0.00500            | < 0.00500            |      |  |
| Kyle F. Gross                   | Carbon disulfide                        | 75-15-0       | 0.00200            | < 0.00200            |      |  |
| Laboratory Director             | Carbon tetrachloride                    | 56-23-5       | 0.00200            | < 0.00200            |      |  |
| and colling District            | Chlorobenzene                           | 108-90-7      | 0.00200            | < 0.00200            |      |  |
| Jose Rocha                      | Chloroethane                            | 75-00-3       | 0.00200            | < 0.00200            |      |  |
| QA Officer                      | Chloroform                              | 67-66-3       | 0.00200            | < 0.00200            |      |  |
| - 08 0 0 0000                   | Chloromethane                           | 74-87-3       | 0.00300            | < 0.00300            |      |  |
|                                 | Chloroprene                             | 126-99-8      | 0.00200            | < 0.00200            |      |  |
|                                 | cis-1,2-Dichloroethene                  | 156-59-2      | 0.00200            | < 0.00200            |      |  |
|                                 | cis-1,3-Dichloropropene                 | 10061-01-5    | 0.00200            | < 0.00200            |      |  |
|                                 | Cyclohexane                             | 110-82-7      | 0.00200            | < 0.00200            |      |  |
|                                 | Cyclohexanone                           | 108-94-1      | 0.0500             | < 0.0500             |      |  |
|                                 | Dibromochloromethane                    | 124-48-1      | 0.00200            | < 0.00200            |      |  |
|                                 | Dibromomethane                          | 74-95-3       | 0.00200            | < 0.00200            |      |  |
|                                 | Dichlorodifluoromethane                 | 75-71-8       | 0.00200            | < 0.00200            |      |  |
|                                 | Ethyl acetate                           | 141-78-6      | 0.0100             | < 0.0100             |      |  |
|                                 | Ethyl ether                             | 60-29-7       | 0.0100             | < 0.0100             |      |  |
|                                 | Ethyl methacrylate                      | 97-63-2       | 0.00200            | < 0.00200            |      |  |
|                                 | Ethylbenzene                            | 100-41-4      | 0.00200            | < 0.00200            |      |  |
|                                 | Hexachlorobutadiene                     | 87-68-3       | 0.00200            | < 0.00200            |      |  |
|                                 | Iodomethane                             | 74-88-4       | 0.00500            | < 0.00500            |      |  |



Lab Sample ID: 1110545-003A Client Sample ID: R11-122 #3

|                       | Analyzed: 11/3/2011 0519h               |               | SPLP Prep Date:    | 10/28/2011 160       |      |  |
|-----------------------|-----------------------------------------|---------------|--------------------|----------------------|------|--|
| merican West          | Units: mg/L Dilution Factor: 1 Compound | CAS<br>Number | Reporting<br>Limit | Analytical<br>Result | Qual |  |
| ALYTICAL LANGRATORIES | Isobutyl alcohol                        | 78-83-1       | 0.100              | < 0.100              |      |  |
|                       | Isopropyl acetate                       | 108-21-4      | 0.0200             | < 0.0200             |      |  |
|                       | Isopropyl alcohol                       | 67-63-0       | 0.0250             | < 0.0250             |      |  |
|                       | Isopropylbenzene                        | 98-82-8       | 0.00200            | < 0.00200            |      |  |
| 463 West 3600 South   | m,p-Xylene                              | 179601-23-1   | 0.00200            | < 0.00200            |      |  |
| ake City, UT 84115    | Methacrylonitrile                       | 126-98-7      | 0.00500            | < 0.00500            |      |  |
| 0,0,0                 | Methyl Acetate                          | 79-20-9       | 0.00500            | < 0.00500            |      |  |
|                       | Methyl methacrylate                     | 80-62-6       | 0.00500            | < 0.00500            |      |  |
| (001) 2/2 0/0/        | Methyl tert-butyl ether                 | 1634-04-4     | 0.00200            | < 0.00200            |      |  |
| none: (801) 263-8686  | Methylcyclohexane                       | 108-87-2      | 0.00200            | < 0.00200            |      |  |
| Free: (888) 263-8686  | Methylene chloride                      | 75-09-2       | 0.00200            | < 0.00200            |      |  |
| Fax: (801) 263-8687   | n-Amyl acetate                          | 628-63-7      | 0.00200            | < 0.00200            |      |  |
| l: awal@awal-labs.com | n-Butyl alcohol                         | 71-36-3       | 0.0500             | < 0.0500             |      |  |
| www.awal-labs.com     | n-Butylbenzene                          | 104-51-8      | 0.00200            | < 0.00200            |      |  |
| www.awai-labs.com     | n-Hexane                                | 110-54-3      | 0.00200            | < 0.00200            |      |  |
|                       | n-Octane                                | 111-65-9      | 0.00200            | < 0.00200            |      |  |
| Kyle F. Gross         | n-Propylbenzene                         | 103-65-1      | 0.00200            | < 0.00200            |      |  |
| Laboratory Director   | Naphthalene                             | 91-20-3       | 0.00200            | < 0.00200            |      |  |
|                       | o-Xylene                                | 95-47-6       | 0.00200            | < 0.00200            |      |  |
| Jose Rocha            | Pentachloroethane                       | 76-01-7       | 0.00500            | < 0.00500            |      |  |
| QA Officer            | Propionitrile                           | 107-12-0      | 0.0250             | < 0.0250             |      |  |
| 200                   | Propyl acetate                          | 109-60-4      | 0.00200            | < 0.00200            |      |  |
|                       | sec-Butylbenzene                        | 135-98-8      | 0.00200            | < 0.00200            |      |  |
|                       | Styrene                                 | 100-42-5      | 0.00200            | < 0.00200            |      |  |
|                       | tert-Butyl alcohol                      | 76-65-0       | 0.0200             | < 0.0200             |      |  |
|                       | tert-Butylbenzene                       | 98-06-6       | 0.00200            | < 0.00200            |      |  |
|                       | Tetrachloroethene                       | 127-18-4      | 0.00200            | < 0.00200            |      |  |
|                       | Tetrahydrofuran                         | 109-99-9      | 0.00200            | < 0.00200            |      |  |
|                       | Toluene                                 | 108-88-3      | 0.00200            | < 0.00200            |      |  |
|                       | trans-1,2-Dichloroethene                | 156-60-5      | 0.00200            | < 0.00200            |      |  |
|                       | trans-1,3-Dichloropropene               | 10061-02-6    | 0.00200            | < 0.00200            |      |  |
|                       | trans-1,4-Dichloro-2-butene             | 110-57-6      | 0.00200            | < 0.00200            |      |  |
|                       | Trichloroethene                         | 79-01-6       | 0.00200            | < 0.00200            |      |  |
|                       | Trichlorofluoromethane                  | 75-69-4       | 0.00200            | < 0.00200            |      |  |
|                       | Vinyl acetate                           | 108-05-4      | 0.0100             | < 0.0100             |      |  |
|                       | Vinyl chloride                          | 75-01-4       | 0.00100            | < 0.00100            |      |  |



Lab Sample ID: 1110545-003A Client Sample ID: R11-122 #3

Analyzed: 11/3/2011 0519h SPLP Prep Date: 10/28/2011 1600h

Units: mg/L
Dilution Factor:

| Dilution Factor: 1          | CAS        | Reporting | Analytical |      |
|-----------------------------|------------|-----------|------------|------|
| Compound                    | Number     | Limit     | Result     | Qual |
| Surr: 1,2-Dichloroethane-d4 | 17060-07-0 | 77-144    | 112        |      |
| Surr: 4-Bromofluorobenzene  | 460-00-4   | 80-123    | 99.1       |      |
| Surr: Dibromofluoromethane  | 1868-53-7  | 80-124    | 99.2       |      |
| Surr: Toluene-d8            | 2037-26-5  | 80-125    | 99.4       |      |

463 West 3600 South Salt Lake City, UT 84115

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

# American West

## 463 West 3600 South

## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: ME QC Type: LCS

| Sample ID | Analyte    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed       |
|-----------|------------|-------|---------|--------|------------------|--------------------|------|--------|------|--------------|------|---------------------|
| LCS-15285 | Boron      | mg/L  | SW6010C | 2.03   | 2.000            | 0                  | 102  | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Calcium    | mg/L  | SW6010C | 20.1   | 20.00            | 0                  | 101  | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Chromium   | mg/L  | SW6010C | 0.391  | 0.4000           | 0                  | 97.8 | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Iron       | mg/L  | SW6010C | 2.01   | 2.000            | 0                  | 101  | 80-120 |      |              |      | $10/31/2011\ 1201h$ |
| LCS-15285 | Magnesium  | mg/L  | SW6010C | 19.8   | 20.00            | 0                  | 99.0 | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Molybdenum | mg/L  | SW6010C | 0.410  | 0.4000           | 0                  | 103  | 80-120 |      |              |      | 10/31/2011 1632h    |
| LCS-15285 | Potassium  | mg/L  | SW6010C | 19.2   | 20.00            | 0                  | 95.9 | 80-120 |      |              |      | 10/31/2011 1632h    |
| LCS-15285 | Sodium     | mg/L  | SW6010C | 20.2   | 20.00            | 0                  | 101  | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Tin        | mg/L  | SW6010C | 1.83   | 2.000            | 0                  | 91.5 | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Vanadium   | mg/L  | SW6010C | 0.403  | 0.4000           | 0                  | 101  | 80-120 |      |              |      | 10/31/2011 1201h    |
| LCS-15285 | Antimony   | mg/L  | SW6020A | 0.403  | 0.4000           | 0                  | 101  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Arsenic    | mg/L  | SW6020A | 0.400  | 0.4000           | 0                  | 100  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Barium     | mg/L  | SW6020A | 0.402  | 0.4000           | 0                  | 100  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Beryllium  | mg/L  | SW6020A | 0.399  | 0.4000           | 0                  | 99.7 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Cadmium    | mg/L  | SW6020A | 0.401  | 0.4000           | 0                  | 100  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Copper     | mg/L  | SW6020A | 0.398  | 0.4000           | 0                  | 99.6 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Lead       | mg/L  | SW6020A | 0.402  | 0.4000           | 0                  | 100  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Manganese  | mg/L  | SW6020A | 0.398  | 0.4000           | 0                  | 99.6 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Nickel     | mg/L  | SW6020A | 0.399  | 0.4000           | 0                  | 99.7 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Selenium   | mg/L  | SW6020A | 0.400  | 0.4000           | 0                  | 99.9 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Silver     | mg/L  | SW6020A | 0.400  | 0.4000           | 0                  | 100  | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Strontium  | mg/L  | SW6020A | 0.396  | 0.4000           | 0                  | 98.9 | 85-115 |      |              |      | 10/29/2011 0023h    |
| LCS-15285 | Thallium   | mg/L  | SW6020A | 0.398  | 0.4000           | 0                  | 99.6 | 85-115 |      |              |      | 10/29/2011 0023h    |

Report Date: 11/2/2011 Page 35 of 79



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

# **OC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: ME

QC Type: LCS

| Sample ID | Analyte | Units | Method  | Result  | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|-----------|---------|-------|---------|---------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| LCS-15285 | Zinc    | mg/L  | SW6020A | 2.05    | 2.000            | 0                  | 102  | 85-115 |      |              |      | 10/29/2011 0023h |
| LCS-15289 | Mercury | mg/L  | SW7470A | 0.00339 | 0.003330         | 0                  | 102  | 80-120 |      |              |      | 10/31/2011 1006h |



Client:

Project:

**IGES** 

Red Leaf ECOSHALE / 01109-013

#### 463 West 3600 South

## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Dept: ME

Contact:

John Wallace

QC Type: MBLK

| Sample ID     | Analyte    | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits              | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|---------------|------------|-------|---------|-----------|------------------|--------------------|------|---------------------|------|--------------|------|------------------|
| MB-15285      | Boron      | mg/L  | SW6010C | < 0.500   |                  |                    |      | 0.40                |      |              |      | 10/31/2011 1157h |
| MB-15285      | Calcium    | mg/L  | SW6010C | < 1.00    |                  |                    |      | - 80                |      |              |      | 10/31/2011 1157h |
| MB-15285      | Chromium   | mg/L  | SW6010C | < 0.0100  |                  |                    |      |                     |      |              |      | 10/31/2011 1157h |
| MB-15285      | Iron       | mg/L  | SW6010C | < 0.100   |                  |                    |      | -                   |      |              |      | 10/31/2011 1157h |
| MB-15285      | Lithium    | mg/L  | SW6010C | < 0.100   |                  |                    |      | -                   |      |              |      | 11/1/2011 1926h  |
| MB-15285      | Magnesium  | mg/L  | SW6010C | < 1.00    |                  |                    |      | -                   |      |              |      | 10/31/2011 1157h |
| MB-15285      | Molybdenum | mg/L  | SW6010C | < 0.0200  |                  |                    |      | -                   |      |              |      | 10/31/2011 1628h |
| MB-15285      | Potassium  | mg/L  | SW6010C | < 1.00    |                  |                    |      |                     |      |              |      | 10/31/2011 1628h |
| MB-15285      | Sodium     | mg/L  | SW6010C | < 1.00    |                  |                    |      | -                   |      |              |      | 10/31/2011 1157h |
| MB-15285      | Tin        | mg/L  | SW6010C | < 0.500   |                  |                    |      | -                   |      |              |      | 10/31/2011 1157h |
| MB-15285      | Vanadium   | mg/L  | SW6010C | < 0.0500  |                  |                    |      | 4                   |      |              |      | 10/31/2011 1157h |
| MB-SPLP-15271 | Boron      | mg/L  | SW6010C | < 0.500   |                  |                    |      | -                   |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Calcium    | mg/L  | SW6010C | < 1.00    |                  |                    |      |                     |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Chromium   | mg/L  | SW6010C | < 0.0100  |                  |                    |      |                     |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Iron       | mg/L  | SW6010C | < 0.100   |                  |                    |      | 9                   |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Lithium    | mg/L  | SW6010C | < 0.100   |                  |                    |      | 5                   |      |              |      | 11/1/2011 1929h  |
| MB-SPLP-15271 | Magnesium  | mg/L  | SW6010C | < 1.00    |                  |                    |      | 50                  |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Molybdenum | mg/L  | SW6010C | < 0.0200  |                  |                    |      | 1 <del>5</del> 0 (1 |      |              |      | 10/31/2011 1636h |
| MB-SPLP-15271 | Potassium  | mg/L  | SW6010C | < 1.00    |                  |                    |      | -                   |      |              |      | 10/31/2011 1636h |
| MB-SPLP-15271 | Sodium     | mg/L  | SW6010C | < 1.00    |                  |                    |      | 2                   |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Tin        | mg/L  | SW6010C | < 0.500   |                  |                    |      | -                   |      |              |      | 10/31/2011 1205h |
| MB-SPLP-15271 | Vanadium   | mg/L  | SW6010C | < 0.0500  |                  |                    |      | -                   |      |              |      | 10/31/2011 1205h |
| MB-15285      | Antimony   | mg/L  | SW6020A | < 0.00500 |                  |                    |      | 2.7                 |      |              |      | 10/29/2011 0018h |

Report Date: 11/2/2011 Page 37 of 79



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Contact: John Wallace

Dept: ME

QC Type: MBLK

| Sample ID     | Analyte   | Units | Method  | Result     | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|---------------|-----------|-------|---------|------------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| MB-15285      | Arsenic   | mg/L  | SW6020A | < 0.00300  |                  |                    |      | - 1    |      |              |      | 10/29/2011 0018h |
| MB-15285      | Barium    | mg/L  | SW6020A | < 0.00200  |                  |                    |      | -      |      |              |      | 10/29/2011 0018h |
| MB-15285      | Beryllium | mg/L  | SW6020A | < 0.00300  |                  |                    |      |        |      |              |      | 10/29/2011 0018h |
| MB-15285      | Cadmium   | mg/L  | SW6020A | < 0.000900 |                  |                    |      | -      |      |              |      | 10/29/2011 0018h |
| MB-15285      | Copper    | mg/L  | SW6020A | < 0.00400  |                  |                    |      | -      |      |              |      | 10/29/2011 0018h |
| MB-15285      | Lead      | mg/L  | SW6020A | < 0.00200  |                  |                    |      | -      |      |              |      | 10/29/2011 0018h |
| MB-15285      | Manganese | mg/L  | SW6020A | < 0.00600  |                  |                    |      | 200    |      |              |      | 10/29/2011 0018h |
| MB-15285      | Nickel    | mg/L  | SW6020A | < 0.00400  |                  |                    |      |        |      |              |      | 10/29/2011 0018h |
| MB-15285      | Selenium  | mg/L  | SW6020A | < 0.00400  |                  |                    |      |        |      |              |      | 10/29/2011 0018h |
| MB-15285      | Silver    | mg/L  | SW6020A | < 0.00200  |                  |                    |      | 4      |      |              |      | 10/29/2011 0018h |
| MB-15285      | Strontium | mg/L  | SW6020A | < 0.00400  |                  |                    |      |        |      |              |      | 10/29/2011 0018h |
| MB-15285      | Thallium  | mg/L  | SW6020A | < 0.00200  |                  |                    |      |        |      |              |      | 10/29/2011 0018h |
| MB-15285      | Zinc      | mg/L  | SW6020A | < 0.0250   |                  |                    |      | +      |      |              |      | 10/29/2011 0018h |
| MB-SPLP-15271 | Antimony  | mg/L  | SW6020A | < 0.00500  |                  |                    |      | -      |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Arsenic   | mg/L  | SW6020A | < 0.00300  |                  |                    |      | -      |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Barium    | mg/L  | SW6020A | < 0.00200  |                  |                    |      | 1.4    |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Beryllium | mg/L  | SW6020A | < 0.00300  |                  |                    |      | -      |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Cadmium   | mg/L  | SW6020A | < 0.000900 |                  |                    |      | 0.0    |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Copper    | mg/L  | SW6020A | < 0.00400  |                  |                    |      | - G    |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Lead      | mg/L  | SW6020A | < 0.00200  |                  |                    |      |        |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Manganese | mg/L  | SW6020A | < 0.00600  |                  |                    |      | 2      |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Nickel    | mg/L  | SW6020A | < 0.00400  |                  |                    |      |        |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Selenium  | mg/L  | SW6020A | < 0.00400  |                  |                    |      |        |      |              |      | 10/29/2011 0012h |

Report Date: 11/2/2011 Page 38 of 79



## 463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: ME

QC Type: MBLK

| Sample ID     | Analyte   | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|---------------|-----------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| MB-SPLP-15271 | Silver    | mg/L  | SW6020A | < 0.00200 |                  |                    |      |        |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Strontium | mg/L  | SW6020A | < 0.00400 |                  |                    |      | 1      |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Thallium  | mg/L  | SW6020A | < 0.00200 |                  |                    |      |        |      |              |      | 10/29/2011 0012h |
| MB-SPLP-15271 | Zinc      | mg/L  | SW6020A | < 0.0250  |                  |                    |      |        |      |              |      | 10/29/2011 0012h |
| MB-15289      | Mercury   | mg/L  | SW7470A | < 0.00100 |                  |                    |      | •      |      |              |      | 10/31/2011 1005h |
| MB-SPLP-15271 | Mercury   | mg/L  | SW7470A | < 0.00100 |                  |                    |      | 4.     |      |              |      | 10/31/2011 1025h |



463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Project:

Client:

Red Leaf ECOSHALE / 01109-013

John Wallace Contact:

Dept: ME QC Type: MS

| Sample ID      | Analyte    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|----------------|------------|-------|---------|--------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| 1110545-001AMS | Boron      | mg/L  | SW6010C | 2.80   | 2.000            | 0.8400             | 98.0 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Calcium    | mg/L  | SW6010C | 23.1   | 20.00            | 3.440              | 98.3 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Chromium   | mg/L  | SW6010C | 0.373  | 0.4000           | 0                  | 93.2 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Iron       | mg/L  | SW6010C | 2.02   | 2.000            | 0                  | 101  | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Magnesium  | mg/L  | SW6010C | 20.9   | 20.00            | 1.140              | 98.8 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Molybdenum | mg/L  | SW6010C | 0.527  | 0.4000           | 0.1290             | 99.6 | 75-125 |      |              |      | 10/31/2011 1644h |
| 1110545-001AMS | Potassium  | mg/L  | SW6010C | 23.0   | 20.00            | 4.226              | 93.8 | 75-125 |      |              |      | 10/31/2011 1644h |
| 1110545-001AMS | Sodium     | mg/L  | SW6010C | 55.3   | 20.00            | 36.90              | 92.0 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Tin        | mg/L  | SW6010C | 1.81   | 2.000            | 0                  | 90.5 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Vanadium   | mg/L  | SW6010C | 0.447  | 0.4000           | 0.06380            | 95.8 | 75-125 |      |              |      | 10/31/2011 1222h |
| 1110545-001AMS | Antimony   | mg/L  | SW6020A | 0.403  | 0.4000           | 0.009231           | 98.5 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Arsenic    | mg/L  | SW6020A | 0.436  | 0.4000           | 0.03671            | 99.7 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Barium     | mg/L  | SW6020A | 0.443  | 0.4000           | 0.04833            | 98.7 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Beryllium  | mg/L  | SW6020A | 0.402  | 0.4000           | 0                  | 101  | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Cadmium    | mg/L  | SW6020A | 0.399  | 0.4000           | 0                  | 99.7 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Copper     | mg/L  | SW6020A | 0.400  | 0.4000           | 0                  | 100  | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Lead       | mg/L  | SW6020A | 0.401  | 0.4000           | 0                  | 100  | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Manganese  | mg/L  | SW6020A | 0.393  | 0.4000           | 0                  | 98.4 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Nickel     | mg/L  | SW6020A | 0.395  | 0.4000           | 0                  | 98.9 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Selenium   | mg/L  | SW6020A | 0.407  | 0.4000           | 0.007856           | 99.7 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Silver     | mg/L  | SW6020A | 0.400  | 0.4000           | 0                  | 99.9 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Strontium  | mg/L  | SW6020A | 0.459  | 0.4000           | 0.06864            | 97.6 | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Thallium   | mg/L  | SW6020A | 0.398  | 0.4000           | 0.0001900          | 99.5 | 75-125 |      |              |      | 10/29/2011 0046h |

Report Date: 11/2/2011 Page 40 of 79



Salt Lake City, UT 84115 Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: ME QC Type: MS

| Sample ID      | Analyte | Units | Method  | Result  | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|----------------|---------|-------|---------|---------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| 1110545-001AMS | Zinc    | mg/L  | SW6020A | 2.07    | 2.000            | 0.01842            | 102  | 75-125 |      |              |      | 10/29/2011 0046h |
| 1110545-001AMS | Mercury | mg/L  | SW7470A | 0.00313 | 0.003330         | 0                  | 94.1 | 80-120 |      |              |      | 10/31/2011 1014h |

# American West

Lab Set ID: 1110545

IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Contact: John Wallace

Dept: ME

QC Type: MSD

| Sample ID       | Analyte    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD   | RPD<br>Limit | Qual | Date Analyzed    |
|-----------------|------------|-------|---------|--------|------------------|--------------------|------|--------|--------|--------------|------|------------------|
| 1110545-001AMSD | Boron      | mg/L  | SW6010C | 2.88   | 2.000            | 0.8400             | 102  | 75-125 | 2.82   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Calcium    | mg/L  | SW6010C | 22.8   | 20.00            | 3.440              | 96.8 | 75-125 | 1.31   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Chromium   | mg/L  | SW6010C | 0.383  | 0.4000           | 0                  | 95.8 | 75-125 | 2.65   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Iron       | mg/L  | SW6010C | 1.99   | 2.000            | 0                  | 99.5 | 75-125 | 1.5    | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Magnesium  | mg/L  | SW6010C | 20.5   | 20.00            | 1.140              | 96.8 | 75-125 | 1.93   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Molybdenum | mg/L  | SW6010C | 0.533  | 0.4000           | 0.1290             | 101  | 75-125 | 1.05   | 20           |      | 10/31/2011 1701h |
| 1110545-001AMSD | Potassium  | mg/L  | SW6010C | 22.8   | 20.00            | 4.226              | 92.6 | 75-125 | 0.997  | 20           |      | 10/31/2011 1701h |
| 1110545-001AMSD | Sodium     | mg/L  | SW6010C | 53.7   | 20.00            | 36.90              | 84.0 | 75-125 | 2.94   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Tin        | mg/L  | SW6010C | 1.82   | 2.000            | 0                  | 91.0 | 75-125 | 0.551  | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Vanadium   | mg/L  | SW6010C | 0.457  | 0.4000           | 0.06380            | 98.3 | 75-125 | 2.21   | 20           |      | 10/31/2011 1226h |
| 1110545-001AMSD | Antimony   | mg/L  | SW6020A | 0.406  | 0.4000           | 0.009231           | 99.2 | 75-125 | 0.685  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Arsenic    | mg/L  | SW6020A | 0.436  | 0.4000           | 0.03671            | 99.7 | 75-125 | 0.0181 | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Barium     | mg/L  | SW6020A | 0.445  | 0.4000           | 0.04833            | 99.2 | 75-125 | 0.456  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Beryllium  | mg/L  | SW6020A | 0.405  | 0.4000           | 0                  | 101  | 75-125 | 0.763  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Cadmium    | mg/L  | SW6020A | 0.401  | 0.4000           | 0                  | 100  | 75-125 | 0.476  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Copper     | mg/L  | SW6020A | 0.402  | 0.4000           | 0                  | 100  | 75-125 | 0.406  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Lead       | mg/L  | SW6020A | 0.401  | 0.4000           | 0                  | 100  | 75-125 | 0.156  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Manganese  | mg/L  | SW6020A | 0.398  | 0.4000           | 0                  | 99.4 | 75-125 | 1.08   | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Nickel     | mg/L  | SW6020A | 0.396  | 0.4000           | 0                  | 99.0 | 75-125 | 0.149  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Selenium   | mg/L  | SW6020A | 0.406  | 0.4000           | 0.007856           | 99.7 | 75-125 | 0.016  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Silver     | mg/L  | SW6020A | 0.401  | 0.4000           | 0                  | 100  | 75-125 | 0.29   | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Strontium  | mg/L  | SW6020A | 0.461  | 0.4000           | 0.06864            | 98.2 | 75-125 | 0.445  | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Thallium   | mg/L  | SW6020A | 0.400  | 0.4000           | 0.0001900          | 100  | 75-125 | 0.48   | 20           |      | 10/29/2011 0052h |

Report Date: 11/2/2011 Page 42 of 79



## 463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: ME QC Type: MSD

| Sample ID       | Analyte | Units | Method  | Result  | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD   | RPD<br>Limit | Qual | Date Analyzed    |
|-----------------|---------|-------|---------|---------|------------------|--------------------|------|--------|--------|--------------|------|------------------|
| 1110545-001AMSD | Zinc    | mg/L  | SW6020A | 2.07    | 2.000            | 0.01842            | 102  | 75-125 | 0.0715 | 20           |      | 10/29/2011 0052h |
| 1110545-001AMSD | Mercury | mg/L  | SW7470A | 0.00325 | 0.003330         | 0                  | 97.5 | 80-120 | 3.57   | 20           |      | 10/31/2011 1015h |



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **OC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: WC

QC Type: DUP

| Sample ID       | Analyte                | Units    | Method     | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD  | RPD<br>Limit | Qual | Date Analyzed    |
|-----------------|------------------------|----------|------------|--------|------------------|--------------------|------|--------|-------|--------------|------|------------------|
| 1110572-001EDUP | pH @ 25° C             | pH Units | SM4500-H+B | 6.83   |                  | 6.820              |      | -      | 0.147 | 5            |      | 10/28/2011 1715h |
| 1110504-003FDUP | Total Dissolved Solids | mg/L     | SM2540C    | 9,900  |                  | 9,500              |      | 2.0    | 4.12  | 5            |      | 10/28/2011 1300h |
| 1110506-002ADUP | Total Dissolved Solids | mg/L     | SM2540C    | 440    |                  | 436.0              |      |        | 0.913 | 5            |      | 10/28/2011 1300h |
| 1110526-015BDUP | Total Dissolved Solids | mg/L     | SM2540C    | 8,780  |                  | 8,440              |      | 3      | 3.95  | 5            |      | 10/28/2011 1300h |
| 1110544-002DDUP | Total Dissolved Solids | mg/L     | SM2540C    | 4,700  |                  | 4,400              |      | 3      | 6.59  | 5            | @    | 10/28/2011 1300h |

<sup>@ -</sup> High RPD due to suspected sample non-homogeneity or matrix interference.



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

## 463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **OC SUMMARY REPORT**

Contact: John Wallace

Dept: WC

QC Type: LCS

|            |                        |          |              |        | Amount | Original |      |        |      | RPD   |      |                  |
|------------|------------------------|----------|--------------|--------|--------|----------|------|--------|------|-------|------|------------------|
| Sample ID  | Analyte                | Units    | Method       | Result | Spiked | Amount   | %REC | Limits | %RPD | Limit | Qual | Date Analyzed    |
| LCS-R33139 | Alkalinity (as CaCO3)  | mg/L     | SM2320B      | 48,400 | 50,000 | 0        | 96.8 | 90-110 |      |       |      | 10/31/2011 0730h |
| LCS-R33224 | Chloride               | mg/L     | SM4500-CI-E  | 26.2   | 25.00  | 0        | 105  | 90-110 |      |       |      | 11/1/2011 1318h  |
| LCS-R33153 | Fluoride               | mg/L     | SM4500-F-C   | 0.995  | 1.000  | 0        | 99.5 | 90-110 |      |       |      | 10/31/2011 0840h |
| LCS-R33166 | Nitrate/Nitrite (as N) | mg/L     | E353.2       | 1.05   | 1.000  | 0        | 105  | 90-110 |      |       |      | 10/31/2011 1145h |
| LCS-R33114 | Oil & Grease           | mg/L     | E1664A       | 38.3   | 40.00  | 0        | 95.8 | 78-114 |      |       |      | 10/28/2011 1250h |
| LCS-R33097 | рН @ 25° С             | pH Units | SM4500-H+B   | 9.03   | 9.000  | 0        | 100  | 98-102 |      |       |      | 10/28/2011 1715h |
| LCS-R33116 | Sulfate                | mg/L     | SM4500-SO4-E | 1,020  | 1,000  | 0        | 102  | 90-110 |      |       |      | 10/29/2011 0940h |
| LCS-R33118 | Sulfate                | mg/L     | SM4500-SO4-E | 957    | 1,000  | 0        | 95.7 | 90-110 |      |       |      | 10/29/2011 1045h |
| LCS-R33228 | Total Dissolved Solids | mg/L     | SM2540C      | 204    | 205.0  | 0        | 99.5 | 80-120 |      |       |      | 10/28/2011 1300h |
| LCS-R33231 | Total Dissolved Solids | mg/L     | SM2540C      | 200    | 205.0  | 0        | 97.6 | 80-120 |      |       |      | 10/28/2011 1300h |



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **QC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: WC

QC Type: MBLK

| Sample ID     | Analyte                | Units | Method       | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|---------------|------------------------|-------|--------------|----------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| MB-R33139     | Alkalinity (as CaCO3)  | mg/L  | SM2320B      | < 10.0   |                  |                    |      |        |      |              |      | 10/31/2011 0730h |
| MB-SPLP-15271 | Alkalinity (as CaCO3)  | mg/L  | SM2320B      | < 40.0   |                  |                    |      |        |      |              |      | 10/31/2011 0730h |
| MB-R33224     | Chloride               | mg/L  | SM4500-CI-E  | < 5.00   |                  |                    |      | (#T)   |      |              |      | 11/1/2011 1317h  |
| MB-SPLP-15271 | Chloride               | mg/L  | SM4500-CI-E  | < 5.00   |                  |                    |      | -      |      |              |      | 11/1/2011 1319h  |
| MB-R33153     | Fluoride               | mg/L  | SM4500-F-C   | < 0.100  |                  |                    |      | 1      |      |              |      | 10/31/2011 0840h |
| MB-SPLP-15271 | Fluoride               | mg/L  | SM4500-F-C   | < 0.100  |                  |                    |      | 3.0    |      |              |      | 10/31/2011 0840h |
| MB-R33166     | Nitrate/Nitrite (as N) | mg/L  | E353.2       | < 0.0100 |                  |                    |      |        |      |              |      | 10/31/2011 1143h |
| MB-SPLP-15271 | Nitrate/Nitrite (as N) | mg/L  | E353,2       | 0.0189   |                  |                    |      | 191    |      |              | B^   | 10/31/2011 1146h |
| MB-R33114     | Oil & Grease           | mg/L  | E1664A       | < 3.00   |                  |                    |      |        |      |              |      | 10/28/2011 1250h |
| MB-SPLP-15271 | Oil & Grease           | mg/L  | E1664A       | < 3.00   |                  |                    |      | -      |      |              |      | 10/28/2011 1250h |
| MB-R33116     | Sulfate                | mg/L  | SM4500-SO4-E | < 5,00   |                  |                    |      | 24     |      |              |      | 10/29/2011 0940h |
| MB-R33118     | Sulfate                | mg/L  | SM4500-SO4-E | < 5.00   |                  |                    |      | -      |      |              |      | 10/29/2011 1045h |
| MB-SPLP-15271 | Sulfate                | mg/L  | SM4500-SO4-E | < 5.00   |                  |                    |      |        |      |              |      | 10/29/2011 1045h |
| MB-R33228     | Total Dissolved Solids | mg/L  | SM2540C      | < 10.0   |                  |                    |      | -      |      |              |      | 10/28/2011 1300h |
| MB-R33231     | Total Dissolved Solids | mg/L  | SM2540C      | < 10.0   |                  |                    |      | -      |      |              |      | 10/28/2011 1300h |

B - This analyte was detected in the method blank above the PQL as expected because of the nitric acid used in the SPLP fluid.

<sup>^-</sup> Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **OC SUMMARY REPORT**

Client: IGES Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: WC

QC Type: MS

| Sample ID      | Analyte                | Units | Method       | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|----------------|------------------------|-------|--------------|--------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| 1110567-002AMS | Alkalinity (as CaCO3)  | mg/L  | SM2320B      | 479    | 200.0            | 291.9              | 93.5 | 80-120 |      |              |      | 10/31/2011 0730h |
| 1110545-001AMS | Chloride               | mg/L  | SM4500-CI-E  | 14.8   | 10.00            | 3.091              | 117  | 90-110 |      |              | 1    | 11/1/2011 1322h  |
| 1110545-003AMS | Fluoride               | mg/L  | SM4500-F-C   | 2.88   | 1.000            | 1.840              | 104  | 80-120 |      |              |      | 10/31/2011 0840h |
| 1110545-001AMS | Nitrate/Nitrite (as N) | mg/L  | E353.2       | 1.02   | 1.000            | 0.01060            | 101  | 90-110 |      |              |      | 10/31/2011 1149h |
| 1110504-003DMS | Sulfate                | mg/L  | SM4500-SO4-E | 143    | 100.0            | 50.75              | 92.1 | 80-120 |      |              |      | 10/29/2011 1045h |
| 1110545-001AMS | Sulfate                | mg/L  | SM4500-SO4-E | 36.9   | 20.00            | 17.45              | 97.2 | 80-120 |      |              |      | 10/29/2011 0940h |

<sup>1 -</sup> Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **OC SUMMARY REPORT**

**IGES** 

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

John Wallace Contact:

WC Dept:

QC Type: MSD

| Sample ID       | Analyte                | Units | Method       | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|-----------------|------------------------|-------|--------------|--------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| 1110567-002AMSD | Alkalinity (as CaCO3)  | mg/L  | SM2320B      | 479    | 200.0            | 291.9              | 93.5 | 80-120 | 0    | 10           |      | 10/31/2011 0730h |
| 1110545-001AMSD | Chloride               | mg/L  | SM4500-CI-E  | 12.4   | 10.00            | 3.091              | 92.7 | 90-110 | 18   | 10           | @    | 11/1/2011 1323h  |
| 1110545-003AMSD | Fluoride               | mg/L  | SM4500-F-C   | 2.80   | 1.000            | 1.840              | 96.0 | 80-120 | 2.82 | 10           |      | 10/31/2011 0840h |
| 1110545-001AMSD | Nitrate/Nitrite (as N) | mg/L  | E353.2       | 1.00   | 1.000            | 0.01060            | 99.0 | 90-110 | 2.1  | 10           |      | 10/31/2011 1150h |
| 1110504-003DMSD | Sulfate                | mg/L  | SM4500-SO4-E | 138    | 100.0            | 50.75              | 87.3 | 80-120 | 3.45 | 10           |      | 10/29/2011 1045h |
| 1110545-001AMSD | Sulfate                | mg/L  | SM4500-SO4-E | 37.9   | 20.00            | 17.45              | 102  | 80-120 | 2.73 | 10           |      | 10/29/2011 0940h |

<sup>@ -</sup> High RPD due to suspected sample non-homogeneity or matrix interference.



Client:

Project:

IGES

Red Leaf ECOSHALE / 01109-013

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **QC SUMMARY REPORT**

Contact: J

John Wallace

Dept: WC

QC Type: QCS

| Sample ID  | Analyte      | Units | Method | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|------------|--------------|-------|--------|--------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| QCS-R33114 | Oil & Grease | mg/L  | E1664A | 40.3   | 40.00            | 2.200              | 95.3 | 78-114 |      |              |      | 10/28/2011 1250h |



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Project: Red Leaf

Client:

Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: WC

QC Type: QCSD

| Sample ID   | Analyte      | Units | Method | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed    |
|-------------|--------------|-------|--------|--------|------------------|--------------------|------|--------|------|--------------|------|------------------|
| QCSD-R33114 | Oil & Grease | mg/L  | E1664A | 41.5   | 40.00            | 2.200              | 98.2 | 78-114 | 2.93 | 18           |      | 10/28/2011 1250h |



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV

QC Type: LCS

| Sample ID | Analyte                    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|----------------------------|-------|---------|--------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| LCS-15421 | 1,2,4-Trichlorobenzene     | mg/L  | SW8270D | 0.0270 | 0.08000          | 0                  | 33.7 | 10-104 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 1,4-Dichlorobenzene        | mg/L  | SW8270D | 0.0156 | 0.08000          | 0                  | 19.5 | 10-118 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 2,4,6-Trichlorophenol      | mg/L  | SW8270D | 0.0668 | 0.08000          | 0                  | 83.5 | 17-119 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 2,4-Dimethylphenol         | mg/L  | SW8270D | 0.0687 | 0.08000          | 0                  | 85.9 | 10-131 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 2,4-Dinitrotoluene         | mg/L  | SW8270D | 0.0901 | 0.08000          | 0                  | 113  | 42-219 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 2-Chloronaphthalene        | mg/L  | SW8270D | 0.0398 | 0.08000          | 0                  | 49.8 | 23-126 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 2-Chlorophenol             | mg/L  | SW8270D | 0.0463 | 0.08000          | 0                  | 57.9 | 15-128 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 4,6-Dinitro-2-methylphenol | mg/L  | SW8270D | 0.103  | 0.08000          | 0                  | 128  | 30-198 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 4-Chloro-3-methylphenol    | mg/L  | SW8270D | 0.0694 | 0.08000          | 0                  | 86.8 | 29-148 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | 4-Nitrophenol              | mg/L  | SW8270D | 0.0428 | 0.08000          | 0                  | 53.5 | 10-157 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Acenaphthene               | mg/L  | SW8270D | 0.0476 | 0.08000          | 0                  | 59.6 | 20-116 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Benzo(a)pyrene             | mg/L  | SW8270D | 0.0923 | 0.08000          | 0                  | 115  | 10-221 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | N-Nitrosodi-n-propylamine  | mg/L  | SW8270D | 0.0408 | 0.08000          | 0                  | 51.0 | 20-148 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Pentachlorophenol          | mg/L  | SW8270D | 0.0985 | 0.08000          | 0                  | 123  | 21-153 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Phenol                     | mg/L  | SW8270D | 0.0208 | 0.08000          | 0                  | 26.0 | 10-131 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Pyrene                     | mg/L  | SW8270D | 0.0870 | 0.08000          | 0                  | 109  | 37-150 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: 2,4,6-Tribromophenol | %REC  | SW8270D | 0.0885 | 0.08000          |                    | 111  | 10-165 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: 2-Fluorobiphenyl     | %REC  | SW8270D | 0.0197 | 0.04000          |                    | 49.2 | 32-128 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: 2-Fluorophenol       | %REC  | SW8270D | 0.0268 | 0.08000          |                    | 33.5 | 10-121 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: Nitrobenzene-d5      | %REC  | SW8270D | 0.0227 | 0.04000          |                    | 56.7 | 10-127 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: Phenol-d6            | %REC  | SW8270D | 0.0216 | 0.08000          |                    | 26.9 | 10-124 |      |              |      | 11/4/2011 1733h |
| LCS-15421 | Surr: Terphenyl-d14        | %REC  | SW8270D | 0.0444 | 0.04000          |                    | 111  | 51-221 |      |              |      | 11/4/2011 1733h |

Reissue of a previously generated report. Information has been added, updated, or revised. Information herein supersedes that of previously issued reports.



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

#### 463 West 3600 South

## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID | Analyte                    | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|----------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | 1,1'-Biphenyl              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,2,4,5-Tetrachlorobenzene | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,2,4-Trichlorobenzene     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,2-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,3,5-Trinitrobenzene      | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,3-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | . 4    |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,3-Dinitrobenzene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,4-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,4-Naphthoquinone         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1,4-Phenylenediamine       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1-Chloronaphthalene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | +      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1-Methylnaphthalene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 20     |      |              |      | 11/4/2011 1708h |
| MB-15421  | 1-Naphthylamine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,3,4,6-Tetrachlorophenol  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4,5-Trichlorophenol      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4,6-Trichlorophenol      | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4-Dichlorophenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4-Dimethylphenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4-Dinitrophenol          | mg/L  | SW8270D | < 0.0200 |                  |                    |      | 14     |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,4-Dinitrotoluene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 55   |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,6-Dichlorophenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2,6-Dinitrotoluene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Acetylaminofluorene      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4.7    |      |              |      | 11/4/2011 1708h |
|           |                            |       |         |          |                  |                    |      |        |      |              |      |                 |

Report Date: 11/7/2011 Page 52 of 79

# American West

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID | Analyte                        | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|--------------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | 2-Chloronaphthalene            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 14.    |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Chlorophenol                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Methylnaphthalene            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Methylphenol                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Naphthylamine                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | (8)    |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Nitroaniline                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Nitrophenol                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 2-Picoline                     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 3&4-Methylphenol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 40     |      |              |      | 11/4/2011 1708h |
| MB-15421  | 3,3'-Dichlorobenzidine         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 3,3'-Dimethylbenzidine         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 3-Methylcholanthrene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 3-Nitroaniline                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4,6-Dinitro-2-methylphenol     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Aminobiphenyl                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Bromophenyl phenyl ether     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Chloro-3-methylphenol        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Chloroaniline                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Chlorophenyl phenyl ether    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Nitroaniline                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 5.1    |      |              |      | 11/4/2011 1708h |
| MB-15421  | 4-Nitrophenol                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708b |
| MB-15421  | 5-Nitro-o-toluidine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | 7,12-Dimethylbenz(a)anthracene | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |

Report Date: 11/7/2011 Page 53 of 79



**IGES** 

Red Leaf ECOSHALE / 01109-013

Client:

Project:

## 463 West 3600 South

## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID | Analyte                      | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|------------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | a,a-Dimethylphenethylamine   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Acenaphthene                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Acenaphthylene               | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Acetophenone                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2-1    |      |              |      | 11/4/2011 1708h |
| MB-15421  | alpha-Terpineol              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Aniline                      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Anthracene                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 25     |      |              |      | 11/4/2011 1708h |
| MB-15421  | Aramite                      | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Azobenzene                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benz(a)anthracene            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzidine                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzo(a)pyrene               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzo(b)fluoranthene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 7      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzo(g,h,i)perylene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzo(k)fluoranthene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzoic acid                 | mg/L  | SW8270D | < 0.0200 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Benzyl alcohol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 100    |      |              |      | 11/4/2011 1708h |
| MB-15421  | Bis(2-chloroethoxy)methane   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Bis(2-chloroethyl) ether     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 19.1   |      |              |      | 11/4/2011 1708h |
| MB-15421  | Bis(2-chloroisopropyl) ether | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 130    |      |              |      | 11/4/2011 1708h |
| MB-15421  | Bis(2-ethylhexyl) phthalate  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | bis(2-ethylhexyl)adipate     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Butyl benzyl phthalate       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4.7    |      |              |      | 11/4/2011 17081 |



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV QC Type: MBLK

| Sample ID | Analyte                   | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|---------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | Carbazole                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Chlorobenzilate           | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Chrysene                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Diallate (cis or trans)   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dibenz(a,h)anthracene     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 45     |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dibenzofuran              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Diethyl phthalate         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dimethoate                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dimethyl phthalate        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.     |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dimethylaminoazobenzene   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | +      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Di-n-butyl phthalate      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Di-n-octyl phthalate      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Dinoseb                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Diphenylamine             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Disulfoton                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Ethyl methanesulfonate    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Famphur                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Fluoranthene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Fluorene                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 5      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Hexachlorobenzene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Hexachlorobutadiene       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | ÷      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Hexachlorocyclopentadiene | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Hexachloroethane          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |

Report Date: 11/7/2011 Page 55 of 79



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Client:

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID | Analyte                   | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|---------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | Hexachlorophene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Hexachloropropene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Indene                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Indeno(1,2,3-cd)pyrene    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Isodrin                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Isophorone                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Isosafrole                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Kepone                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Methapyrilene             | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Methyl methanesulfonate   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Naphthalene               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 7      |      |              |      | 11/4/2011 1708h |
| MB-15421  | n-Decane                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Nitrobenzene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Nitroquinoline-1-oxide    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosodiethylamine     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.0    |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosodimethylamine    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosodi-n-butylamine  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosodiphenylamine    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosodi-n-propylamine | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 24     |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosomethylethylamine | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosomorpholine       | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosopiperidine       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4.     |      |              |      | 11/4/2011 1708h |
| MB-15421  | N-Nitrosopyrrolidine      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 1708h |
|           |                           |       |         |          |                  |                    |      |        |      |              |      |                 |

Report Date: 11/7/2011 Page 56 of 79

# American West

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Client: IGES Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV QC Type: MBLK

| Sample ID | Analyte                         | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------|---------------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421  | n-Octadecane                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | O,O,O-Triethyl phosphorothioate | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 1708h |
| MB-15421  | o-Toluidine                     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Parathion                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Methyl parathion                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pentachlorobenzene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pentachloronitrobenzene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pentachlorophenol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Phenacetin                      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Phenanthrene                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Phenol                          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Phorate                         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pronamide                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pyrene                          | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 1708h |
| MB-15421  | Pyridine                        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.0    |      |              |      | 11/4/2011 1708h |
| MB-15421  | Quinoline                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 3-   |      |              |      | 11/4/2011 1708h |
| MB-15421  | Safrole                         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 400    |      |              |      | 11/4/2011 1708h |
| MB-15421  | Tetraethyl dithiopyrophosphate  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 1708h |
| MB-15421  | Thionazin                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 41   |      |              |      | 11/4/2011 1708h |
| MB-15421  | Surr: 2,4,6-Tribromophenol      | %REC  | SW8270D | 0.0657   | 0.08000          |                    | 82.1 | 10-165 |      |              |      | 11/4/2011 1708h |
| MB-15421  | Surr: 2-Fluorobiphenyl          | %REC  | SW8270D | 0.0187   | 0.04000          |                    | 46.7 | 18-108 |      |              |      | 11/4/2011 1708h |
| MB-15421  | Surr: 2-Fluorophenol            | %REC  | SW8270D | 0.0236   | 0.08000          |                    | 29.5 | 10-121 |      |              |      | 11/4/2011 1708h |
| MB-15421  | Surr: Nitrobenzene-d5           | %REC  | SW8270D | 0.0217   | 0.04000          |                    | 54.2 | 10-127 |      |              |      | 11/4/2011 1708h |

Report Date: 11/7/2011 Page 57 of 79



**IGES** 

Client:

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F, Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSSV QC Type: MBLK

Project: Red Leaf ECOSHALE / 01109-013

| Sample ID     | Analyte                    | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|----------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-15421      | Surr: Phenol-d6            | %REC  | SW8270D | 0.0203   | 0.08000          |                    | 25.4 | 10-124 |      |              |      | 11/4/2011 1708h |
| MB-15421      | Surr: Terphenyl-d14        | %REC  | SW8270D | 0.0403   | 0.04000          |                    | 101  | 10-133 |      |              |      | 11/4/2011 1708h |
| MB-SPLP-15423 | 1,1'-Biphenyl              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,2,4,5-Tetrachlorobenzene | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,2,4-Trichlorobenzene     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,2-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,3,5-Trinitrobenzene      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,3-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,3-Dinitrobenzene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,4-Dichlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,4-Naphthoquinone         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 14     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1,4-Phenylenediamine       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1-Chloronaphthalene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1-Methylnaphthalene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 41   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 1-Naphthylamine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,3,4,6-Tetrachlorophenol  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4,5-Trichlorophenol      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4,6-Trichlorophenol      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | +++    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4-Dichlorophenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4-Dimethylphenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4-Dinitrophenol          | mg/L  | SW8270D | < 0.0200 |                  |                    |      | •      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,4-Dinitrotoluene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2,6-Dichlorophenol         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 2008h |

Report Date: 11/7/2011 Page 58 of 79



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross

Laboratory Director

Jose Rocha QA Officer

# **OC SUMMARY REPORT**

Contact:

John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID     | Analyte                     | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-----------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15423 | 2,6-Dinitrotoluene          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 1    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Acetylaminofluorene       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Chloronaphthalene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Chlorophenol              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 2    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Methylnaphthalene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Methylphenol              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Naphthylamine             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 5    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Nitroaniline              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Nitrophenol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | ÷      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 2-Picoline                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 3&4-Methylphenol            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 3,3'-Dichlorobenzidine      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 20     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 3,3'-Dimethylbenzidine      | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 3-Methylcholanthrene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 3-Nitroaniline              | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4,6-Dinitro-2-methylphenol  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Aminobiphenyl             | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Bromophenyl phenyl ether  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Chloro-3-methylphenol     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Chloroaniline             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 7      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Chlorophenyl phenyl ether | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Nitroaniline              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | (5.1)  |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 4-Nitrophenol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
|               |                             |       |         |          |                  |                    |      |        |      |              |      |                 |



## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

MSSV

QC Type: MBLK

Dept:

| Sample ID     | Analyte                        | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|--------------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15423 | 5-Nitro-o-toluidine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | ÷      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | 7,12-Dimethylbenz(a)anthracene | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | a,a-Dimethylphenethylamine     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Acenaphthene                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Acenaphthylene                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Acetophenone                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | alpha-Terpineol                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Aniline                        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 1    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Anthracene                     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Aramite                        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Azobenzene                     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benz(a)anthracene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzidine                      | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzo(a)pyrene                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 9.7    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzo(b)fluoranthene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 5      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzo(g,h,i)perylene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 104    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzo(k)fluoranthene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      | O€ 01  |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzoic acid                   | mg/L  | SW8270D | < 0.0200 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Benzyl alcohol                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Bis(2-chloroethoxy)methane     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Bis(2-chloroethyl) ether       | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Bis(2-chloroisopropyl) ether   | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Bis(2-ethylhexyl) phthalate    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 0.00   |      |              |      | 11/4/2011 2008h |

Report Date: 11/7/2011 Page 60 of 79



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686. Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID     | Analyte                  | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|--------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15423 | bis(2-ethylhexyl)adipate | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 3.0    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Butyl benzyl phthalate   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 3      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Carbazole                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Chlorobenzilate          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | · ·    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Chrysene                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Diallate (cis or trans)  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 3    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dibenz(a,h)anthracene    | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dibenzofuran             | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Diethyl phthalate        | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dimethoate               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dimethyl phthalate       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dimethylaminoazobenzene  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Di-n-butyl phthalate     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Di-n-octyl phthalate     | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Dinoseb                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Diphenylamine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.1    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Disulfoton               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 0.0    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Ethyl methanesulfonate   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1,31   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Famphur                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.40   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Fluoranthene             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Fluorene                 | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Hexachlorobenzene        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Hexachlorobutadiene      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 0.0    |      |              |      | 11/4/2011 2008h |

Report Date: 11/7/2011 Page 61 of 79



IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

## **OC SUMMARY REPORT**

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID     | Analyte                   | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits            | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|---------------------------|-------|---------|----------|------------------|--------------------|------|-------------------|------|--------------|------|-----------------|
| MB-SPLP-15423 | Hexachlorocyclopentadiene | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 147               |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Hexachloroethane          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Hexachlorophene           | mg/L  | SW8270D | < 0.0100 |                  |                    |      |                   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Hexachloropropene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Indene                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.                |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Indeno(1,2,3-cd)pyrene    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 9-              |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Isodrin                   | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 35                |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Isophorone                | mg/L  | SW8270D | < 0.0100 |                  |                    |      |                   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Isosafrole                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | ÷                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Kepone                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.1               |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Methapyrilene             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Methyl methanesulfonate   | mg/L  | SW8270D | < 0.0100 |                  |                    |      |                   |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Naphthalene               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | +                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | n-Decane                  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 9.                |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Nitrobenzene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | ( <del>=</del> )- |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Nitroquinoline-1-oxide    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -                 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | N-Nitrosodiethylamine     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 100               |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosodimethylamine    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 0.5               |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosodi-n-butylamine  | mg/L  | SW8270D | < 0.0100 |                  |                    |      |                   |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosodiphenylamine    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.2               |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosodi-n-propylamine | mg/L  | SW8270D | < 0.0100 |                  |                    |      |                   |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosomethylethylamine | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 0.0               |      |              |      | 11/4/2011 20081 |
| MB-SPLP-15423 | N-Nitrosomorpholine       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 160               |      |              |      | 11/4/2011 20081 |

Report Date: 11/7/2011 Page 62 of 79

# American West

#### 463 West 3600 South

## Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

# **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV QC Type: MBLK

| Sample ID     | Analyte                         | Units | Method  | Result   | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|---------------------------------|-------|---------|----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15423 | N-Nitrosopiperidine             | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 5    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | N-Nitrosopyrrolidine            | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | n-Octadecane                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | O,O,O-Triethyl phosphorothioate | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | o-Toluidine                     | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Parathion                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Methyl parathion                | mg/L  | SW8270D | < 0.0100 |                  |                    |      | -      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pentachlorobenzene              | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pentachloronitrobenzene         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pentachlorophenol               | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 2.0    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Phenacetin                      | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 2    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Phenanthrene                    | mg/L  | SW8270D | < 0.0100 |                  |                    |      | •      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Phenol                          | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Phorate                         | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4.7    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pronamide                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | *      |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pyrene                          | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 1.0    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Pyridine                        | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Quinoline                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | - 9    |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Safrole                         | mg/L  | SW8270D | < 0.0100 |                  |                    |      |        |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Tetraethyl dithiopyrophosphate  | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 81     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Thionazin                       | mg/L  | SW8270D | < 0.0100 |                  |                    |      | 4/     |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Surr: 2,4,6-Tribromophenol      | %REC  | SW8270D | 0.0601   | 0.08000          |                    | 75.1 | 10-165 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Surr: 2-Fluorobiphenyl          | %REC  | SW8270D | 0.0137   | 0.04000          |                    | 34.3 | 18-108 |      |              |      | 11/4/2011 2008h |

Report Date: 11/7/2011 Page 63 of 79



#### 463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

Client: IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV

QC Type: MBLK

| Sample ID     | Analyte               | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-----------------------|-------|---------|--------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15423 | Surr: 2-Fluorophenol  | %REC  | SW8270D | 0.0204 | 0.08000          |                    | 25.5 | 10-121 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Surr: Nitrobenzene-d5 | %REC  | SW8270D | 0.0146 | 0.04000          |                    | 36.5 | 10-127 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Surr: Phenol-d6       | %REC  | SW8270D | 0.0169 | 0.08000          |                    | 21.2 | 10-124 |      |              |      | 11/4/2011 2008h |
| MB-SPLP-15423 | Surr: Terphenyl-d14   | %REC  | SW8270D | 0.0430 | 0.04000          |                    | 107  | 10-133 |      |              |      | 11/4/2011 2008h |



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

Client: **IGES** 

Lab Set ID: 1110545

Project:

Red Leaf ECOSHALE / 01109-013

John Wallace Contact:

MSSV Dept:

QC Type: MS

| Sample ID      | Analyte                    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|----------------------------|-------|---------|--------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| 1110545-003AMS | 1,2,4-Trichlorobenzene     | mg/L  | SW8270D | 0.0342 | 0.1600           | 0                  | 21.4 | 20-107 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 1,4-Dichlorobenzene        | mg/L  | SW8270D | 0.0195 | 0.1600           | 0                  | 12.2 | 11-90  |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 2,4,6-Trichlorophenol      | mg/L  | SW8270D | 0.178  | 0.1600           | 0                  | 111  | 17-128 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 2,4-Dimethylphenol         | mg/L  | SW8270D | 0.120  | 0.1600           | 0                  | 75.1 | 10-176 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 2,4-Dinitrotoluene         | mg/L  | SW8270D | 0.189  | 0.1600           | 0                  | 118  | 21-191 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 2-Chloronaphthalene        | mg/L  | SW8270D | 0.0793 | 0.1600           | 0                  | 49.6 | 12-132 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 2-Chlorophenol             | mg/L  | SW8270D | 0.0922 | 0.1600           | 0                  | 57.6 | 20-107 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 4,6-Dinitro-2-methylphenol | mg/L  | SW8270D | 0.216  | 0.1600           | 0                  | 135  | 20-250 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 4-Chloro-3-methylphenol    | mg/L  | SW8270D | 0.145  | 0.1600           | 0                  | 90.6 | 10-136 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | 4-Nitrophenol              | mg/L  | SW8270D | 0.0839 | 0.1600           | 0                  | 52.5 | 10-135 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Acenaphthene               | mg/L  | SW8270D | 0.104  | 0.1600           | 0                  | 65.3 | 21-113 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Benzo(a)pyrene             | mg/L  | SW8270D | 0.186  | 0.1600           | 0                  | 116  | 15-169 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | N-Nitrosodi-n-propylamine  | mg/L  | SW8270D | 0.0914 | 0.1600           | 0                  | 57.1 | 10-133 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Pentachlorophenol          | mg/L  | SW8270D | 0.191  | 0.1600           | 0                  | 119  | 10-131 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Phenol                     | mg/L  | SW8270D | 0.0455 | 0.1600           | 0                  | 28.5 | 10-71  |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Pyrene                     | mg/L  | SW8270D | 0.175  | 0.1600           | 0                  | 110  | 23-150 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: 2,4,6-Tribromophenol | %REC  | SW8270D | 0.183  | 0.1600           |                    | 114  | 14-159 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: 2-Fluorobiphenyl     | %REC  | SW8270D | 0.0501 | 0.08000          |                    | 62.6 | 10-124 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: 2-Fluorophenol       | %REC  | SW8270D | 0.0504 | 0.1600           |                    | 31.5 | 10-106 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: Nitrobenzene-d5      | %REC  | SW8270D | 0.0412 | 0.08000          |                    | 51.4 | 10-180 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: Phenol-d6            | %REC  | SW8270D | 0.0445 | 0.1600           |                    | 27.8 | 10-122 |      |              |      | 11/4/2011 1917h |
| 1110545-003AMS | Surr: Terphenyl-d14        | %REC  | SW8270D | 0.0871 | 0.08000          |                    | 109  | 10-199 |      |              |      | 11/4/2011 1917h |



Client:

#### 463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSSV QC Type: MSD

| Sample ID       | Analyte                    | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD  | RPD<br>Limit | Qual | Date Analyzed   |
|-----------------|----------------------------|-------|---------|--------|------------------|--------------------|------|--------|-------|--------------|------|-----------------|
| 1110545-003AMSD | 1,2,4-Trichlorobenzene     | mg/L  | SW8270D | 0.0301 | 0.1600           | 0                  | 18.8 | 20-107 | 12.7  | 25           | 1    | 11/4/2011 1943h |
| 1110545-003AMSD | 1,4-Dichlorobenzene        | mg/L  | SW8270D | 0.0181 | 0.1600           | 0                  | 11.3 | 11-90  | 7.02  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 2,4,6-Trichlorophenol      | mg/L  | SW8270D | 0.173  | 0.1600           | 0                  | 108  | 17-128 | 2.92  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 2,4-Dimethylphenol         | mg/L  | SW8270D | 0.114  | 0.1600           | 0                  | 71.1 | 10-176 | 5.47  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 2,4-Dinitrotoluene         | mg/L  | SW8270D | 0.196  | 0.1600           | 0                  | 122  | 21-191 | 3.44  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 2-Chloronaphthalene        | mg/L  | SW8270D | 0.0702 | 0.1600           | 0                  | 43.9 | 12-132 | 12.1  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 2-Chlorophenol             | mg/L  | SW8270D | 0.0817 | 0.1600           | 0                  | 51.1 | 20-107 | 12    | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 4,6-Dinitro-2-methylphenol | mg/L  | SW8270D | 0.226  | 0.1600           | 0                  | 141  | 20-250 | 4.34  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 4-Chloro-3-methylphenol    | mg/L  | SW8270D | 0.140  | 0.1600           | 0                  | 87.4 | 10-136 | 3.64  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | 4-Nitrophenol              | mg/L  | SW8270D | 0.0800 | 0.1600           | 0                  | 50.0 | 10-135 | 4.76  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Acenaphthene               | mg/L  | SW8270D | 0.0960 | 0.1600           | 0                  | 60.0 | 21-113 | 8.42  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Benzo(a)pyrene             | mg/L  | SW8270D | 0.190  | 0.1600           | 0                  | 118  | 15-169 | 1.72  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | N-Nitrosodi-n-propylamine  | mg/L  | SW8270D | 0.0885 | 0.1600           | 0                  | 55.3 | 10-133 | 3.25  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Pentachlorophenol          | mg/L  | SW8270D | 0.192  | 0.1600           | 0                  | 120  | 10-131 | 0.481 | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Phenol                     | mg/L  | SW8270D | 0.0392 | 0.1600           | 0                  | 24.5 | 10-71  | 14.9  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Pyrene                     | mg/L  | SW8270D | 0.180  | 0.1600           | 0                  | 113  | 23-150 | 2.69  | 25           |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: 2,4,6-Tribromophenol | %REC  | SW8270D | 0.180  | 0.1600           |                    | 112  | 14-159 |       |              |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: 2-Fluorobiphenyl     | %REC  | SW8270D | 0.0460 | 0.08000          |                    | 57.4 | 10-124 |       |              |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: 2-Fluorophenol       | %REC  | SW8270D | 0.0464 | 0.1600           |                    | 29.0 | 10-106 |       |              |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: Nitrobenzene-d5      | %REC  | SW8270D | 0.0379 | 0.08000          |                    | 47.4 | 10-180 |       |              |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: Phenol-d6            | %REC  | SW8270D | 0.0403 | 0.1600           |                    | 25.2 | 10-122 |       |              |      | 11/4/2011 1943h |
| 1110545-003AMSD | Surr: Terphenyl-d14        | %REC  | SW8270D | 0.0896 | 0.08000          |                    | 112  | 10-199 |       |              |      | 11/4/2011 1943h |

<sup>1 -</sup> Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.



Salt Lake City, UT 84115 Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

**IGES** Lab Set ID: 1110545

Client:

Red Leaf ECOSHALE / 01109-013 Project:

John Wallace Contact:

**MSVOA** Dept:

QC Type: LCS

| Sample ID       | Analyte                     | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits   | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|-----------------|-----------------------------|-------|---------|--------|------------------|--------------------|------|----------|------|--------------|------|-----------------|
| LCS VOC 110211B | 1,1,1-Trichloroethane       | mg/L  | SW8260C | 0.0188 | 0.02000          | 0                  | 94.0 | 49.9-140 |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | 1,1-Dichloroethene          | mg/L  | SW8260C | 0.0166 | 0.02000          | 0                  | 82.8 | 46-171   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | 1,2-Dichlorobenzene         | mg/L  | SW8260C | 0.0183 | 0.02000          | 0                  | 91.4 | 67-135   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | 1,2-Dichloroethane          | mg/L  | SW8260C | 0.0174 | 0.02000          | 0                  | 86.9 | 60-137   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | 1,2-Dichloropropane         | mg/L  | SW8260C | 0.0178 | 0.02000          | 0                  | 88.8 | 59-135   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Benzene                     | mg/L  | SW8260C | 0.0186 | 0.02000          | 0                  | 93.1 | 62-127   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Chlorobenzene               | mg/L  | SW8260C | 0.0189 | 0.02000          | 0                  | 94.5 | 63-140   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Chloroform                  | mg/L  | SW8260C | 0.0175 | 0.02000          | 0                  | 87.4 | 67-132   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Ethylbenzene                | mg/L  | SW8260C | 0.0190 | 0.02000          | 0                  | 94.8 | 55-133   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Isopropylbenzene            | mg/L  | SW8260C | 0.0199 | 0.02000          | 0                  | 99.5 | 60-147   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Methyl tert-butyl ether     | mg/L  | SW8260C | 0.0179 | 0.02000          | 0                  | 89.4 | 37-189   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Methylene chloride          | mg/L  | SW8260C | 0.0181 | 0.02000          | 0                  | 90.4 | 57-162   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Naphthalene                 | mg/L  | SW8260C | 0.0154 | 0.02000          | 0                  | 77.0 | 28-136   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Tetrahydrofuran             | mg/L  | SW8260C | 0.0164 | 0.02000          | 0                  | 81.9 | 43-146   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Toluene                     | mg/L  | SW8260C | 0.0190 | 0.02000          | 0                  | 95.1 | 67-128   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Trichloroethene             | mg/L  | SW8260C | 0.0183 | 0.02000          | 0                  | 91.6 | 54-152   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Surr: 1,2-Dichloroethane-d4 | %REC  | SW8260C | 0.0476 | 0.05000          |                    | 95.2 | 69-132   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Surr: 4-Bromofluorobenzene  | %REC  | SW8260C | 0.0484 | 0.05000          |                    | 96.7 | 85-118   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Surr: Dibromofluoromethane  | %REC  | SW8260C | 0.0465 | 0.05000          |                    | 93.0 | 80-120   |      |              |      | 11/2/2011 2219h |
| LCS VOC 110211B | Surr: Toluene-d8            | %REC  | SW8260C | 0.0516 | 0.05000          |                    | 103  | 81-120   |      |              |      | 11/2/2011 2219h |



Lab Set ID: 1110545

IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

Contact:

Dept: MSVOA

John Wallace

QC Type: MBLK

| Sample ID      | Analyte                                   | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|-------------------------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB VOC 110211B | 1,1,1,2-Tetrachloroethane                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1,1-Trichloroethane                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 21   |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1,2,2-Tetrachloroethane                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1,2-Trichloro-1,2,2-<br>trifluoroethane | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1,2-Trichloroethane                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1-Dichloropropene                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1-Dichloroethane                        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,1-Dichloroethene                        | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2,3-Trichlorobenzene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | •      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2,3-Trichloropropane                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 7      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2,3-Trimethylbenzene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2,4-Trichlorobenzene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2,4-Trimethylbenzene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | *      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2-Dibromo-3-chloropropane               | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2-Dibromoethane                         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | ÷      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2-Dichlorobenzene                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2-Dichloroethane                        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | +      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,2-Dichloropropane                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,3,5-Trimethylbenzene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | •      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,3-Dichlorobenzene                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | ÷.     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,3-Dichloropropane                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 1,4-Dichlorobenzene                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |

Report Date: 11/7/2011 Page 68 of 79



Lab Set ID: 1110545

Client:

Project:

**IGES** 

Red Leaf ECOSHALE / 01109-013

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA

QC Type: MBLK

| Sample ID      | Analyte                      | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|------------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB VOC 110211B | 1,4-Dioxane                  | mg/L  | SW8260C | < 0.0500  |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2,2-Dichloropropane          | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2-Butanone                   | mg/L  | SW8260C | < 0.0100  |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2-Chloroethyl vinyl ether    | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 4      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2-Chlorotoluene              | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2-Hexanone                   | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 150    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 2-Nitropropane               | mg/L  | SW8260C | < 0.00500 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 4-Chlorotoluene              | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 4-Isopropyltoluene           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | 4-Methyl-2-pentanone         | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Acetone                      | mg/L  | SW8260C | < 0.0100  |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Acetonitrile                 | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Acrolein                     | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 2      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Acrylonitrile                | mg/L  | SW8260C | < 0.0100  |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Allyl chloride               | mg/L  | SW8260C | < 0.00500 |                  |                    |      | - 2    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Benzene                      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - A    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Benzyl chloride              | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bis(2-chloroisopropyl) ether | mg/L  | SW8260C | < 0.00500 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bromobenzene                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 14.    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bromochloromethane           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 81     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bromodichloromethane         | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bromoform                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Bromomethane                 | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 4      |      |              |      | 11/2/2011 23041 |

## American West

Lab Set ID: 1110545

Client:

**IGES** 

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA
QC Type: MBLK

Project: Red Leaf ECOSHALE / 01109-013

| Sample ID      | Analyte                 | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|-------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB VOC 110211B | Butyl acetate           | mg/L  | SW8260C | < 0.00500 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Carbon disulfide        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Carbon tetrachloride    | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Chlorobenzene           | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Chloroethane            | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Chloroform              | mg/L  | SW8260C | < 0.00200 |                  |                    |      | *      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Chloromethane           | mg/L  | SW8260C | < 0.00300 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Chloroprene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | cis-1,2-Dichloroethene  | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | cis-1,3-Dichloropropene | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Cyclohexane             | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Cyclohexanone           | mg/L  | SW8260C | < 0.0500  |                  |                    |      | 4      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Dibromochloromethane    | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Dibromomethane          | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Dichlorodifluoromethane | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Ethyl acetate           | mg/L  | SW8260C | < 0.0100  |                  |                    |      | Ž,     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Ethyl ether             | mg/L  | SW8260C | < 0.0100  |                  |                    |      | 3      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Ethyl methacrylate      | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Ethylbenzene            | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Hexachlorobutadiene     | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Iodomethane             | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 9.     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Isobutyl alcohol        | mg/L  | SW8260C | < 0.100   |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Isopropyl acetate       | mg/L  | SW8260C | < 0.0200  |                  |                    |      |        |      |              |      | 11/2/2011 2304h |

Report Date: 11/7/2011 Page 70 of 79



Lab Set ID: 1110545

**IGES** 

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA

QC Type: MBLK

| Sample ID      | Analyte                 | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|-------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB VOC 110211B | Isopropyl alcohol       | mg/L  | SW8260C | < 0.0250  |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Isopropylbenzene        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 3      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | m,p-Xylene              | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methacrylonitrile       | mg/L  | SW8260C | < 0.00500 |                  |                    |      | ÷      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methyl Acetate          | mg/L  | SW8260C | < 0.00500 |                  |                    |      | - 12   |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methyl methacrylate     | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 9      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methyl tert-butyl ether | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methylcyclohexane       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 7    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Methylene chloride      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Amyl acetate          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 3.0    |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Naphthalene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Butyl alcohol         | mg/L  | SW8260C | < 0.0500  |                  |                    |      | 76     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Butylbenzene          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Hexane                | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Octane                | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 55     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | n-Propylbenzene         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 1      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | o-Xylene                | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Pentachloroethane       | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Propionitrile           | mg/L  | SW8260C | < 0.0250  |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Propyl acetate          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | sec-Butylbenzene        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Styrene                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/2/2011 23041 |
| MB VOC 110211B | tert-Butyl alcohol      | mg/L  | SW8260C | < 0.0200  |                  |                    |      | 2      |      |              |      | 11/2/2011 23041 |

Report Date: 11/7/2011 Page 71 of 79

# American West

Lab Set ID: 1110545

IGES

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact:

John Wallace

Dept: MSVOA

QC Type: MBLK

| Sample ID      | Analyte                                   | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits              | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|----------------|-------------------------------------------|-------|---------|-----------|------------------|--------------------|------|---------------------|------|--------------|------|-----------------|
| MB VOC 110211B | tert-Butylbenzene                         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 6                 |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Tetrachloroethene                         | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Tetrahydrofuran                           | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Toluene                                   | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | trans-1,2-Dichloroethene                  | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | trans-1,3-Dichloropropene                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 9                 |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | trans-1,4-Dichloro-2-butene               | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Trichloroethene                           | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Trichlorofluoromethane                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -                   |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Vinyl acetate                             | mg/L  | SW8260C | < 0.0100  |                  |                    |      | 1                   |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Vinyl chloride                            | mg/L  | SW8260C | < 0.00100 |                  |                    |      |                     |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Surr: 1,2-Dichloroethane-d4               | %REC  | SW8260C | 0.0493    | 0.05000          |                    | 98.7 | 69-132              |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Surr: 4-Bromofluorobenzene                | %REC  | SW8260C | 0.0499    | 0.05000          |                    | 99.8 | 85-118              |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Surr: Dibromofluoromethane                | %REC  | SW8260C | 0.0485    | 0.05000          |                    | 97.0 | 80-120              |      |              |      | 11/2/2011 2304h |
| MB VOC 110211B | Surr: Toluene-d8                          | %REC  | SW8260C | 0.0520    | 0.05000          |                    | 104  | 81-120              |      |              |      | 11/2/2011 2304h |
| MB-SPLP-15304  | 1,1,1,2-Tetrachloroethane                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1,1-Trichloroethane                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1,2,2-Tetrachloroethane                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |                     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1,2-Trichloro-1,2,2-<br>trifluoroethane | mg/L  | SW8260C | < 0.00200 |                  |                    |      | (7)                 |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1,2-Trichloroethane                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2                   |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1-Dichloropropene                       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | (* <del>*</del> -1) |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304  | 1,1-Dichloroethane                        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -                   |      |              |      | 11/3/2011 0413h |

Report Date: 11/7/2011 Page 72 of 79



Lab Set ID: 1110545

**IGES** 

Red Leaf ECOSHALE / 01109-013

Client:

Project:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact:

John Wallace

Dept:

**MSVOA** 

QC Type: MBLK

| Sample ID     | Analyte                     | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-----------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15304 | 1,1-Dichloroethene          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 7-2    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2,3-Trichlorobenzene      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 8.5    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2,3-Trichloropropane      | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2,3-Trimethylbenzene      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4.5    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2,4-Trichlorobenzene      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 1.     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2,4-Trimethylbenzene      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2-Dibromo-3-chloropropane | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 61     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2-Dibromoethane           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2-Dichlorobenzene         | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2-Dichloroethane          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,2-Dichloropropane         | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,3,5-Trimethylbenzene      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2-4    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,3-Dichlorobenzene         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 2    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,3-Dichloropropane         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2.     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,4-Dichlorobenzene         | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 1,4-Dioxane                 | mg/L  | SW8260C | < 0.0500  |                  |                    |      | *      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2,2-Dichloropropane         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 1      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2-Butanone                  | mg/L  | SW8260C | < 0.0100  |                  |                    |      | 0.0    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2-Chloroethyl vinyl ether   | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 0.0    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2-Chlorotoluene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 9      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2-Hexanone                  | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 2-Nitropropane              | mg/L  | SW8260C | < 0.00500 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 4-Chlorotoluene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 0      |      |              |      | 11/3/2011 0413h |

Report Date: 11/7/2011 Page 73 of 79

# American West

Lab Set ID: 1110545

Client:

**IGES** 

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA
QC Type: MBLK

Project: Red Leaf ECOSHALE / 01109-013

| Sample ID     | Analyte                      | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|------------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15304 | 4-Isopropyltoluene           | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | 4-Methyl-2-pentanone         | mg/L  | SW8260C | < 0.00500 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Acetone                      | mg/L  | SW8260C | < 0.0100  |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Acetonitrile                 | mg/L  | SW8260C | < 0.00500 |                  |                    |      | +      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Acrolein                     | mg/L  | SW8260C | < 0.00500 |                  |                    |      | •      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Acrylonitrile                | mg/L  | SW8260C | < 0.0100  |                  |                    |      | 14     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Allyl chloride               | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 15     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Benzene                      | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Benzyl chloride              | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 14.    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bis(2-chloroisopropyl) ether | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 129    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bromobenzene                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      | × ÷ y  |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bromochloromethane           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 7      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bromodichloromethane         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bromoform                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Bromomethane                 | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Butyl acetate                | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Carbon disulfide             | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Carbon tetrachloride         | mg/L  | SW8260C | < 0.00200 |                  |                    |      | \$ ·   |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Chlorobenzene                | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Chloroethane                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 21     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Chloroform                   | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Chloromethane                | mg/L  | SW8260C | < 0.00300 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Chloroprene                  | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2      |      |              |      | 11/3/2011 0413h |

Report Date: 11/7/2011 Page 74 of 79



**IGES** 

Client:

#### 463 West 3600 South

#### Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA
QC Type: MBLK

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

| Sample ID     | Analyte                 | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15304 | cis-1,2-Dichloroethene  | mg/L  | SW8260C | < 0.00200 |                  |                    |      | •      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | cis-1,3-Dichloropropene | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Cyclohexane             | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Cyclohexanone           | mg/L  | SW8260C | < 0.0500  |                  |                    |      | 2      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Dibromochloromethane    | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Dibromomethane          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Dichlorodifluoromethane | mg/L  | SW8260C | < 0.00200 |                  |                    |      | (*)    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Ethyl acetate           | mg/L  | SW8260C | < 0.0100  |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Ethyl ether             | mg/L  | SW8260C | < 0.0100  |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Ethyl methacrylate      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Ethylbenzene            | mg/L  | SW8260C | < 0.00200 |                  |                    |      | (÷)    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Hexachlorobutadiene     | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 7      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Iodomethane             | mg/L  | SW8260C | < 0.00500 |                  |                    |      | +      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Isobutyl alcohol        | mg/L  | SW8260C | < 0.100   |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Isopropyl acetate       | mg/L  | SW8260C | < 0.0200  |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Isopropyl alcohol       | mg/L  | SW8260C | < 0.0250  |                  |                    |      | +      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Isopropylbenzene        | mg/L  | SW8260C | < 0.00200 |                  |                    |      | .24    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | m,p-Xylene              | mg/L  | SW8260C | < 0.00200 |                  |                    |      | ÷      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Methacrylonitrile       | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Methyl Acetate          | mg/L  | SW8260C | < 0.00500 |                  |                    |      | •      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Methyl methacrylate     | mg/L  | SW8260C | < 0.00500 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Methyl tert-butyl ether | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4.1    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Methylcyclohexane       | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 12-1   |      |              |      | 11/3/2011 0413h |

Report Date: 11/7/2011 Page 75 of 79



**IGES** 

Client:

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact: John Wallace

Dept: MSVOA
QC Type: MBLK

Lab Set ID: 1110545

Project: Red Leaf ECOSHALE / 01109-013

| Sample ID     | Analyte                     | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-----------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15304 | Methylene chloride          | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Amyl acetate              | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Naphthalene                 | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Butyl alcohol             | mg/L  | SW8260C | < 0.0500  |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Butylbenzene              | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -50    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Hexane                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | +      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Octane                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 5      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | n-Propylbenzene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | o-Xylene                    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | •      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Pentachloroethane           | mg/L  | SW8260C | < 0.00500 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Propionitrile               | mg/L  | SW8260C | < 0.0250  |                  |                    |      | 12     |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Propyl acetate              | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | sec-Butylbenzene            | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Styrene                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | tert-Butyl alcohol          | mg/L  | SW8260C | < 0.0200  |                  |                    |      | 184    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | tert-Butylbenzene           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Tetrachloroethene           | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 2.0    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Tetrahydrofuran             | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Toluene                     | mg/L  | SW8260C | < 0.00200 |                  |                    |      | -      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | trans-1,2-Dichloroethene    | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4      |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | trans-1,3-Dichloropropene   | mg/L  | SW8260C | < 0.00200 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | trans-1,4-Dichloro-2-butene | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 1    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Trichloroethene             | mg/L  | SW8260C | < 0.00200 |                  |                    |      | 4.7    |      |              |      | 11/3/2011 0413h |
|               |                             |       |         |           |                  |                    |      |        |      |              |      |                 |

Report Date: 11/7/2011 Page 76 of 79



#### Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **QC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace

Dept: MSVOA
QC Type: MBLK

| Sample ID     | Analyte                     | Units | Method  | Result    | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD | RPD<br>Limit | Qual | Date Analyzed   |
|---------------|-----------------------------|-------|---------|-----------|------------------|--------------------|------|--------|------|--------------|------|-----------------|
| MB-SPLP-15304 | Trichlorofluoromethane      | mg/L  | SW8260C | < 0.00200 |                  |                    |      | - 12   |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Vinyl acetate               | mg/L  | SW8260C | < 0.0100  |                  |                    |      | 1.5    |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Vinyl chloride              | mg/L  | SW8260C | < 0.00100 |                  |                    |      |        |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Surr: 1,2-Dichloroethane-d4 | %REC  | SW8260C | 0.0552    | 0.05000          |                    | 110  | 69-132 |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Surr: 4-Bromofluorobenzene  | %REC  | SW8260C | 0.0487    | 0.05000          |                    | 97.5 | 85-118 |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Surr: Dibromofluoromethane  | %REC  | SW8260C | 0.0495    | 0.05000          |                    | 99.0 | 80-120 |      |              |      | 11/3/2011 0413h |
| MB-SPLP-15304 | Surr: Toluene-d8            | %REC  | SW8260C | 0.0504    | 0.05000          |                    | 101  | 81-120 |      |              |      | 11/3/2011 0413h |



Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

IGES

Lab Set ID: 1110545

Client:

Project: Red Leaf ECOSHALE / 01109-013

Contact: John Wallace Dept: MSVOA

QC Type: MS

| Sample ID      | Analyte                     | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD           | RPD<br>Limit                                                              | Qual                                                | Date Analyzed   |
|----------------|-----------------------------|-------|---------|--------|------------------|--------------------|------|--------|----------------|---------------------------------------------------------------------------|-----------------------------------------------------|-----------------|
| 1111038-005AMS | 1,1,1-Trichloroethane       | mg/L  | SW8260C | 0.0209 | 0.02000          | 0                  | 104  | 67-147 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | 1,1-Dichloroethene          | mg/L  | SW8260C | 0.0159 | 0.02000          | 0                  | 79.3 | 51-152 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | 1,2-Dichlorobenzene         | mg/L  | SW8260C | 0.0185 | 0.02000          | 0                  | 92.6 | 70-130 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | 1,2-Dichloroethane          | mg/L  | SW8260C | 0.0203 | 0.02000          | 0                  | 101  | 39-162 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | 1,2-Dichloropropane         | mg/L  | SW8260C | 0.0195 | 0.02000          | 0                  | 97.5 | 59-135 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Benzene                     | mg/L  | SW8260C | 0.0197 | 0.02000          | 0                  | 98.6 | 66-145 | :-140<br>:-146 |                                                                           | 11/3/2011 0307h                                     |                 |
| 1111038-005AMS | Chlorobenzene               | mg/L  | SW8260C | 0.0183 | 0.02000          | 0                  | 91.7 | 63-140 | 11/<br>11/     |                                                                           | 11/3/2011 0307h                                     |                 |
| 1111038-005AMS | Chloroform                  | mg/L  | SW8260C | 0.0183 | 0.02000          | 0                  | 91.6 | 50-146 |                | 11/3/20<br>11/3/20<br>11/3/20<br>11/3/20<br>11/3/20<br>11/3/20<br>11/3/20 |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Ethylbenzene                | mg/L  | SW8260C | 0.0183 | 0.02000          | 0                  | 91.4 | 69-133 |                |                                                                           | 11/3/20<br>11/3/20<br>11/3/20<br>11/3/20<br>11/3/20 |                 |
| 1111038-005AMS | Isopropylbenzene            | mg/L  | SW8260C | 0.0194 | 0.02000          | 0                  | 97.1 | 60-147 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Methyl tert-butyl ether     | mg/L  | SW8260C | 0.0184 | 0.02000          | 0                  | 91.9 | 37-189 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Methylene chloride          | mg/L  | SW8260C | 0.0196 | 0.02000          | 0                  | 98.2 | 55-176 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Naphthalene                 | mg/L  | SW8260C | 0.0147 | 0.02000          | 0                  | 73.6 | 41-131 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Tetrahydrofuran             | mg/L  | SW8260C | 0.0213 | 0.02000          | 0                  | 107  | 43-146 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Toluene                     | mg/L  | SW8260C | 0.0182 | 0.02000          | 0                  | 91.0 | 18-192 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Trichloroethene             | mg/L  | SW8260C | 0.0182 | 0.02000          | 0                  | 91.0 | 61-153 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Surr: 1,2-Dichloroethane-d4 | %REC  | SW8260C | 0.0549 | 0.05000          |                    | 110  | 77-144 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Surr: 4-Bromofluorobenzene  | %REC  | SW8260C | 0.0463 | 0.05000          |                    | 92.6 | 80-123 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Surr: Dibromofluoromethane  | %REC  | SW8260C | 0.0482 | 0.05000          |                    | 96.3 | 80-124 |                |                                                                           |                                                     | 11/3/2011 0307h |
| 1111038-005AMS | Surr: Toluene-d8            | %REC  | SW8260C | 0.0485 | 0.05000          |                    | 97.1 | 80-125 |                |                                                                           |                                                     | 11/3/2011 0307h |



Salt Lake City, UT 84115

Phone: (801) 263-8686. Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

#### **OC SUMMARY REPORT**

Contact:

Dept:

John Wallace

MSVOA

QC Type: MSD

Client: IGES Lab Set ID: 1110545

Project:

Red Leaf ECOSHALE / 01109-013

| Sample ID       | Analyte                     | Units | Method  | Result | Amount<br>Spiked | Original<br>Amount | %REC | Limits | %RPD   | RPD<br>Limit | Qual | Date Analyzed   |
|-----------------|-----------------------------|-------|---------|--------|------------------|--------------------|------|--------|--------|--------------|------|-----------------|
| 1111038-005AMSD | 1,1,1-Trichloroethane       | mg/L  | SW8260C | 0.0212 | 0.02000          | 0                  | 106  | 67-147 | 1.38   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | 1,1-Dichloroethene          | mg/L  | SW8260C | 0.0174 | 0.02000          | 0                  | 87.2 | 51-152 | 9.55   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | 1,2-Dichlorobenzene         | mg/L  | SW8260C | 0.0186 | 0.02000          | 0                  | 93.0 | 70-130 | 0.485  | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | 1,2-Dichloroethane          | mg/L  | SW8260C | 0.0203 | 0.02000          | 0                  | 102  | 39-162 | 0.0985 | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | 1,2-Dichloropropane         | mg/L  | SW8260C | 0.0200 | 0.02000          | 0                  | 99.8 | 59-135 | 2.33   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Benzene                     | mg/L  | SW8260C | 0.0203 | 0.02000          | 0                  | 102  | 66-145 | 2.85   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Chlorobenzene               | mg/L  | SW8260C | 0.0188 | 0.02000          | 0                  | 94.0 | 63-140 | 2.42   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Chloroform                  | mg/L  | SW8260C | 0.0188 | 0.02000          | 0                  | 93.9 | 50-146 | 2.53   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Ethylbenzene                | mg/L  | SW8260C | 0.0190 | 0.02000          | 0                  | 94.8 | 69-133 | 3.65   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Isopropylbenzene            | mg/L  | SW8260C | 0.0198 | 0.02000          | 0                  | 99.1 | 60-147 | 2.04   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Methyl tert-butyl ether     | mg/L  | SW8260C | 0.0187 | 0.02000          | 0                  | 93.7 | 37-189 | 1.94   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Methylene chloride          | mg/L  | SW8260C | 0.0214 | 0.02000          | 0                  | 107  | 55-176 | 8.81   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Naphthalene                 | mg/L  | SW8260C | 0.0149 | 0.02000          | 0                  | 74.5 | 41-131 | 1.28   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Tetrahydrofuran             | mg/L  | SW8260C | 0.0215 | 0.02000          | 0                  | 108  | 43-146 | 0.841  | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Toluene                     | mg/L  | SW8260C | 0.0188 | 0.02000          | 0                  | 94.2 | 18-192 | 3.51   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Trichloroethene             | mg/L  | SW8260C | 0.0185 | 0.02000          | 0                  | 92.3 | 61-153 | 1.47   | 25           |      | 11/3/2011 0329h |
| 1111038-005AMSD | Surr: 1,2-Dichloroethane-d4 | %REC  | SW8260C | 0.0550 | 0.05000          |                    | 110  | 77-144 |        |              |      | 11/3/2011 0329h |
| 1111038-005AMSD | Surr: 4-Bromofluorobenzene  | %REC  | SW8260C | 0.0474 | 0.05000          |                    | 94.9 | 80-123 |        |              |      | 11/3/2011 0329h |
| 1111038-005AMSD | Surr: Dibromofluoromethane  | %REC  | SW8260C | 0.0492 | 0.05000          |                    | 98.3 | 80-124 |        |              |      | 11/3/2011 0329h |
| 1111038-005AMSD | Surr: Toluene-d8            | %REC  | SW8260C | 0.0491 | 0.05000          |                    | 98.2 | 80-125 |        |              |      | 11/3/2011 0329h |

#### **American West Analytical Laboratories**

100'S set

| America      | n vvest i knary treat in                                          |                                                  |                      |                 | 11/3                                  | 1/11 -                |                   |
|--------------|-------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------|---------------------------------------|-----------------------|-------------------|
| WORK O       | RDER Summary                                                      |                                                  |                      |                 | · · · · · · · · · · · · · · · · · · · | Work Orde             | r: 1110545        |
| Client:      | IGES                                                              |                                                  |                      |                 |                                       | Page 1 of 3           | 10/31/2011        |
| Client ID:   | IGE100                                                            |                                                  | Contact: Jo          | ohn Wallace     |                                       |                       |                   |
| Project:     | Red Leaf ECOSHALE / 01109                                         | 0-013                                            | QC Level: L          | EVEL I          |                                       | WO Type:              | Standard          |
| Comments:    | 3 Day Rush - see instructions of 31-11 TOC's sent out, instrument | of where report is to be sent. DO ent problems.; | NOT send report to I | GES, invoice on | ly. All work is t                     | o be done on the SPL  | P leachate. / 10- |
| Sample ID    | Client Sample ID                                                  | Collected Date                                   | Received Date        | Date Due        | Matrix                                | Test Code             | Sel Storage       |
| 1110545-001A | R11-122 #1                                                        | 10/27/2011 0930h                                 | 10/27/2011 1346h     | 1,1/1/2011      | Solid                                 | 1312LM-PR             | TCLPFridge        |
|              |                                                                   |                                                  |                      |                 |                                       | 1312LO-PR             | TCLPFridge        |
|              |                                                                   |                                                  |                      |                 |                                       | 1312ZHE-PR            | TCLPFridge        |
|              |                                                                   |                                                  |                      |                 |                                       | 3005A-SPLP-PR         | TCLPFridge        |
|              |                                                                   |                                                  |                      |                 |                                       | 3510-SVOA-<br>TCLP-PR | TCLPFridge        |
|              | SEL Analytes: B CA CR FE M                                        | G MO K NA SN V                                   |                      |                 |                                       | 6010C-SPLP            | ▼ TCLPFridge      |
|              |                                                                   | ·                                                |                      |                 |                                       | COOO GDY D            | CI BOY DE 11      |

|              |                                 |                         | 3510-SVOA-<br>TCLP-PR | Ш        | TCLPFridge |
|--------------|---------------------------------|-------------------------|-----------------------|----------|------------|
|              |                                 |                         | 6010C-SPLP            | <b>✓</b> | TCLPFridge |
|              | SEL Analytes: B CA CR FE MG MO  | K NA SN V               |                       |          |            |
|              |                                 |                         | 6020-SPLP             | <b>~</b> | TCLPFridge |
|              | SEL Analytes: SB AS BA BE CD CU | PB MN NI SE AG SR TL ZN |                       |          | ·          |
|              |                                 |                         | 8260-W-SPLP           | <b>✓</b> | TCLPFridge |
|              |                                 |                         | 8270-W-SPLP           | <b>✓</b> | TCLPFridge |
|              |                                 |                         | ALK-W-2320B           | <b>V</b> | TCLPFridge |
|              | SEL Analytes: ALK               |                         |                       |          |            |
|              |                                 |                         | CL-W-4500CLE          |          | TCLPFridge |
|              |                                 |                         | F-W-4500FC            |          | TCLPFridge |
|              |                                 |                         | HG-SPLP-7470A         |          | TCLPFridge |
|              |                                 |                         | HG-SPLP-PR            |          | TCLPFridge |
|              |                                 |                         | NO2/NO3-W-            |          | TCLPFridge |
|              |                                 |                         | 353.2                 |          |            |
| 745.51       |                                 |                         | OGB-W-1664A           |          | TCLPFridge |
|              |                                 |                         | OUTSIDE LAB           |          | TCLPFridge |
|              |                                 |                         | PH-4500H+B            |          | TCLPFridge |
|              |                                 |                         | SO4-W-4500SO4I        | 3 🔲      | TCLPFridge |
|              |                                 |                         | TDS-W-2540C           |          | TCLPFridge |
| 1110545-002A | R11-122 #2                      | 10/27/2011 0935h        | 1312LM-PR             |          | TCLPFridge |
|              | ·                               |                         | 1312LO-PR             |          | TCLPFridge |
|              |                                 |                         | 1312ZHE-PR            |          | TCLPFridge |
|              |                                 |                         | 3005A-SPLP-PR         |          | TCLPFridge |

| WORK O       | RDER Summary IGES            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | Work Order<br>Page 2 of 3 | ••       | 1110545<br>10/31/2011 | ; |
|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------|---------------------------|----------|-----------------------|---|
| Sample ID    | Client Sample ID             | Collected Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Received Date    | Date Due  | Matrin |                           | 0.1      |                       |   |
|              | Chefit Sample 1D             | Conected Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Received Date    | Date Due  | Matrix | Test Code                 | Sei      | Storage               |   |
| 1110545-002A | R11-122 #2                   | 10/27/2011 0935h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/27/2011 1346h | 11/1/2011 | Solid  | 3510-SVOA-<br>TCLP-PR     |          | TCLPFridge            | 1 |
|              | SEL Analytes: B CA CR FE MG  | MO K NA SN V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |           |        | 6010C-SPLP                | <b>√</b> | TCLPFridge            |   |
|              | SEL Analytes: SB AS BA BE CD | CU PB MN NI SE AG SR TL ZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |        | 6020-SPLP                 | <b>✓</b> | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 8260-W-SPLP               | <b>✓</b> | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 8270-W-SPLP               | <b>✓</b> | TCLPFridge            | _ |
|              | SEL Analytes: ALK            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | ALK-W-2320B               | <b>V</b> | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | CL-W-4500CLE              |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | F-W-4500FC                |          | TCLPFridge            | _ |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | HG-SPLP-7470A             |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | HG-SPLP-PR                |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | NO2/NO3-W-<br>353.2       |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | OGB-W-1664A               |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | OUTSIDE LAB               |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           | 1,44   | PH-4500H+B                |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | SO4-W-4500SO4E            |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | TDS-W-2540C               |          | TCLPFridge            |   |
| 1110545-003A | R11-122 #3                   | 10/27/2011 0940h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | -         |        | 1312LM-PR                 |          | TCLPFridge            |   |
|              | · .                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 1312LO-PR                 |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 1312ZHE-PR                |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 3005A-SPLP-PR             |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 3510-SVOA-<br>TCLP-PR     |          | TCLPFridge            |   |
|              | SEL Analytes: B CA CR FE MG  | MO K NA SN V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |           |        | 6010C-SPLP                | <b>✓</b> | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 6020-SPLP                 | <b>~</b> | TCLPFridge            |   |
|              | SEL Analytes: SB AS BA BE CD | CU PB MN NI SE AG SR TL ZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |           |        | y a Alexandra             |          |                       |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 8260-W-SPLP               | ✓        | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | 8270-W-SPLP               | <b>✓</b> | TCLPFridge            |   |
|              | SEL Analytes: ALK            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | ALK-W-2320B               | ✓        | TCLPFridge            |   |
|              |                              | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                  |           |        | CL-W-4500CLE              |          | TCLPFridge            |   |
|              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |        | F-W-4500FC                |          | TCLPFridge            |   |

| WORK O Client: | RDER Summary IGES |                                         |                  |           |        | Work Order<br>Page 3 of 3 | 1110545<br>10/31/2011 |
|----------------|-------------------|-----------------------------------------|------------------|-----------|--------|---------------------------|-----------------------|
| Sample ID      | Client Sample ID  | Collected Date                          | Received Date    | Date Due  | Matrix | Test Code                 | Sel Storage           |
| 1110545-003A   | R11-122 #3        | 10/27/2011 0940h                        | 10/27/2011 1346h | 11/1/2011 | Solid  | HG-SPLP-7470A             | TCLPFridge            |
|                |                   |                                         |                  |           |        | HG-SPLP-PR                | TCLPFridge            |
|                |                   |                                         |                  |           |        | NO2/NO3-W-<br>353.2       | TCLPFridge            |
|                |                   |                                         |                  |           |        | OGB-W-1664A               | TCLPFridge            |
|                |                   |                                         |                  |           |        | OUTSIDE LAB               | TCLPFridge            |
|                |                   |                                         |                  |           |        | PH-4500H+B                | TCLPFridge            |
|                |                   |                                         |                  |           |        | SO4-W-4500SO4E            | TCLPFridge            |
|                |                   | *************************************** |                  |           |        | TDS-W-2540C               | TCLPFridge            |

TCLPFridge

3510-SVOA-TCLP-PR



### RUSH

|              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   |                       |          |             |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------------------------------------|-------------------|-----------------------|----------|-------------|
| WORK O       | RDER Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | Work Orde             | r:       | 1110545     |
| Client:      | IGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | Page 1 of 3           |          | 10/28/2011  |
| Client ID:   | IGE100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contact:        | Joh   | n Wallace                               |                   | _                     |          |             |
| Project:     | Red Leaf ECOSHALE / 01109-013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QC Level:       | LEV   | VEL I HASPS                             |                   | WO Type:              |          | Standard .  |
| Comments:    | 3 Day Rush - see instructions of where i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | report is to be sent. DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOT send report | to IG | ES, invoice only.                       | All work is to be |                       | P le     |             |
| Sample ID    | Client Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Collected Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Received Date   | e     | Date Due                                | Matrix            | Test Code             | Sel      | Storage     |
| 1110545-001A | R11-122#1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/27/2011 0930h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/27/2011 1346 | 6h    | 11/1/2011                               | Solid             | 1312LM-PR             |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The American Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control |                 |       |                                         |                   | 1312LO-PR             |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 1312ZHE-PR            |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T-V-MANUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |                                         |                   | 3005A-SPLP-PR         |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |                                         |                   | 3510-SVOA-<br>TCLP-PR |          | TCLPFridge  |
|              | SEL Analytes: B CA CR FE MG MO K N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IA SN V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |       | *************************************** |                   | 6010C-SPLP            | <b>✓</b> | TCLPFridge  |
|              | SEL Analytes: SB AS BA BE CD CU PB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MN NI SE AG SR TL ZN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |       |                                         |                   | 6020-SPLP             | <b>V</b> | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 8260-W-SPLP           | <b>V</b> | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 8270-W-SPLP           | <b>✓</b> | TCLPFridge  |
|              | SEL Analytes: ALK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | ALK-W-2320B           | <b>V</b> | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | CL-W-4500CLE          |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | F-W-4500FC            |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -               |       |                                         |                   | HG-SPLP-7470A         |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | HG-SPLP-PR            |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | NO2/NO3-W-<br>353.2   |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | OGB-W-1664A           |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | PH-4500H+B            |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | SO4-W-4500SO41        | 3 🔲      | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ٠     |                                         |                   | TDS-W-2540C           |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | TOC-W-5310B           |          | TCLPFridge  |
| 1110545-002A | R11-122 #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/27/2011 093 <i>5</i> h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |                                         |                   | 1312LM-PR             |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 1312LO-PR             |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 1312ZHE-PR            |          | TCLPFridge  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |                                         |                   | 2005 A CDI D DD       |          | TOI DEsides |

| WORK O       | RDER Summary                                                                                                                     |                                  |                  |           |                                         | Work Orde             | r:       | 111054     | 5 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|-----------|-----------------------------------------|-----------------------|----------|------------|---|
| Client:      | IGES                                                                                                                             |                                  |                  |           |                                         | Page 2 of 3           |          | 10/28/2011 |   |
| Sample ID    | Client Sample ID                                                                                                                 | Collected Date                   | Received Date    | Date Due  | Matrix                                  | Test Code             | Sel      | Storage    |   |
| 1110545-002A | R11-122 #2<br>SEL Analytes: B CA CR FE MG                                                                                        | 10/27/2011 0935h<br>MO K NA SN V | 10/27/2011 1346h | 11/1/2011 | Solid                                   | 6010C-SPLP            | <b>✓</b> | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 6020-SPLP             | <b>V</b> | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 8260-W-SPLP           | <b>✓</b> | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 8270-W-SPLP           | ✓        | TCLPFridge |   |
|              | SEL Analytes: ALK                                                                                                                |                                  |                  |           |                                         | ALK-W-2320B           | <b>✓</b> | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | CL-W-4500CLE          |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | F-W-4500FC            |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | HG-SPLP-7470A         |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | HG-SPLP-PR            |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | NO2/NO3-W-<br>353.2   |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | OGB-W-1664A           |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | PH-4500H+B            |          | TCLPFridge |   |
|              | IGES Client Sample ID  A R11-122 #2 SEL Analytes: B CA CR FE MG MO K NA SEL Analytes: SB AS BA BE CD CU PB MN  SEL Analytes: ALK |                                  |                  |           |                                         | SO4-W-4500SO4E        |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | TDS-W-2540C           |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | TOC-W-5310B           |          | TCLPFridge |   |
| 1110545-003A | R11-122 #3                                                                                                                       | 10/27/2011 0940h                 | · · ·            |           |                                         | 1312LM-PR             |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 1312LO-PR             |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 1312ZHE-PR            |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 3005A-SPLP-PR         |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 3510-SVOA-<br>TCLP-PR |          | TCLPFridge |   |
|              | SEL Analytes: B CA CR FE MG                                                                                                      | MO K NA SN V                     |                  |           |                                         | 6010C-SPLP            | ✓        | TCLPFridge |   |
|              | SEL Analytes: SB AS BA BE CD                                                                                                     | CU PB MN NI SE AG SR TL ZN       |                  |           |                                         | 6020-SPLP             | ✓        | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           | , , , , , , , , , , , , , , , , , , , , | 8260-W-SPLP           | <b>V</b> | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | 8270-W-SPLP           | <b>V</b> | TCLPFridge |   |
|              | SEL Analytes: ALK                                                                                                                |                                  |                  |           |                                         | ALK-W-2320B           | <b>V</b> | TCLPFridge |   |
|              | Was no a manage will a k hold h                                                                                                  |                                  |                  |           |                                         | CL-W-4500CLE          |          | TCLPFridge | _ |
|              |                                                                                                                                  |                                  |                  |           |                                         | F-W-4500FC            |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | HG-SPLP-7470A         |          | TCLPFridge |   |
|              |                                                                                                                                  |                                  |                  |           |                                         | HG-SPLP-PR            |          | TCLPFridge |   |

| WORK O       | RDER Summary IGES |                  |                  |           |             | Work Order:<br>Page 3 of 3 | 1110545<br>10/28/2011 |
|--------------|-------------------|------------------|------------------|-----------|-------------|----------------------------|-----------------------|
| Sample ID    | Client Sample ID  | Collected Date   | Received Date    | Date Due  | Matrix      | Test Code                  | Sel Storage           |
| 1110545-003A | R11-122 #3        | 10/27/2011 0940h | 10/27/2011 1346h | 11/1/2011 | Solid       | NO2/NO3-W-<br>353.2        | TCLPFridge            |
|              |                   |                  |                  |           |             | OGB-W-1664A                | TCLPFridge            |
|              |                   |                  |                  | 1-1       | -           | PH-4500H+B                 | TCLPFridge            |
|              |                   |                  |                  |           |             | SO4-W-4500SO4E             | TCLPFridge            |
|              |                   |                  |                  |           | -,*, * * *. | TDS-W-2540C                | TCLPFridge            |
|              |                   |                  |                  |           |             | TOC-W-5310B                | TCLPFridge            |

| TICCT                                   |                                       |                                                |                         |             |                    |             |                |           |              |      |                  |        |                |          |           |             |       |       |            |              |                                        |                |               |
|-----------------------------------------|---------------------------------------|------------------------------------------------|-------------------------|-------------|--------------------|-------------|----------------|-----------|--------------|------|------------------|--------|----------------|----------|-----------|-------------|-------|-------|------------|--------------|----------------------------------------|----------------|---------------|
| Client IGES, INC. Address 4153 Commence |                                       |                                                |                         |             |                    |             | AMI            |           | CAN<br>EST   |      |                  |        | IN             |          |           | Lab         | Samp  | ole S | et #       | /            | 1//05                                  | 3/5            |               |
|                                         |                                       |                                                |                         |             |                    |             | NAL            |           |              |      | $\boldsymbol{C}$ | US:    | TO             | DY       |           | Page        |       |       |            |              |                                        |                |               |
| SLC UT City State                       | 84/0<br>Zip                           | 27_                                            |                         |             | 40                 | 53 We       | ORA'<br>est 36 | 00 S      | outh         |      | (888)            | 8) 263 | 3-868<br>3-868 | 6        |           | Tur         |       |       |            | -            | cle One)                               |                |               |
| Phone 801-270-9406 Fax 8                | Y-270-94                              | 0/_                                            |                         | Δ           | S                  | alt La      | ike C          | ity, U    | Utah<br>4115 | Fax  | (801             | 263    | 3-868          | 7        | 0070      |             |       |       |            | `            | lay 5 da                               |                | ndard         |
| Contact Solm Walace                     |                                       |                                                |                         | _<br>       |                    | ····        |                |           |              |      |                  |        |                | -iaus    | .com      |             |       |       |            | /<br>기୮      |                                        |                |               |
| E-mail Johnwe 19851                     | wc. com                               | <u>,                                      </u> |                         |             |                    | <del></del> | <del></del> -  | 11        | EST          | SR   | EQU              | IRE    | D              |          |           | •           | QC LI | EVE   | L          | L            | ABORATOF                               | YUSE           | ONLY          |
| Project Name Red Left 200:              | SHALE                                 |                                                |                         |             | Total)             |             |                |           |              |      |                  |        |                |          |           | 4           | 2     | ,     | 2+         | S/           | AMPLES WE<br>Shipped of                | RE:<br>hand de | livered       |
| Project Number/P.O.# 01/09-01.          | 3                                     | <del></del>                                    | Date/Time               |             | Containers (Total) |             |                |           |              |      |                  |        |                |          |           | '           | 2     | 4     | <b>4</b> T |              | Notes:                                 |                | $\mathcal{A}$ |
| Sampler Name J. WA/Acz                  |                                       |                                                | Collected               |             | Conta              | Ì           |                |           |              |      |                  |        |                |          |           | 3           | 3+    | F 4   | 4          | 2            | Ambient on Notes:                      | _              | '             |
|                                         | · · · · · · · · · · · · · · · · · · · |                                                |                         | Matrix      | nber of            |             |                |           |              |      |                  |        |                |          |           |             |       |       |            | 3            | Temperatu                              | e <u>/ ()°</u> |               |
| Sample ID                               |                                       |                                                |                         | Σ           | Nu                 |             |                |           |              |      |                  |        |                |          |           | C           | COMM  | IENT  | rs         | 11           | Received E                             | roken/Le       | eaking        |
| R/1-122                                 | #1                                    |                                                | 10/27/110930            | 2           | 1                  |             |                | - }       | - ]          | 1    |                  |        |                |          |           |             |       |       |            |              | (Improperly<br>Y                       | Sealed)        | `)            |
| R11-122                                 | #2                                    |                                                | 10/27/11 0935           | -           | 1                  |             |                | A         | H            | 1    | TA               | CH     | E              |          |           |             |       |       |            |              | Notes:                                 |                |               |
| R11-122                                 | #3                                    |                                                | 10/27/11 0940           | 2           | /                  |             |                | 1         | 72           |      | 20               | )      |                |          |           |             |       |       |            | 5            | Properly Pr                            | N              |               |
|                                         | ····                                  |                                                |                         |             |                    |             |                |           |              |      | _,               |        |                |          |           |             |       |       |            |              | Checked as<br>Y<br>Notes:              | N Bench        |               |
|                                         |                                       |                                                |                         |             |                    | /           |                |           | 1            | c_/_ | 14               |        | 5              | 7        | 0         | a           |       |       |            |              |                                        |                |               |
|                                         |                                       |                                                | 71                      |             |                    |             | 14             | 4         | 24           | 1    |                  |        |                |          |           |             | ,     |       | 4          | ]            | District                               | Plate !        |               |
|                                         | · · · · · · · · · · · · · · · · · · · |                                                |                         | 1//         |                    |             | -              | 4         | _/           | ۷    | ,-               | A      | 112            | A        | $\square$ | ERZ.        |       |       |            | الـ<br>، الـ | Received V<br>Holding Tir<br>Y)        |                |               |
|                                         |                                       |                                                |                         |             |                    | ,<br>W      | 1              | 4         | 1/2          | (    |                  | 70     | 1              |          | <u> </u>  | M           | eme   | 2_    |            | -∐           | Notes:                                 |                |               |
|                                         |                                       | · · · · · · · · · · · · · · · · · · ·          |                         | $\vdash$    | 7                  |             |                | $\equiv$  |              | _    |                  |        | 4              |          |           |             |       |       |            | $\parallel$  |                                        |                |               |
|                                         |                                       |                                                |                         | -           |                    |             |                | $\exists$ |              |      |                  |        |                | <u> </u> |           |             |       |       |            | -  -         |                                        |                |               |
|                                         |                                       |                                                |                         | -           |                    |             |                |           | •            |      |                  |        |                | <b> </b> |           |             |       |       |            | -II          | OC Tape Wa                             |                |               |
| Relingdished By: Signarure              | Date /                                | Passiv8d I                                     | Signatura d             |             |                    |             |                |           |              |      |                  |        | <u> </u>       | <u> </u> |           |             |       |       |            | <u> </u>     | Present on<br>Rackage                  |                | 214           |
| -the - Illian                           | 10/27/11                              |                                                | Sy Signature   Mu + Ly_ |             |                    |             | te/<br>/27//   |           | Spe          | cial | Instr            | uctio  | ons:           |          |           |             |       |       |            | $-\parallel$ | Y 1                                    |                | NA            |
| PRINT NAME F. WALLA CE                  | Time 46                               | PRINT NA                                       | Ima Harris              | <del></del> | _                  | Tim         | ne<br>13 9     | 16        |              |      |                  |        |                |          |           |             |       |       |            |              | Unbroken o<br>Package<br>Y             |                | NA            |
| Relinquished By: Signature              | Date                                  | Received I                                     | By: Signature           |             |                    | Dat         | te             | $\neg$    |              |      |                  |        |                |          |           |             |       |       |            |              | \                                      |                |               |
| PRINT NAME                              | Time                                  | PRINT NA                                       | ME                      |             |                    | Tim         | пе             | 1         |              |      |                  |        |                |          |           | <del></del> |       |       |            | $\prod_{i}$  | Present on<br>Y                        | i/Sample       | NA            |
| Relinquished By: Signature              | Date                                  | Received I                                     | By: Signature           |             |                    | Dat         | te             | ᅱ         |              |      |                  |        |                |          |           |             |       | H     |            | - 4          | Unbroken o                             | n Samp         | le<br>NA      |
| PRINT NAME                              | Time                                  | PRINT NA                                       | ME                      |             |                    | Tim         | ne             | -         |              |      |                  |        |                |          |           |             |       |       |            | ] _          | · · · · · · · · · · · · · · · · · · ·  | \              |               |
| Palinquished Dy. Signature              | Data                                  | <u></u>                                        |                         |             |                    | <u> </u>    |                | 4         |              |      |                  |        |                |          |           |             |       |       |            | _    S       | iscrepancies<br>ample Labels<br>ecord? | and CC         | ic7           |
| Relinquished By: Signature              | Date                                  |                                                | By: Signature           |             |                    | Dat         |                | }         |              |      |                  |        |                |          |           |             |       |       |            | +            | Y<br>Notes:                            |                | M             |
| PRINT NAME                              | Time                                  | PRINT NA                                       | ME                      |             |                    | Tim         | ne             | ╗         |              |      |                  |        |                |          |           |             |       |       |            | -            |                                        | `              | _             |

#### Memo



4153 South 300 West Salt Lake City, UT 84107 (801) 270-9400 Telephone (801) 270-9401 FAX

| Attention:          | Info: | File: 01109-013      |
|---------------------|-------|----------------------|
|                     |       | Redleaf SPLP Testing |
| Pat Noteboom - AWAL |       |                      |

From: John F. Wallace, P.E. Date: October 27, 2011

Subject: SPLP Testing Requirements

Pat,

Please find accompanying this request, 3 samples identified as R11-122 210 day run #1, 2 & 3. Please perform the following tests on each of the samples in accordance with all applicable EPA methods. Samples were taken the morning of 10/27/11 between 9:30 and 10:00 am as indicated on the accompanying COC.

SPLP analyses as follows-

Three discrete samples will be developed for Synthetic Precipitation Leaching Procedure analysis (SPLP, EPA Method 1312). As requested by the State WQD, leachate developed from each of the three samples tested will be analyzed for the following suite of constituents:

• General Chemistry: pH, total dissolved solids (TDS), major ions including Ca, Cl, K, Mg, Na, SO<sub>4</sub> and alkalinity;

 Organics: total organic carbon, oil and grease, volatile organic compounds (Complete VOC List) and semi-volatile organic compounds (Complete SVOC List);

• Metals: Ag, As, B, Ba, Be, Cd, Cr, Cu, Fe, Hg, Li, Pb, Mn, Mo, Ni, Sb, Se, Sn, Tl(Thalium), V, Zn; and

• Miscellaneous: Nitrate + nitrite, fluoring and strontium

Results will be directed to Mr. James Holtcamp, Esq. in order to maintain attorney client privilege for the data at the following:

Holland & Hart, LLP 60 East South Temple, Suite 2000 Salt Lake City, UT 84111 Ph – 801-799-5847 Email – jholtcamp@hollandhart.com

Please rush testing so that results will be available by next Wednesday 11/2/11. As always, call with any questions. Regards,

hi not an hists -

### APPENDIX H RECLAMATION COVER PERFORMANCE MODELING



TEL: (303) 782-0164 FAX: (303) 782-2560

#### **MEMORANDUM**

| To:      | The Oil Mining Company Inc.                               | Ref#  | 228-6-3          |  |  |
|----------|-----------------------------------------------------------|-------|------------------|--|--|
| CC:      |                                                           | Date: | December 3, 2014 |  |  |
| From:    | Norwest Corporation                                       |       |                  |  |  |
| Subject: | Addendum to Reclamation Cover Performance Modeling Report |       |                  |  |  |

Norwest Corporation (Norwest) submitted the Reclamation Cover Performance Modeling Report (report) to The Oil Mining Company Inc. on February 6, 2014. The report discussed the modeled performance of the designed cap for the EPS capsule using the Hydrologic Evaluation of Landfill Performance (HELP) model. The modeled capsule geometry of 385 ft wide and 695 ft long with 61 ft of spent oil shale ore was consistent with the EPS capsule design at the time the modeling was done. The capsule design has progressed, and this addendum discusses the potential for changes in the modeled cover performance using the revised capsule geometry of 360 ft wide and 705 ft long with 90 to 102 ft of spent oil shale ore.

The modeled drainage length for the coarse material drainage layer (Layer 3) was set to the longest south to north dimension of the capsule at 695 ft, to be conservative. Increasing this dimension to 705 ft is a change of approximately 1.4%. This minor increase in flow path length is expected to have a negligible effect on modeled lateral drainage through the gravel layer, and Norwest expects the modeled average annual lateral drainage to remain at approximately 0.043 inches per year.

The focus of the HELP model work was to evaluate the representative performance of the capsule cover as designed. The report presented an average annual total modeled percolation through the BAS cap (Layer 4) and into the capsule over a 100 year model run. The entirety of the spent oil shale ore is located below the BAS cap, and a revised spent ore thickness of up to 102 ft will not impact modeled percolation through the cap. Modeled average annual percolation through the BAS cap is expected to remain at 0.070 inches per year.

### RECLAMATION COVER PERFORMANCE MODELING

THE OIL MINING COMPANY INC. (TOMCO)

Submitted to: **TOMCO** 

February 6, 2014

#### **Norwest Corporation**

950 So. Cherry St., Suite 800 Denver, Colorado 80246 Tel: (303) 782-0164

Fax: (303) 782-2560

www.norwestcorp.com





#### **TABLE OF CONTENTS**

| 1   | <b>BACKGROUND</b>  | )                                        | 1-1 |
|-----|--------------------|------------------------------------------|-----|
| 2   |                    | S AND LIMITATIONS OF THE HELP MODEL CODE |     |
| 3   | <b>CLOSED CAPS</b> | ULE SIZE AND DESCRIPTION                 | 3-1 |
| 4   | CLIMATE DATA       | <b>\</b>                                 | 4-1 |
|     | 4.1 PRECIPITA      | TION                                     | 4-3 |
|     | 4.2 TEMPERAT       | URE                                      | 4-5 |
|     | 4.3 SOLAR RAI      | DIATION                                  | 4-6 |
|     | 4.4 EVAPOTRA       | NSPIRATION                               | 4-7 |
| 5   | CAPSULE LAY        | ERS AND PARAMETERS                       | 5-1 |
| 6   | MODEL EXECU        | ITION AND RESULTS                        | 6-1 |
| 7   | REFERENCES.        |                                          | 7-1 |
|     |                    | LIST OF TABLES                           |     |
| Tab | le 3-1 Model Lay   | rers                                     | 3-1 |
| Tab | le 4-1 General P   | arameters                                | 4-2 |
| Tab | le 4-2 HELP Mod    | del Weather Data Input Sources           | 4-3 |
| Tab | le 4-3 Mean Mon    | nthly Precipitation (inches)             | 4-4 |
| Tab | le 4-4 Mean Mon    | nthly Precipitation – Site and Model     | 4-5 |
| Tab | le 4-5 Mean Mon    | nthly Temperature (Fahrenheit)           | 4-6 |
| Tab | le 4-6 General P   | arameters                                | 4-8 |
| Tab | le 5-1 Model Par   | ameters                                  | 5-2 |
| Tab | le 6-1 Model Res   | sults                                    | 6-1 |

#### **LIST OF ATTACHMENTS**

Attachment 1 HELP Model Limitations and Assumptions from the Documentation Attachment 2 Meteorological Summary for USW Station by Hatch



#### 1 BACKGROUND

The Oil Mining Company, Inc. (TomCo) holds an oil shale mineral lease on roughly 1,200 acres in the Uintah Basin in an area called the "Holliday Block". TomCo proposes to develop oil shale mining and processing operations in this area using Red Leaf Resources' (RLR's) Eco-Shale Mining process which TomCo has a contractual agreement to use. The Eco-Shale process uses heat to extract kerogen deposits from sedimentary shale deposits. The proposed mining process consists of the simultaneous mining of the oil shale and the creation of heating capsules.

The Eco-Shale process is being demonstrated and tested using a single Early Production System (EPS) capsule at the site. The EPS capsule will have dimensions of 385 feet wide and 695 feet long. Once enough overburden and ore are removed from the mine to create a capsule, a liner of Bentonite Amended Soil (BAS) – made from fines available on site, bentonite, and water is placed on the bottom of the capsule site. The BAS layer surrounds the capsule interior to prevent impacts to groundwater and the surrounding ecosystem. The BAS walls are built up as the inside layers of the capsule is constructed. Within the capsule, from the ground up, is a layer of gravel insulation, followed a collection pan and pipes. The mined ore is placed above the collection pipes, followed by a series of heating pipes to heat the material to extract the kerogen. The mined ore and heating pipes are incrementally stacked on top of each other in the heating capsules. The heating rods heat the material to volatize the kerogen deposits into gas and liquefy the kerogen into a solution which flows through the collection pipes to a central location to eventually undergo further processing. Above the ore, a second layer of gravel insulation is applied, followed by a cap layer of BAS and a layer of coarse, high-permeability gravel or run of mine (ROM) material.

The Eco-Shale process includes a capsule reclamation phase once the kerogen liquid and gas deposits are extracted and the EPS capsule cools. The final cover on the capsules consists of a BAS cap overlain by a layer of coarse overburden, 2 feet of crushed fines, 6 inches of Plant Growth Material (PGM), and a native seed mix designed to result in a vegetated soil layer. This is a common form of a closure cap designed to minimize the potential for infiltration into the capsules with precipitation running off of the cap, being removed by evapotranspiration (ET) from the vegetated cover, or horizontally drained through the coarse overburden layer.



The performance of the designed cap for the EPS capsule was evaluated using the Hydrologic Evaluation of Landfill Performance (HELP) model V 3.07<sup>1</sup> (Schroeder et al., 1994). The HELP model is widely used in evaluating landfill cap and liner performance. The EPS capsule cap was modeled as designed, with the cap design being described more fully in the application. This text describes the assumptions and limitations of the HELP model code, summarizes the pertinent features of the capsule design, the parameters needed for the HELP model, the basis for the parameters used, and the model results.

.

<sup>&</sup>lt;sup>1</sup> Available at http://el.erdc.usace.army.mil/products.cfm?Topic=model&Type=landfill



#### 2 ASSUMPTIONS AND LIMITATIONS OF THE HELP MODEL CODE

The HELP model code is documented with both a User's Guide<sup>2</sup> (guide) and Engineering Documentation<sup>3</sup> (documentation). It is important to note that the purpose of the modeling was to evaluate the representative performance of the **capsule cover as designed**.

Section 5 of the model documentation details the assumptions and limitations of the model code. This section is included as Attachment 1 of this report. Particularly relevant assumptions and limitations for this modeling include:

- 1. The program assumes Darcian flow for vertical drainage through homogeneous and temporally uniform model layers.
- 2. Any soil barrier layer is considered fully saturated at all times with leakage occurring when the soil moisture of the layer above the barrier layer is greater than the field capacity.
- 3. The code can simulate water routing through or storage in up to twenty layers for a period of 1 to 100 years.
- 4. The initial soil moisture content cannot be greater than the porosity or less than the wilting point.
- 5. Program default initial moisture of layers below the top liner system or cover system are generally specified too high for arid and semi-arid locations and too low for very wet locations, particularly when thick profiles are being modeled.
- 6. The program performs water balance analysis for a minimum period of one year. All simulations start on January 1 and end on December 31. The conditions of the landfill, cap, soil properties, layer thicknesses, maximum level of vegetation, etc., are assumed to be constant throughout the simulation period.

<sup>&</sup>lt;sup>2</sup> "The Hydrologic Evaluation of Landfill Performance (HELP) Model – User's Guide for Version 3"

<sup>&</sup>lt;sup>3</sup> "The Hydrologic Evaluation of Landfill Performance (HELP) Model – Engineering Documentation for Version 3"



#### 3 CLOSED CAPSULE SIZE AND DESCRIPTION

The closed EPS capsule is 385 ft wide and 695 ft long with a surface area of approximately 6 acres over the BAS cap. The capsule has 9 layers with the upper four being the BAS cap, coarse overburden layer, crushed fines layer, and growth layer. The 9 layers are shown in Table 3-1.

TABLE 3-1
MODEL LAYERS

| Model<br>Layer | Represents              | Thickness<br>(feet) | Notes                                                   |
|----------------|-------------------------|---------------------|---------------------------------------------------------|
| 1              | Topsoil                 | 0.5                 | Six inches of Plant Growth Material (PGM) from the site |
| 2              | Crushed fines layer     | 2                   | Finely crushed site material                            |
| 3              | Overburden layer        | 2                   | Coarse high permeability gravel or ROM material         |
| 4              | BAS cap                 | 3                   | Low permeability cap                                    |
| 5              | Gravel insulation layer | 13                  | High permeability                                       |
| 6              | Spent ore layer         | 61                  | Spent oil shale                                         |
| 7              | Gravel insulation layer | 13                  | High permeability                                       |
| 8              | Steel Plate             | 0.01                | Oil collection system                                   |
| 9              | BAS liner               | 3                   | Low permeability liner                                  |

The EPS capsule has a cap, sides, and liner consisting of BAS with an in situ permeability of  $1 \times 10^{-7}$  cm/sec or less. Model layers 4 and 9 are of this material. The gravel insulation layers will be higher conductivity material. The spent oil shale is represented with a moderate conductivity material. The BAS cap will be covered and protected with a 2 foot thick layer of coarse overburden material from the site which is model layer 3. The overburden will be overlain by 2 foot thick layer of finely crushed site material which is model layer 2 and a six inch (0.5 ft) thick layer of soil, otherwise known as plant growth material (PGM) which is model layer 1.

The PGM will be gathered during the stripping portion of site preparation with the soil being primarily a silty loam. The crushed fines layer will be 2 feet thick of finely crushed site material. The overburden layer will be a lift of 2 feet of coarse gravel or ROM material with a horizontal permeability equal to or greater than the gravel insulation layers. The cover will be compacted from equipment during the spreading operation. Compaction in the soil will be alleviated by scarification using ripper shanks on a grader.



#### 4 CLIMATE DATA

The water budget for the capsule cap is strongly influenced by the weather regime and growing season at the site. There is a weather station with 15 or more years of data located approximately 14 miles SW (at N 39° 42' 49" West 109° 26' 46" with an elevation of 6,300 ft) from the site with a similar altitude and elevation as the TomCo EPS site which has a surface elevation in the 6,250 to 6,300 ft range. This Upper Sand Wash (USW) RAWS meteorological station had a data analysis period of 15 years from June 1, 1995, to June 30, 2010 in the Hatch report for the RLR site<sup>4</sup>. The summary table of monthly and annual averages from the Hatch report is included as Attachment 2. Some meteorological quantities such as temperature had longer periods of record, but the data set was not complete for all of the quantities shown on Attachment 2.

Given the relatively short period of record for the USW site, Norwest decided to use the HELP model capabilities to generate a longer synthetic weather record as model input to better capture the anticipated long-term variability, especially for periods of higher precipitation. This longer synthetic weather record could be up to 100 years in length. Per the HELP documentation (p. 9), "This generating routine is designed to preserve the dependence in time, the correlation between variables, and the seasonal characteristics in actual weather data at the specified location. Coefficients for weather generation are available for up to 183 cities in the United States."

Three types of daily weather data are required as inputs for the HELP model:

- a. Precipitation
- b. Temperature
- c. Solar Radiation

The HELP model calculates evapotranspiration from the daily weather data, state of the landfill cover, and other model inputs.

There are a number of cities with weather data available in the HELP model. The nearest cities to the TomCo site in the HELP model database are Grand Junction, CO, Salt Lake City UT, Pocatello ID, and Lander, WY. Norwest reviewed the available data from these four cities and compared the available data from the site and the nearby USW station.

The HELP model can generate from 1 to 100 years of data stochastically for selected locations using a synthetic weather generator. The program can improve the statistical characteristics of the resulting daily values by using site specific mean monthly values. Table 4-1 shows the general parameters for the four cities and the USW data.

<sup>4</sup> "Site Climatic Conditions for the Utah Oil Shale Commercial Demonstration Project" Hatch, August 9, 2010.



TABLE 4-1
GENERAL PARAMETERS

| Parameter                        | TomCo<br>(USW)<br>Site | Pocatello, | Salt Lake<br>City, UT | Grand<br>Junction,<br>CO | Lander,<br>WY |
|----------------------------------|------------------------|------------|-----------------------|--------------------------|---------------|
| Latitude (TomCo not USW)         | 39.80                  | 42.55      | 40.76                 | 39.07                    | 42.8          |
| Growing season start day         | 124                    | 132        | 117                   | 109                      | 136           |
| Growing season end day           | 243                    | 275        | 289                   | 293                      | 272           |
| Growing season length (days)     | 119                    | 143        | 172                   | 184                      | 136           |
| Average wind speed (mph)         | 4.9                    | 10.2       | 8.8                   | 8.1                      | 6.9           |
| First quarter relative humidity  | 59.8%                  | 70.0%      | 67.0%                 | 60.0%                    | 60.0%         |
| Second quarter relative humidity | 37.6%                  | 52.0%      | 48.0%                 | 36.0%                    | 50.0%         |
| Third quarter relative humidity  | 37.2%                  | 43.0%      | 39.0%                 | 36.0%                    | 41.0%         |
| Fourth quarter relative humidity | 55.2%                  | 65.0%      | 65.0%                 | 57.0%                    | 59.0%         |
| Elevation (not from HELP)        | 6,414                  | 4,462      | 4,327                 | 4,593                    | 5,358         |
| Maximum Leaf Area Index (LAI)    | 1.6                    | 1.6        | 1.6                   | 1.6                      | 1.6           |

Norwest took the approach that the coefficients from the city that nearest matched the statistical characteristics of the data available near the site would be used in the synthetic weather generation for model input. Table 4-2 summarizes the primary daily weather data inputs needed for the HELP model and the basis for the data sets used. Precipitation, temperature, solar radiation, and evapotranspiration data are inputs required to develop the synthetic weather model. The basis for the data inputs and the coefficients chosen are described in more detail following the Table 4-2. USW parameters and default parameters for the four cities are shown in Tables 4-3 through 4-5.

Site specific data such as average monthly precipitation, site altitude, and site latitude were input within the HELP model to improve the generation of the synthetic weather record where it was possible. USW data for precipitation, temperature and relative humidity were used with the TOMCO site elevation and latitude in the generation of the synthetic data sets. This resulted in a synthetic weather record for use in the HELP model that was generated using the model available coefficients from different sites since different components of the USW weather record were better approximated by varied HELP sites. This honored the characteristics of the site data as closely as possible while creating a longer, more robust climatic data set. This longer data set enabled the testing of the designed cover against a data set containing a more representative spread of input values (for instance wetter years) than the available 15 year data set from the USW station. The specific parts of the synthetic weather record are discussed below.



TABLE 4-2
HELP MODEL WEATHER DATA INPUT SOURCES

| Weather Data Input<br>for HELP Model | Site Data                                                                                                                      | Coefficients used<br>with Site Data to<br>Generate HELP<br>Model Inputs | Comments                                                                                                                                                                                |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precipitation                        | USW Mean Monthly<br>precipitation (from 15<br>year data summary by<br>Hatch)                                                   | Grand Junction, CO                                                      |                                                                                                                                                                                         |
| Temperature                          | USW Mean Monthly<br>precipitation (from 15<br>year data summary by<br>Hatch)                                                   | Pocatello, ID                                                           |                                                                                                                                                                                         |
| Solar Radiation                      | TomCo site Latitude,<br>HELP model generated<br>synthetic precipitation<br>data set                                            | Pocatello, ID                                                           | A strong function of precipitation which was generated using the USW mean monthly precipitation. Sensitivity HELP model run done using Grand Junction, CO solar radiation coefficients. |
| Evapotranspiration                   | TomCo site latitude and elevation. USW average wind speed, relative humidity. Growing season length from City of Vernal, Utah. | Function of previous 3 weather data sets and model state.               | Used listed site data plus the synthetic precipitation, temperature, and solar radiation. Did sensitivity run using growing season calculated from USW temperature record.              |

#### 4.1 PRECIPITATION

The synthetic precipitation generator was used to create the daily precipitation values used in the HELP modeling, given the limited record of precipitation data available. The HELP documentation states (p. 16):

"Synthetic Precipitation Option (Customary or Metric Units). The program will generate from 1 to 100 years of daily precipitation data stochastically for the selected location using a synthetic weather generator. The precipitation data will have approximately the same statistical characteristics as the historic data at the selected location. If desired, the user can enter normal mean monthly precipitation values for the specific location to improve the statistical characteristics of the resulting daily values. The user is advised to enter normal mean monthly precipitation values if the project site is located more than a few miles from the city selected from Table 4-2 or if the land use or topography varies between the site and city. The daily values will vary from month to month and from year to year and will not equal the normal values



entered. The same data is produced every time the option is used for a given location. The data required by the synthetic weather generator are:

- Location (select from a list of 139 U.S. cities in Table 4-2)
- Number of years of data to be generated
- Normal mean monthly precipitation (Optional, default values are available.)"

The site is located more than a few miles from the nearest HELP model cities. Therefore, the site mean monthly precipitation was compared to the available cities as shown in Table 4-3. The closest match for the precipitation volumes and pattern of lower winter precipitation and higher precipitation in late summer was judged to be Grand Junction, Colorado. Grand Junction also provides the closest match for relative humidity for the four quarters with an average difference of 0.2% and a maximum difference of -1.8% for the fourth quarter.

TABLE 4-3
MEAN MONTHLY PRECIPITATION (INCHES)

| meat morning in the manual (money) |                        |                     |                            |                          |  |  |
|------------------------------------|------------------------|---------------------|----------------------------|--------------------------|--|--|
| Month                              | TomCo<br>(USW)<br>Site | Pocatello,<br>Idaho | Salt Lake<br>City,<br>Utah | Grand<br>Junction,<br>CO |  |  |
| January                            | 0.3                    | 1.13                | 1.35                       | 0.64                     |  |  |
| February                           | 0.4                    | 0.86                | 1.33                       | 0.54                     |  |  |
| March                              | 0.6                    | 0.94                | 1.72                       | 0.75                     |  |  |
| April                              | 0.9                    | 1.16                | 2.21                       | 0.71                     |  |  |
| May                                | 0.6                    | 1.2                 | 1.47                       | 0.76                     |  |  |
| June                               | 0.8                    | 1.06                | 0.97                       | 0.44                     |  |  |
| July                               | 0.7                    | 0.47                | 0.72                       | 0.47                     |  |  |
| August                             | 1.3                    | 0.6                 | 0.92                       | 0.91                     |  |  |
| September                          | 1.6                    | 0.65                | 0.89                       | 0.7                      |  |  |
| October                            | 1.1                    | 0.92                | 1.14                       | 0.87                     |  |  |
| November                           | 0.4                    | 0.91                | 1.22                       | 0.63                     |  |  |
| December                           | 0.3                    | 0.96                | 1.37                       | 0.58                     |  |  |
| Total                              | 9.0                    | 10.86               | 15.31                      | 8.00                     |  |  |

- 1. Lander, WY monthly precipitation data not available in HELP model
- 2. TomCo site data from Upper Sand Wash station

Site specific values of mean monthly precipitation (following the HELP manual) were used with the Grand Junction, CO coefficients to generate 100 years of daily precipitation. Table 4-4 compares the synthetic mean monthly precipitation for the synthetic 100-year period to the data available from the USW station 15-year data set. This table shows the synthetic mean monthly precipitation closely approximating the site data with the 100-year record having approximately 2.2% more average annual precipitation than the site record. The standard deviation is also shown for each month and the annual average, showing the variation in the synthetic data set generated with the USW site data.



TABLE 4-4
MEAN MONTHLY PRECIPITATION – SITE AND MODEL

| Month     | TomCo<br>(USW¹)<br>Site | HELP<br>(100 yrs) | HELP<br>STD<br>Deviation |
|-----------|-------------------------|-------------------|--------------------------|
| January   | 0.3                     | 0.30              | 0.16                     |
| February  | 0.4                     | 0.42              | 0.24                     |
| March     | 0.6                     | 0.59              | 0.31                     |
| April     | 0.9                     | 0.93              | 0.52                     |
| May       | 0.6                     | 0.58              | 0.44                     |
| June      | 0.8                     | 0.77              | 0.66                     |
| July      | 0.7                     | 0.77              | 0.59                     |
| August    | 1.3                     | 1.27              | 0.66                     |
| September | 1.6                     | 1.53              | 1.17                     |
| October   | 1.1                     | 1.28              | 0.88                     |
| November  | 0.4                     | 0.46              | 0.31                     |
| December  | 0.3                     | 0.30              | 0.20                     |
| Total     | 9.0                     | 9.20              | 1.91                     |

<sup>1.</sup> TomCo site data from Upper Sand Wash station

The reasonably close match between the synthetic weather data and the best available site data (USW site) in both amount and timing indicates this synthetic precipitation data set is appropriate to use in the HELP modeling.

#### 4.2 TEMPERATURE

The synthetic generator was used to create the daily temperature values used in the HELP modeling, given the limited record of temperature data available. The HELP documentation states (p. 19):

"Synthetic Temperature Option (Customary or Metric Units). The program will generate from 1 to 100 years of temperature data stochastically for the selected location. The synthetic generation of daily temperature values is a weak function of precipitation and as such the user must first specify the precipitation. Generation of temperature data is limited to the number of years of precipitation data available. The synthetic temperature data will have approximately the same statistical characteristics as the historic data at the selected location. If desired, the user can enter normal mean monthly temperature values for the specific location to improve the statistical characteristics of the resulting daily values. The user is advised to enter normal mean monthly temperature values if the project site is located more than 100 miles from the city selected from Table 3-1 or if the difference in elevation between the site and the city is more than 500 feet. The data required by the synthetic weather generator are:



- Location (select from a list of 183 U.S. cities in Table 3-1)
- Number of years of data to be generated
- Years of daily precipitation values
- Normal mean monthly temperature (Optional, default values are available.)"

The mean monthly temperature from the USW site is compared to available cities in Table 4-5. The nearest match for USW mean monthly temperatures was judged to be Pocatello, ID, with cold winters and maximum mean monthly temperatures in the low 70s during the summer as shown in Table 4-5. Site specific values of mean monthly temperature were used with the Pocatello, ID coefficients to generate 100 years of daily temperatures.

TABLE 4-5
MEAN MONTHLY TEMPERATURE (FAHRENHEIT)

| Month       | TomCo<br>(USW¹)<br>Site | Pocatello,<br>Idaho | Salt Lake<br>City,<br>Utah | Grand<br>Junction,<br>CO | Lander,<br>WY |
|-------------|-------------------------|---------------------|----------------------------|--------------------------|---------------|
| January     | 25.2                    | 23.8                | 28.6                       | 25.5                     | 19.6          |
| February    | 29.0                    | 29.5                | 34.1                       | 33.5                     | 25.7          |
| March       | 38.2                    | 35.5                | 40.7                       | 41.9                     | 32.1          |
| April       | 45.9                    | 44.6                | 49.2                       | 51.7                     | 42.3          |
| May         | 56.4                    | 54.0                | 58.8                       | 62.1                     | 52.6          |
| June        | 65.9                    | 62.5                | 68.3                       | 72.3                     | 62.3          |
| July        | 73.9                    | 71.2                | 77.5                       | 78.9                     | 70.8          |
| August      | 70.0                    | 68.9                | 74.9                       | 75.9                     | 68.6          |
| September   | 60.4                    | 59.2                | 65.0                       | 67.1                     | 58.3          |
| October     | 47.9                    | 48.1                | 53.0                       | 54.9                     | 46.8          |
| November    | 35.5                    | 35.2                | 39.7                       | 39.6                     | 30.8          |
| December    | 24.6                    | 26.6                | 30.3                       | 28.3                     | 23.2          |
| Mean Annual | 47.7                    | 46.6                | 51.7                       | 52.6                     | 44.4          |

<sup>1.</sup> TomCo site data from Upper Sand Wash station

## 4.3 SOLAR RADIATION

Given the limited record of solar data available, the synthetic generator was used to create the daily solar radiation values used in the HELP modeling. The HELP documentation states (p. 22):

"Synthetic Solar Radiation Option (Customary or Metric Units). The program will generate from 1 to 100 years of daily solar radiation data stochastically for the selected location. The synthetic generation of daily solar radiation values is a strong function of precipitation and as such the user must first specify the precipitation. Generation of solar radiation data is limited to the number of years of precipitation data available. The synthetic solar radiation data will have



approximately the same statistical characteristics as the historic data at the selected location. If desired, the user can enter the latitude for the specific location to improve the computation of potential solar radiation and the resulting daily values. The user is advised to enter the latitude if the project site is more than 50 miles north or south of the city selected from Table 3-1. The data required by the synthetic weather generator are:

- Location (select from a list of 183 U.S. cities in Table 3-1)
- Number of years of data to be generated
- Years of daily precipitation values
- Latitude (optional, default value is available.)"

The coefficients for Pocatello, Idaho were used. This was judged as a conservative choice based on the city being further north from the site with higher precipitation. The site latitude was used following the recommendation in the HELP documentation.

## 4.4 EVAPOTRANSPIRATION

The HELP model allows either default or manual entering of the necessary parameters for HELP to calculate evapotranspiration along with using the synthetic daily weather data for precipitation, temperature, and solar radiation. Since site specific data was available, the manual entry option was chosen.

Site specific values for evapotranspiration shown in Table 4-6 were used. The growing season for the Vernal area is listed as 119 days by the USBR Central Utah Project – Vernal Unit and Vernal Chamber of Commerce. The HELP documentation states the start of the growing season for grasses in the Julian date is when the normal mean daily temperature rises above 50 to 55 degrees Fahrenheit and ends when it falls below this range with cooler climates having a start and end at lower temperatures. Based on the site average monthly temperatures, higher late summer precipitation, and constrained by the 119 days the start of the growing season was set to June 1 (152) and ended September 28 (271). The evaporative zone depth was set to 36 inches for the reclaimed case with vegetation. The maximum leaf area index was set to 1.0 for the reclaimed case. The 1.0 represents poor grass stands and is less than the maximum LAI suggested by the HELP model based on the shorter growing season.



TABLE 4-6
GENERAL PARAMETERS

| Parameter                        | TomCo<br>(USW<br>Site (1) | Notes                                                                                                                                                                                     |
|----------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Latitude                         | 39.80                     | TomCo site latitude                                                                                                                                                                       |
| Growing season start day         | 152                       | Used months with highest average temperatures                                                                                                                                             |
| Growing season end day           | 271                       | Calculated by adding the growing season length to the growing season start date                                                                                                           |
| Growing season length (days)     | 119                       | From City of Vernal, Utah information                                                                                                                                                     |
| Average wind speed (mph)         | 4.9                       | USW site – average of 15 yr data set                                                                                                                                                      |
| First quarter relative humidity  | 59.8%                     | USW site – average of 15 yr data set                                                                                                                                                      |
| Second quarter relative humidity | 37.6%                     | USW site – average of 15 yr data set                                                                                                                                                      |
| Third quarter relative humidity  | 37.2%                     | USW site – average of 15 yr data set                                                                                                                                                      |
| Fourth quarter relative humidity | 55.2%                     | USW site – average of 15 yr data set                                                                                                                                                      |
| Elevation (not from HELP) (ft)   | 6,300                     | TomCo site elevation near EPS capsule                                                                                                                                                     |
| Maximum Leaf Area Index (LAI)    | 1.0                       | Poor stands of grass                                                                                                                                                                      |
| Evaporative Zone Depth           | 36 inches                 | Top two model layers and the top 6 inches of<br>the coarse material drainage layer above the<br>BAS cap. HELP documentation guidance<br>shows a maximum Evaporative depth of 48<br>inches |

<sup>1.</sup> TomCo site data for latitude and elevation

The latitude and elevation are from the TomCo site location. The average wind speed and the relative humidity for each quarter are from the Upper Sand Wash station. The growing season length is from the website for Vernal, Utah with the start date chosen during the months with the highest daily average temperatures. The HELP documentation (p. 14) states: "Typically, the start of the growing season for grasses is the Julian date (day of the year) when the normal mean daily temperature rises above 50 to 55 degrees Fahrenheit. The growing season ends when the normal mean daily temperatures fall below 50 to 55 degrees Fahrenheit. In cooler climates the start and end would be at lower temperatures and in warmer climates at higher temperatures."



## 5 CAPSULE LAYERS AND PARAMETERS

The capsule cap has four elements as previously described. This section describes the layers in more detail, the associated HELP model parameters, and basis for the parameters used. Default HELP model parameters for the various soil characteristics were used when possible. The model parameters are summarized in Table 5-1.

The PGM is primarily silty loam from the site. The second layer is two feet of crushed fines from site material. For modeling purposes these were represented as silty sands with the fines layer being less permeable than the soil. The third layer is two feet of coarser gravel or ROM material which was represented as a gravel drainage layer. The capsule is being built sloping south to north and also sloping east to west from the capsule centerline. As a conservative assumption, the drainage length for the coarse material drainage layer was set to the longest south to north dimension of the capsule at 695 ft. The BAS layers were represented as barrier soils with low hydraulic conductivity. The gravel insulation layers were represented as permeable gravels. The spent ore layer was represented as a moderate permeability, finer material and the steel plate as an essentially impermeable membrane liner.



TABLE 5-1
MODEL PARAMETERS

| Model | Represents                     | Thickness | Soi    | l Texture                           | Total                 | Field                 | Wilting            | Initial Soil                  | Saturated Hydraulic     |
|-------|--------------------------------|-----------|--------|-------------------------------------|-----------------------|-----------------------|--------------------|-------------------------------|-------------------------|
| Layer |                                | (feet)    | Number | Description                         | Porosity<br>(vol/vol) | Capacity<br>(vol/vol) | Point<br>(vol/vol) | Water<br>Content<br>(vol/vol) | Conductivity (cm/sec)   |
| 1     | Topsoil                        | 0.5       | 5      | silty sand                          | 0.457                 | 0.131                 | 0.058              | 0.109                         | $1.0 \times 10^{-3}$    |
| 2     | Crushed fines layer            | 2         | 6      | silty sand                          | 0.453                 | 0.190                 | 0.085              | 0.092                         | 7.2 x 10 <sup>-4</sup>  |
| 3     | Gravel or ROM overburden layer | 2         | 21     | gravel                              | 0.397                 | 0.032                 | 0.013              | 0.032                         | 3.0 x 10 <sup>-1</sup>  |
| 4     | BAS cap                        | 3         | 16     | barrier soil                        | 0.427                 | 0.418                 | 0.367              | 0.427                         | $1.0 \times 10^{-7}$    |
| 5     | Gravel insulation layer        | 13        | 21     | gravel                              | 0.397                 | 0.032                 | 0.013              | 0.032                         | 3.0 x 10 <sup>-1</sup>  |
| 6     | Spent ore layer                | 61        | 10     | clayey silt                         | 0.398                 | 0.244                 | 0.136              | 0.136                         | 1.2 x 10 <sup>-4</sup>  |
| 7     | Gravel insulation layer        | 13        | 21     | gravel                              | 0.397                 | 0.032                 | 0.013              | 0.032                         | 3.0 x 10 <sup>-1</sup>  |
| 8     | Steel plate                    | 0.01      | 35     | simulated as a<br>membrane<br>liner | 0.000                 | 0.000                 | 0.000              | 0.000                         | 1.0 x 10 <sup>-13</sup> |
| 9     | BAS liner                      | 3         | 16     | barrier soil                        | 0.427                 | 0.418                 | 0.367              | 0.427                         | 1.0 x 10 <sup>-7</sup>  |



## 6 MODEL EXECUTION AND RESULTS

The HELP model was run for 100 years for the anticipated climatic, soil, and design data to examine the potential cap performance. The model simulation was for a vegetated landfill cap as designed. This model was run using synthetic data sets described previously.

The model output is summarized in Table 6-1 which shows the average annual values and standard deviations over the 100 year model run. The HELP model was run to evaluate the potential for moisture penetration through the BAS layer into the capsule where it could have the potential to infiltrate the spent shale. The HELP model assumes that any soil barrier such as the BAS layer is at full saturation. Leakage is modeled as saturated Darcian flow and is assumed to occur only as long as there is head on the surface of the liner.

TABLE 6-1
MODEL RESULTS

|                                       | Average Annual | verage Annual Totals (inches) for Years 1 through 100 |       |                     |                                             |                                         |  |  |
|---------------------------------------|----------------|-------------------------------------------------------|-------|---------------------|---------------------------------------------|-----------------------------------------|--|--|
| Scenario                              | Precipitation  | Runoff                                                | ET    | Lateral<br>Drainage | Percolation<br>through BAS<br>cap (Layer 4) | Average Head<br>on BAS cap<br>(Layer 4) |  |  |
| Base Reclaimed Case                   | 9.200          | 0.003                                                 | 9.063 | 0.043               | 0.070                                       | 0.002                                   |  |  |
| Standard Deviation of annual averages | 1.906          | 0.009                                                 | 1.616 | 0.116               | 0.122                                       | 0.004                                   |  |  |

The average annual total for percolation through the BAS cap and average head on the cap are shown in Table 6-1. This shows minimal head on the top of Layer 4 and average annual percolation through layer 4 of 0.070 inches per year for the reclaimed EPS capsule. The infiltration is a function of the precipitation and average head on layer 4. The lateral drainage through layer 3 is less than the predicted infiltration (0.043 inches/yr vs 0.070 inches/yr).

Based on these model results, the designed capsule cap and ET cover provides adequate control on infiltration into the capsule using the design parameters.



## 7 REFERENCES

Hatch, (2010). Site Climatic Conditions for Utah Oil Shale Commercial Demonstration Project.

Schroeder, P.R., Azia N.M., Lloyd, C.M., and Zappi, P.A. (1994). "The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3," EPA/600/R-94/168b, September 1994, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC. Available at <a href="http://el.erdc.usace.army.mil/products.cfm?Topic=model&Type=landfill">http://el.erdc.usace.army.mil/products.cfm?Topic=model&Type=landfill</a>



## ATTACHMENT 1 HELP MODEL LIMITATIONS AND ASSUMPTIONS FROM THE DOCUMENTATION

#### **SECTION 5**

## ASSUMPTIONS AND LIMITATIONS

## 5.1 METHODS OF SOLUTION

The modeling procedures documented in the previous section are necessarily based on many simplifying assumptions. Most of these are stated in the sections documenting the individual procedures. Generally, these assumptions are reasonable and consistent with the objectives of the program when applied to standard landfill designs. However, some of these assumptions may not be reasonable for unusual designs. The major assumptions and limitations of the program are summarized below.

Precipitation on days when the mean air temperature is below freezing is assumed to occur as snow. Snowmelt is assumed to be a function of energy from air temperature, solar radiation and rainfall. Solar radiation effects are included in an empirical melt factor. In addition, groundmelt is assumed to occur at a constant rate of 0.5 mm/day as long as the ground is not frozen. Snow and snowmelt are subject to evaporation prior to runoff and infiltration. The program does not consider the effects of aspect angle or drifting in its accounting of snow behavior.

Prediction of frozen soil conditions is a simple, empirical routine based on antecedent air temperatures. Thaws are based on air temperatures and climate data. Soils while frozen are assumed to be sufficiently wet so as to impede infiltration and to promote runoff. Similarly, no evapotranspiration and drainage are permitted from the evaporative zone while frozen.

Runoff is computed using the SCS method based on daily amounts of rainfall and snowmelt. The program assumes that areas adjacent to the landfill do not drain onto the landfill. The time distribution of rainfall intensity is not considered. The program cannot be expected to give accurate estimates of runoff volumes for individual storm events on the basis of daily rainfall data. However, because the SCS rainfall-runoff relationship is based on considerable daily field data, long-term estimates of runoff should be reasonable. One would expect the SCS method to underestimate runoff from short duration, high intensity storms; larger curve numbers could be used to compensate if most of the precipitation is from short duration, high intensity storms. The SCS method does not explicitly consider the length and slope of the surface over which overland flow occurs; however, a routine based on a kinematic wave model was developed to account for surface slope and length.

Potential evapotranspiration is modeled by an energy-based Penman method. As applied, the program uses average quarterly relative humidity and average annual wind speed. It is assumed that these data yield representative monthly results. Similarly, the program assumes that the relative humidity is 100% on days when precipitation occurs. The

program uses an albedo of 0.23 for soils and vegetation and 0.60 for snow. The actual evapotranspiration is a function of other data, also. The solar radiation and temperature data are often synthetically generated. The vegetation data is generated by a vegetative growth model. The evaporative zone depth is assumed to be constant throughout the simulation period. However, outside of the growing season, the actual depth of evapotranspiration is limited to the maximum depth of evaporation of soil water, which is a function of the soil saturated hydraulic conductivity.

Vegetative growth is based on a crop growth model. Growth is assumed to occur during the first 75% of the growing season based on heating units. Recommendations for the growing season are based primarily for summer grasses and assume that the growing season is that portion of the year when the temperature is above 50 to 55 °F. However, the user may specify a more appropriate growing season for different vegetation. The optimal growth temperature and the base temperature are based on a mixture of winter and summer perennial grasses. It is assumed that other vegetation have similar growth constraints and conditions. It is further assumed that the vegetation is not harvested.

The HELP program assumes Darcian flow for vertical drainage through homogeneous, temporally uniform soil and waste layers. It does not consider preferential flow through channels such as cracks, root holes or animal burrows. As such, the program will tend to overestimate the storage of water during the early part of the simulation and overestimate the time required for leachate to be generated. The effects of these limitations can be minimized by specifying a larger effective saturated hydraulic conductivity and a smaller field capacity. The program does increase the effective saturated hydraulic conductivity of default soils for vegetation effects.

Vertical drainage is assumed to be driven by gravity alone and is limited only by the saturated hydraulic conductivity and available storage of lower segments. If unrestricted, the vertical drainage rate out of a segment is assumed to equal the unsaturated hydraulic conductivity of the segment corresponding to its moisture content, provided that moisture content is greater than the field capacity or the soil suction of the segment is less than the suction of the segment directly below. The unsaturated hydraulic conductivity is computed by Campbell hydraulic equation using Brooks-Corey parameters. It is assumed that all materials conducting unsaturated vertical drainage have moisture retention characteristics that can be well represented by Brooks-Corey parameters and the Campbell equation. The pressure or soil suction gradient is ignored when applying the Campbell equation; therefore, the unsaturated drainage and velocity of the wetting front may be underestimated. This is more limiting for dry conditions in the lower portion of the landfill; the effects of this limitation can be reduced by specifying a larger saturated hydraulic conductivity. For steady-state conditions, this limitation has little or no effect.

The vertical drainage routine does not permit capillary rise of water from below the evaporative zone depth. Evapotranspiration is not modeled as capillary rise, but rather as a distributed extraction that emulates capillary rise. This is limiting for dry conditions where

the storage of water to satisfy evaporative demand is critical and for designs where the depth to the liner is shallow. This limitation can be reduced by increasing the field capacity in the evaporative zone and the evaporative zone depth.

Percolation through soil liners is modeled by Darcy's law, assuming free drainage from the bottom of the liner. The liners are assumed to be saturated at all times, but leakage occurs only when the soil moisture of the layer above the liner is greater than the field capacity. The program assumes that an average hydraulic head can be computed from the soil moisture and that this head is applied over the entire surface of the liner. As such, when the liner is leaking, the entire liner is leaking at the same rate. The liners are assumed to be homogeneous and temporally uniform.

Leakage through geomembrane is modeled by a family of theoretical and empirical equations. In all cases, leakage is a function of hydraulic head. The program assumes that holes in the geomembrane are dispersed uniformly and that the average hydraulic head is representative of the head at the holes. The program further assumes that the holes are predominantly circular and consist of two sizes. Pinholes are assumed to be 1 mm in diameter while installation defects are assumed to have an cross-sectional area of 1 cm<sup>2</sup>. It is assumed that holes of other shapes and sizes could be represented as some quantity of these characteristic defects. Leakage through holes in geomembranes is often restricted by an adjacent layer or soil or material termed the controlling soil layer. Materials having a saturated hydraulic conductivity greater than or equal to  $1 \times 10^{-1}$  cm/sec are considered to be a high permeability material; materials having a saturated hydraulic conductivity greater than or equal to  $1 \times 10^{-4}$  cm/sec but less than  $1 \times 10^{-1}$  cm/sec are considered to be a medium permeability material; and materials having a saturated hydraulic conductivity less than  $1 \times 10^{-4}$  cm/sec are considered to be a low permeability material. The program assumes that no aging of the liner occurs during a simulation.

The lateral drainage model is based on the assumption that the lateral drainage rate and average saturated depth relationship that exists for steady-state drainage also holds for unsteady drainage. This assumption is reasonable for leachate collection, particularly for closed landfills where drainage conditions should be fairly steady. Where drainage conditions are more variable, such as in the cover drainage system, the lateral drainage rate is underestimated when the saturated depth is building and overestimated when the depth is falling. Overall, this assumption causes the maximum depth to be slightly overestimated and the maximum drainage rate to be slightly underestimated. The long-term effect on the magnitude of the water balance components should be small. As with leakage or percolation through liners, the average saturated depth is computed from the gravity water and moisture retention properties of the drain layer and other layers when the drain layer is saturated. The program assumes that horizontal and vertical saturated hydraulic conductivity to be of similar magnitude and that the horizontal value is specified for lateral drainage layer.

Subsurface inflow is assumed to occur at a constant rate and to be uniformly distributed spatially throughout the layer, despite entering the side. This assumption causes a delay in

its appearance in the leachate collection and more rapid achievement of steady-state moisture conditions. This limitation can be minimized by dividing the landfill into sections where inflow occurs and sections without inflow.

Leachate recirculation is assumed to be uniformly distributed throughout the layer by a manifold or distribution system. Leachate collected on one day for recirculation is distributed steadily throughout the following day.

## 5.2 LIMITS OF APPLICATION

The model can simulate water routing through or storage in up to twenty layers of soil, waste, geosynthetics or other materials for a period of 1 to 100 years. As many as five liner systems, either barrier soil, geomembrane or composite liners, can be used. The model has limits on the order that layers can be arranged in the landfill profile. Each layer must be described as being one of four operational types: vertical percolation, lateral drainage, barrier soil liner or geomembrane liner. The model does not permit a vertical percolation layer to be placed directly below a lateral drainage layer. A barrier soil liner may not be placed directly below another barrier soil liner. A geomembrane liner may not be placed directly below another geomembrane liner. Three or more liners, barrier soil or geomembrane, cannot be placed adjacent to each other. The top layer may not be a barrier soil or geomembrane liner. If a liner is not placed directly below the lowest lateral drainage layer, the lateral drainage layers in the lowest subprofile are treated by the model as vertical percolation layers. If a geomembrane liner is specified as the bottom layer, the soil or material above the liner is assumed to be the controlling soil layer. No other restrictions are placed on the order of the layers.

The lateral drainage equation was developed and tested for the expected range of hazardous waste landfill design specifications. The ranges examined for slope and maximum drainage length of the drainage layer were 0 or 30 percent and 25 to 2000 feet; however, the formulation of the equations indicates that the range of the slope could be extended readily to 50 percent and the length could be extended indefinitely.

Several relations must exist between the moisture retention properties of a material. The porosity, field capacity and wilting point can theoretically range from 0 to 1 in units of volume per volume, but the porosity must be greater than the field capacity, and the field capacity must be greater than the wilting point. The general relation between soil texture class and moisture retention properties is shown in Figure 2.

The initial soil moisture content cannot be greater than the porosity or less than the wilting point. If the initial moisture contents are initialized by the program, the moisture contents are set near the steady-state values. However, the moisture contents of layers below the top liner system or cover system are specified too high for arid and semi-arid locations and too low for very wet locations, particularly when thick profiles are being

modeled.

Values for the maximum leaf area index may range from 0 for bare ground to 5.0 for an excellent stand of grass. Greater leaf area indices may be used but have little impact on the results. Detailed recommendations for leaf area indices and evaporative depths are given in the program. For numerical stability, the minimum evaporative zone depth should be at least 3 inches.

The program computes the evaporation coefficient for the cover soils based on their soil properties. The default values for the evaporation coefficient are based on experimental results reported by Ritchie (1972) and others. The model imposes upper and lower limits of 5.50 and 3.30 for the evaporation coefficient so as not to exceed the range of experimental data.

The program performs water balance analysis for a minimum period of one year. All simulations start on the January 1 and end on December 31. The condition of the landfill, soil properties, thicknesses, geomembrane hole density, maximum level of vegetation, etc., are assumed to be constant throughout the simulation period. The program cannot simulate the actual filling operation of an active landfill. Active landfills are modeled a year at a time, adding a yearly lift of material and updating the initial moisture of each layer for each year of simulation.



## ATTACHMENT 2 METEOROLOGICAL SUMMARY FOR USW STATION BY HATCH





Red Leaf Resources Inc. - Red Leaf Oil Shale Commercial Demonstration Project Site Climatic Conditions for Utah Oil Shale Commercial Demonstration Project - 09 August 2010

Table 1.2 - Meteorological Summary for the Primary Reference station: Upper Sand Wash RAWS.

|                                            | Meteorological Summary for Upper Sand Wash RAWS Station June 1995 - June 2010 |       |                  |       |       |       |       |       |       |       |       |       |       |
|--------------------------------------------|-------------------------------------------------------------------------------|-------|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| W. 1.10 dt                                 | Annual/                                                                       |       | Monthly Averages |       |       |       |       |       |       |       |       |       |       |
| Meteorological Quantity                    | Average                                                                       | Jan   | Feb              | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |
| Average Mean Wind Speed (m/s)              | 2.2                                                                           | 1.6   | 1.7              | 2.3   | 2.9   | 2.8   | 2.9   | 2.5   | 2.4   | 2.3   | 2.3   | 1.7   | 1.5   |
| Average Mean Wind Speed (mph)              | 4.9                                                                           | 3.5   | 3.8              | 5.2   | 6.5   | 6.2   | 6.4   | 5.7   | 5.3   | 5.2   | 5.0   | 3.7   | 3.4   |
| Average Mean Wind Direction (° True North) | 216.4                                                                         | 216.3 | 219.5            | 223.5 | 217.8 | 233.1 | 222.6 | 215.1 | 203.3 | 207.3 | 210.7 | 212.3 | 215.1 |
| Maximum Wind Gust (m/s)                    | 30.4                                                                          | 22.8  | 24.14            | 38.84 | 37.1  | 32.19 | 39.17 | 36.61 | 36.66 | 42.89 | 35.76 | 39.79 | 35.76 |
| Maximum Wind Gust (mph)                    | 68.1                                                                          | 51.0  | 54.0             | 86.9  | 83.0  | 72.0  | 87.6  | 81.9  | 82.0  | 95.9  | 80.0  | 89.0  | 80.0  |
| Average Temperature (° C)                  | 8.8                                                                           | -3.8  | -1.7             | 3.4   | 7.7   | 13.6  | 18.8  | 23.3  | 21.1  | 15.8  | 8.8   | 1.9   | -4.1  |
| Average Temperature (° F)                  | 47.8                                                                          | 25.2  | 29.0             | 38.2  | 45.9  | 56.4  | 65.9  | 73.9  | 70.0  | 60.4  | 47.9  | 35.5  | 24.6  |
| Maximum Average Air Temperature (° C)      | 25.0                                                                          | 15.6  | 17.8             | 25.0  | 27.8  | 35.0  | 37.8  | 38.9  | 36.7  | 33.9  | 29.4  | 21.7  | 16.7  |
| Maximum Average Air Temperature (° F)      | 76.9                                                                          | 60.0  | 64.0             | 77.0  | 82.0  | 95.0  | 100.0 | 102.0 | 98.0  | 93.0  | 85.0  | 71.0  | 62.0  |
| Minimum Average Air Temperature (°C)       | -9.3                                                                          | -25.6 | -21.7            | -21.1 | -13.9 | -6.7  | -3.9  | 5.0   | 2.8   | -4.4  | -10.6 | -20.0 | -26.7 |
| Minimum Average Air Temperature (° F)      | 15.3                                                                          | -14.0 | -7.0             | -6.0  | 7.0   | 20.0  | 25.0  | 41.0  | 37.0  | 24.0  | 13.0  | -4.0  | -16.0 |
| Average Relative Humidity (%)              | 47.4                                                                          | 65.2  | 63.6             | 50.6  | 44.0  | 37.5  | 31.4  | 30.9  | 38.5  | 42.3  | 45.9  | 55.7  | 64.1  |
| Minimum Average Relative Humidity (%)      | 11.1                                                                          | 21.87 | 20.4             | 10.6  | 7.13  | 6.53  | 4.81  | 4.87  | 7.47  | 7.07  | 8.47  | 15.53 | 19.8  |
| Total Precipitation (mm)                   | 225.8                                                                         | 7.7   | 9.4              | 15.1  | 22.0  | 16.4  | 21.1  | 18.5  | 31.8  | 41.6  | 27.4  | 9.9   | 6.5   |
| Total Precipitation (Inches)               | 8.9                                                                           | 0.3   | 0.4              | 0.6   | 0.9   | 0.6   | 0.8   | 0.7   | 1.3   | 1.6   | 1.1   | 0.4   | 0.3   |

Note: Highlighted sections show absolute maximum or minimums for quantities of interest. For the full reference station data set see Appendix 1. The General Site Conditions Sheet is provided in Appendix 2.

Document No.: H335458-000-10-236-0001, Rev. 1, Page viii

© Hatch 2006/03 ₩ Project Execution Plan

## APPENDIX I ADDITIONAL EPS INFORMATION

**Confidential Business Information** 

(Provided under separate cover)

## **APPENDIX J**

## **MONITORING WELL FIELD EVALUATION, 2014**

## **TOMCO HOLLIDAY BLOCK**

# REPORT OF INTERMEDIATE DEPTH WELL AQUIFER STRESS TESTS MW-01, MW-02, MW-03

## OCTOBER 22-NOVEMBER 15, 2014

## Prepared for:

TomCo Energy PLC 50 Jermyn Street London SW1Y United Kingdom

December 2014

Prepared by:









2







## **EXECUTIVE SUMMARY**

The Oil Mining Company (TomCo) oil shale mining test project is located in the Uintah Basin, Utah, approximately 30 road miles south of Bonanza, Utah. TomCo holds a 1,186-acre oil shale lease located on land owned by the State of Utah School and Institutional Trust Lands Administration. TomCo plans to simultaneously mine oil shale and create an Early Production System retort capsule for extracting oil at this site. The proposed technology uses heat to extract kerogen from oil shale as gases and liquids. As part of the extraction process, the shale will be encapsulated and left in place, and the disturbance area will be reclaimed, with no impact on surface or groundwater resources expected.

To support the submission of a Groundwater Discharge Permit required by the State of Utah to develop the project, three monitoring wells were installed in October 2013 to a depth of 200 feet below ground surface. A fourth well was installed to 1,100 feet below ground surface, approximately 400 feet below the limits of mining. Because this report focuses on potential water resources within and near the mining horizon, this deep well is not the subject of this report so is not discussed further here. As part of the required data collection effort, aquifer stress testing was proposed for the three 200-foot wells to provide hydrogeologic data regarding the nature and extent groundwater resources at depths of up to 200 feet beneath the site. Testing included pump-drawdown tests followed by a recovery period of up to 8 days. Data collected included discharge and drawdown data, cumulative volumes pumped, water level recovery rates, and hydraulic properties estimation. These data are summarized in the TomCo Ground Water Discharge Permit Application, Section 9.

Water level measurements obtained 12 days after initial development activities were completed in each well are presented in Table 1. These water levels are compared to measurements made during October 2014, approximately one year later. As shown in Table 1, each well registered some amount of water level change since October 2013, probably reflecting the process of the well coming into equilibrium with the ambient head of the screened interval. The October 2014 water levels are therefore considered the best available representation of ambient conditions for the water-bearing zone in contact with the screen in each well.

i







Table 1. Water Level Measurements, 2013 versus 2014.

| Monitoring Well | Depth to water,<br>October 2013<br>(ft bgs) <sup>1</sup> | Depth to water,<br>October 2014<br>(ft bgs) | Water Level Change<br>(feet) |
|-----------------|----------------------------------------------------------|---------------------------------------------|------------------------------|
| MW-01           | 175.3                                                    | 173.69                                      | +1.61                        |
| MW-02           | 180.3                                                    | 181.85                                      | -1.55                        |
| MW-03           | 180.7                                                    | 190.03                                      | -9.33                        |

Key:

ft bgs = feet below ground surface

Note:

The lack of significant head in each well suggests that substantial water bearing zones are not present beneath the TomCo project site. This conclusion is also supported by the diminished capacity of each well to transmit appreciable amounts of groundwater when pumped at low rates (generally 0.1 to 0.34 gallons per minute). Specific capacities ranged from a low of 0.02 gallons per minute per foot (gpm/ft) to a high of 0.05 gpm/ft, which reflects the efficiency of the well and suggests that the well screens are in contact with material of low permeability, or are affected by well skin.

An evaluation of the data included the use of analytic models to estimate values for transmissivity, which ranged from  $6x10^{-3}$  square feet per day to  $6x10^{-2}$  square feet per day, and assumed unconfined conditions. By the assumption that the wetted screen length represented the aquifer thickness, estimates of hydraulic conductivities ranged from a low of  $2x10^{-4}$  feet per day to a high of  $7x10^{-3}$  feet per day. These values are consistent with published values representative of silt, clayey sand, or silty sand.

<sup>1.</sup> Water levels measured on 10/22/2103, 12 days after initial development was completed in each well.







| Sec | <u>ction</u>           | <u>Page</u> |
|-----|------------------------|-------------|
| Exe | ecutive Summary        | i           |
| 1   | Introduction           | 1           |
| 2   | General Test Procedure | 2           |
| 3   | Analytical Procedure   | 6           |
| 4   | Conclusions            | 31          |
| 5   | References Cited       | 34          |

## **LIST OF TABLES**

| <u>Table</u> | <u>Pa</u>                                                                | <u>ige</u> |
|--------------|--------------------------------------------------------------------------|------------|
| Table 1.     | Water Level Measurements, 2013 versus 2014                               | ii         |
| Table 2.     | Summary of Well Construction Parameters.                                 | . 1        |
| Table 3.     | Summary of Instrumentation Times, Test durations, Drawdown, and Recovery | . 2        |
| Table 4.     | MW-02 Test Parameters.                                                   | . 7        |
| Table 5.     | MW-02 Pump Setting and Discharge Measurements                            | . 8        |
| Table 6.     | Summary of Results from MW-02                                            | 12         |
| Table 7.     | MW-03 Test Parameters.                                                   | 14         |
| Table 8.     | MW-03 Pump Setting and Discharge Measurements                            | 15         |
| Table 9.     | Summary of Results from MW-03                                            | 17         |
| Table 10     | . MW-01 Test Parameters                                                  | 20         |
| Table 11     | . MW-01 Pump Setting and Discharge Measurements (Attempt 1)              | 21         |







| Table 12. | MW-01 Pump Setting and Discharge Measurements (Attempt 2) | 23 |
|-----------|-----------------------------------------------------------|----|
| Table 13. | Summary of Results from MW-01                             | 26 |
| Table 14. | Summary of TomCo Monitoring Well Test Observations.       | 32 |

## **LIST OF FIGURES**

| <u>Figure</u> | <u>Page</u>                                                                           |
|---------------|---------------------------------------------------------------------------------------|
| Figure 1.     | Geotech Geosub <sup>™</sup> Submersible Pump and Controller                           |
| Figure 2.     | Geotech Geosub Pump Performance Chart 4                                               |
| Figure 3.     | MW-02 Drawdown Computed for Pumping and Recovery Period of Record 10                  |
| Figure 4.     | MW-02 Drawdown and Initial Recovery with Groundwater Temperature 11                   |
| Figure 5.     | Aqtesolv Plot of Moench (1997) Curve-fit to MW-02 Time-Drawdown Data                  |
| Figure 6.     | Theis (1935) Recovery Analysis of MW-02 Residual Drawdown Versus Ratio of t/t' 13     |
| Figure 7.     | MW-03 Drawdown Computed for Pumping and Recovery Period of Record 16                  |
| Figure 8.     | MW-03 Drawdown and Initial Recovery with Groundwater Temperature 17                   |
| Figure 9.     | Aqtesolv Plot of Moench (1997) Curve-fit to MW-03 Time-Drawdown Data                  |
| Figure 10     | . Theis (1935) Recovery Analysis of MW-03 Residual Drawdown Versus Ratio of t/t'. 19  |
| Figure 11     | Radial Flow Plot for MW-03 Indicating Significant Casing Storage Effects              |
| Figure 12     | . MW-01 Drawdown Computed for Pumping and Recovery Period of Record 24                |
| Figure 13     | . MW-01 Drawdown and Initial Recovery with Groundwater Temperature 25                 |
| Figure 14     | . Aqtesolv Plot of Moench (1997) Curve-fit to MW-01 Time-Drawdown Data 26             |
| Figure 15     | . Radial Flow Plot for MW-01 Illustrating Well-Bore Storage at Early Times 28         |
| Figure 16     | . MW-01 Derivative Analysis Indicating Well-Bore Storage and Incipient Radial Flow.29 |







| Figure 17. | MW-01 Drawdown and Recovery Showing Abrupt change in Water Level Due to |      |
|------------|-------------------------------------------------------------------------|------|
| Vandalism  | of Cable Suspension Mount Point                                         | . 30 |

Figure 18. Theis (1935) Recovery Analysis of MW-01 Residual Drawdown Versus Ratio of t/t'. 31







## **ACRONYMS AND ABBREVIATIONS**

bgs below ground surface

DWQ Utah Division of Water Quality

ft btoc feet below top of casing

ft/min feet per minute

gpm gallons per minute

gpm/ft gallons per minute per foot

GWDPA Ground Water Discharge Permit Application

psi pounds per square inch

r<sub>c</sub> well effective radius

s<sub>w</sub> well skin factor

TomCo `The Oil Mining Company, Inc.







## 1 INTRODUCTION

Hydrogeological data are required for the purposes of developing a Groundwater Discharge Permit (GDP) submitted to the State of Utah. Three, two-inch diameter wells were completed at The Oil Mining Company's (TomCo's) Holliday Block lease to a depth of 200 ft. below ground surface (bgs) in October 2013. Well construction data are tabulated in Table 2.

**Table 2. Summary of Well Construction Parameters.** 

| Well ID | Borehole<br>Depth<br>(ft bgs) | Screen<br>Interval<br>(ft bgs) | Bore-<br>hole<br>Diam.<br>(inches) | Inner<br>Casing<br>Diam.<br>(inches) | Volume<br>per<br>lineal<br>feet<br>(gal/ft) | Outer<br>Casing<br>Stickup<br>(ft ags) | Inner<br>Casing<br>Stickup<br>(ft ags) | Water<br>Level Oct<br>2013<br>(ft btoc) <sup>1</sup> | Water<br>Level Oct<br>2014<br>(ft btoc) |
|---------|-------------------------------|--------------------------------|------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------------------------|
| MW-01   | 200                           | 148–198                        | 6.25                               | 2                                    | 0.163                                       | 2.26                                   | 1.71                                   | 177.01                                               | 175.4                                   |
| MW-02   | 200                           | 148–198                        | 6.25                               | 2                                    | 0.163                                       | 2.13                                   | 1.85                                   | 182.15                                               | 183.7                                   |
| MW-03   | 200                           | 117.3–197.3                    | 6.25                               | 2                                    | 0.163                                       | 2.08                                   | 1.87                                   | 182.57                                               | 191.9                                   |

Key:

Diam. = diameter

ft ags = feet above ground surface

ft bgs = feet below ground surface

ft btoc = feet below top of casing

gal/ft = gallons per foot

Note:

Water samples from the wells were collected and analyzed for a variety of parameters, and packer tests were performed. Data results were incorporated into the GWDPA that TomCo submitted to the Utah Division of Water Quality (DWQ) in January 2014. After reviewing the GWDPA, the DWQ requested that additional data be collected from the three intermediate wells to further characterize well drawdown and recharge in the proposed mining horizon.

In response to the DWQ's comments, TomCo's subcontractor, Lowham Walsh, conducted three single well aquifer stress tests. These tests were conducted as simple pump and recovery tests with the objective of estimating:

- 1. Total volume pumped (volume)
- 2. Well drawdown (length, feet)
- 3. Sustainable pump rate(s) (volume/time)
- 4. Rate of recovery (residual drawdown vs. time)

If possible, hydraulic properties, well efficiency, and aquifer drawdown will also be estimated. The workplan for these tests was predicated upon the ability of each well to sustain a constant

<sup>1.</sup> Water levels measured 12 days after initial well development.







pump rate at a quasi-stable value of drawdown. In practice, however, identification of sustainable pump rates was complicated by the depth to water and the ability of the equipment to sustain constant rates at such depths. Therefore, each well was pumped at whatever rate the pump could sustain for as long as measurable drawdown was available or until the pump could not overcome the pressure differential at some increased value of drawdown.

## 2 GENERAL TEST PROCEDURE

Each well was instrumented and tested over a two-day period, which included pump and transducer installation, overnight trend measurement, and pumping followed by at least a week of recovery. Table 3 summarizes pertinent dates, times, durations, and selected data associated with each test.

Table 3. Summary of Instrumentation Times, Test durations, Drawdown, and Recovery.

| Well ID | Pump<br>Installed   | Test Start           | Duration of<br>Pumping<br>(minutes) | Maximum<br>Drawdown<br>(feet) | Volume<br>Pumped<br>(gallons) | Recovery<br>Duration<br>(days) | Residual<br>Drawdown<br>(feet) |
|---------|---------------------|----------------------|-------------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|
| MW-02   | 1400 on<br>10/22/14 | 0930 on<br>10/23/14  | 78.24                               | 11.42                         | 6.8                           | 8.1                            | 9.24                           |
| MW-03   | 1530 on<br>10/22/14 | 1252 on<br>10/23/14  | 8.1                                 | 7.41                          | 3.14                          | 8                              | 1.16                           |
| MW-01   | 1100 on<br>11/6/14  | 1105 on<br>11/7/2014 | 33.0                                | 10.7                          | 5.76                          | 7.9                            | 0.82                           |

Three 1.75-inch diameter Geotech GeoSub<sup>TM</sup> stainless steel submersible pumps were specified for the testing in the monitoring wells (Figure 1). In this model, the pump rate is determined by a relative power setting (0 to 255) controlled by an electronic controller at land surface. The pump controller has a built-in overcurrent prevention circuit that prevents the pump from damage from settings corresponding to an overly high rate for the pressure head the pump must overcome to lift water to land surface. The controller indicates when max power has been reached and prevents the user from increasing the output further. This proved to be problematic in selecting an appropriate initial rate without the overcurrent protection cutting power to the pump as each pump behaved differently due to initial water level, depth of placement, and individual idiosyncrasies associated with each pump.

The pump curve for this pump model is presented in Figure 2. Inspection of the pump curve indicates that at the depths deployed, this pump model was near, but not at, its limitations.







The transducer model selected for testing was an In-Situ Troll 700<sup>TM</sup>, with a 30 pounds per square inch (psi) (69-foot) rating, which records pressure in psi, temperature in Celsius, and either depth below water level, or depth to water from a measurement point. In all cases, the transducer was programmed to record depth to water below the top of the 2-inch PVC casing.









Figure 1. Geotech Geosub<sup>™</sup> Submersible Pump and Controller.

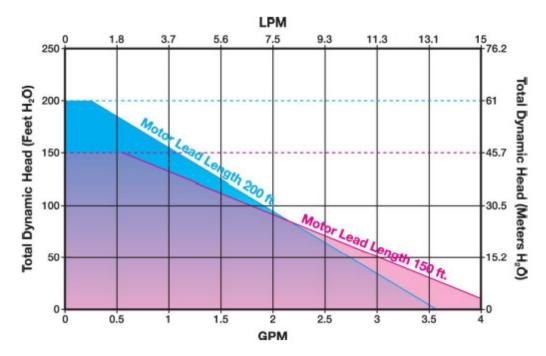



Figure 2. Geotech Geosub Pump Performance Chart.







Both the inner and outer casing stickup was measured in feet above ground surface (ags) to determine the desired pump placement and reference the transducer to depth to water below the top of the inner 2-inch casing.

Depth to water was determined manually upon arriving at the site using an In-Situ Rugged  $200^{TM}$  electronic water level tape, referenced to the top of the 2-inch PVC well casing. Once depth to water was determined, the height of the static water column was calculated by subtracting the depth to water bgs from the total depth of the well bgs.

The target depth for the bottom of the Geotech GeoSub<sup>TM</sup> stainless steel submersible pump was approximately equal to the bottom of the screen. This depth was determined by measuring out the appropriate length of discharge tubing and connecting one end of the tubing to the pump. The length of the pump from its bottom at the water intake point to the discharge tubing connection point was approximately 1.1 feet, which was taken into consideration when referencing the pump to top of casing. The pump was then lowered into the well, taping off the discharge tubing to the pump support cable every 10 feet or so. This was followed by the installation of the transducer, which was lowered into the well until positive pressure was registered in the log. This level was recorded, and the transducer was then further lowered until it contacted the pump or hung up on the pump-tubing coupling. The transducer was then pulled up several inches until its weight indicated that it was suspended in the well.

After the instrumentation was installed in each well, the water level increased per the displaced volume of water. A volume of displacement was calculated for each item placed in the well by determining the depth of placement, the radius of each item, and length of each item. A total volume in gallons was calculated, and the corresponding increase in water level was determined by dividing this volume by the volume per foot for 2-inch casing (0.163 gallons per foot).

The transducer was set up to log overnight to record water level trend, with an offset measured manually at the time the logging began. At the time pumping began the next day, water level change was judged to be stable enough to being testing, but in each case, there was several tenths of a foot of water of undissipated head left in the well at the time the pumping began. Just before pumping began, a new manual water level was obtained and used to set a new offset for depth to water as input into the transducer logging software. The pump was then set to an initial power setting and started.

At the time the pump initialization phase was completed and the pumping began, the transducer log was started simultaneously with a stopwatch to record splits for discharge measurements. Discharge was calculated between time splits measured for 1 gallon of water captured in a graduated bucket. This resulted in average discharge values for the time split rather than instantaneous discharge measurements, which could have only been achieved through the use of a high precision low-flow meter, which was not available. Because it was







known from observation that discharge decreased over time, discharge estimates were made and added to the log to augment the average discharge measurements during the data reduction to better fit the analytical models used in curve-fitting procedure.

## 3 ANALYTICAL PROCEDURE

The general procedure for analysis of pumping and recovery data for all wells is described below. Exceptions to the procedure are discussed in the sections covering the results from the individual wells.

- 1. The data obtained during tested were downloaded from the transducer and imported into the Aqtesolv<sup>TM</sup> for hydrologic properties estimation.
- 2. The analytical model was selected based on the conceptual model that the screen interval was in contact with a water bearing zone under unconfined conditions. The model developed by Moench (1997) was selected based on its ability to consider well-bore storage and delayed gravity response.
- 3. As suggested by Duffield (2007), the data were first analyzed by the Papadopulos-Cooper (1967) method to acquire an initial estimate of transmissivity and evaluate well-bore storage by adjusting the effective casing radius value and performing a visual curve-fit.
- 4. Intermediate estimates of discharge rates were input into the software to augment the average discharge rates obtained from the bucket volume-stopwatch measurements. These rates were adjusted until the drawdown curve was approximated near the beginning of the test during the time at which insufficient pump rates were selected. Automatic curve matching was then employed using the Moench (1997) model to obtained an estimate of transmissivity.
- 5. A radial flow plot was then prepared to further evaluate the effect of radial flow (infinite-acting aquifer), well-bore storage, and the influence of a boundary condition such as recharge, leakage, or no-flow.
- A derivative analysis was conducted to evaluate radial flow and infinite-acting aquifer conditions.







7. Recovery data were analyzed by preparing semi-log charts of residual drawdown (s') versus the ratio of time since pumping began (t) and time since pumping ceased (t'). A portion of the resulting curve was selected and fitted with a straight line. The residual drawdown corresponding to one log cycle was then determined and used the following equation to compute transmissivity:

$$T = \frac{2.303 * Q}{4\pi * \Delta s'}$$

- 8. Hydraulic conductivity was estimated by dividing the transmissivity by the length of the wetted well screen, which yields a generalized value because the true thickness of the water-bearing zone is unknown and because the likelihood of partial penetration cannot be reliably evaluated.
- 9. Estimates of the storage coefficient cannot be reliably obtained from single well tests due to the inability to determine effective radius and therefore are not reported herein.

The data collection and analytical results from each well are discussed in greater detail below.

## **MW-02 Test Summary**

Data collected before and during the instrumentation process in MW-02 are presented in Table 4.

Table 4. MW-02 Test Parameters.

| Water<br>Level at<br>Start<br>(ft btoc) <sup>1</sup> | Height of<br>Static Water<br>Column<br>(feet) <sup>2</sup> | Length of<br>Wetted<br>Screen<br>(feet) | Pump<br>Bottom<br>(ft bgs) | Transducer<br>Depth Below<br>Water Level<br>(feet) <sup>3</sup> | Volume Displaced<br>by Downhole<br>Equipment<br>(gallons) | Undissipated<br>Head at Time of<br>Test Start<br>(feet) <sup>4</sup> |
|------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|
| 183.4                                                | 18.45                                                      | 16.45                                   | 198                        | 11.85                                                           | 1.71                                                      | 0.3                                                                  |

#### Key:

ft btoc = feet below top of casing

ft bgs = feet below ground surface

#### Notes:

- 1. Water level shown is manually measured depth to water immediately before starting pump. The static water level measured the previous day before the well was instrumented was 183.7 ft btoc.
- 2. Referenced to total depth of well (200 ft bgs).
- 3. Value calculated from pressure measurement read immediately preceding the start of pumping.
- 4. This value represents the remaining increase in water level since the time the well was instrumented on 10/22/2014.

After lowering the pump to the prescribed depth and securing the suspension cable to the outer casing, the pump was powered up at approximately 9:30 AM on October 23, 2014. The initial pump power setting was left at the default of 100, which proved too low. After 10 minutes at this power setting, no water was observed at land surface and the power setting was then increased to 125. After another 10 minutes passed, the power setting was increased to 150.







This setting was maintained for 5 additional minutes, with no water produced to ground surface. The pump power setting was then again increased to values of 175, 200, and 225 at 5-minute increments, with no water observed at ground surface

After 5 minutes at a power setting of 225, the pump's power was increased to the maximum value of 255. Water appeared at ground surface about 40 seconds later, enabling discharge measurements to be made. A summary of pump settings and average discharge measurements made per gallon pumped is presented in Table 5.

As shown in Table 5, at about 75.5 minutes after pumping began, the pressure began to increase, signifying that the water level in the well was beginning to increase. This was due to the pump operating at the edge of its capability, as it could no longer pump water at a rate to continue drawdown. At this point, the transducer registered 0.122 psi, corresponding to a depth to water of 194.98 feet below the top of the casing (ft btoc), indicating about 0.28 feet of water was present above the transducer, close to dewatering the transducer sensor. Air was noticed in the discharge tubing shortly thereafter at about 77.5 minutes, and the test was terminated at 78.23 minutes.

The maximum observed drawdown from the transducer record of the pumping period was 11.59 feet.

Table 5. MW-02 Pump Setting and Discharge Measurements

| Time<br>Since<br>Pumping<br>Began<br>(minutes) | Pump<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>Discharge<br>(gpm) | Comment                        |
|------------------------------------------------|-----------------|----------------------------------------------|--------------------------------------------|-----------------------|---------------------------------------------|--------------------------------|
| 0                                              | 100             | NA                                           | NA                                         | NA                    | NA                                          | No water                       |
| 10                                             | 125             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 20                                             | 150             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 25                                             | 175             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 30                                             | 200             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 35                                             | 225             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 40.16                                          | 255             | NA                                           | NA                                         | NA                    | NA                                          | No water, pump rate increase.  |
| 40.8                                           | 255             | 40:58                                        | 44:13                                      | 3.25                  | 0.31                                        | Grey, silty; hydrocarbon odor. |
| 44.1                                           | 255             | 44:13                                        | 48:19                                      | 4.1                   | 0.25                                        | Same                           |
| 48.2                                           | 255             | 48.19                                        | 53:25                                      | 5.1                   | 0.2                                         | Same                           |
| 60.23                                          | 255             | 60:23                                        | 70:19                                      | 9.93                  | 0.1                                         | Water clearing.                |
| 75.24                                          | 255             | NA                                           | NA                                         | NA                    | NA                                          | Down-hole water level up.      |







## Table 5. MW-02 Pump Setting and Discharge Measurements

| Time<br>Since<br>Pumping<br>Began<br>(minutes) | Pump<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>Discharge<br>(gpm) | Comment                 |
|------------------------------------------------|-----------------|----------------------------------------------|--------------------------------------------|-----------------------|---------------------------------------------|-------------------------|
| 77.23                                          | 255             | NA                                           | NA                                         | NA                    | NA                                          | Air in tubing. No flow. |
| 78.24                                          | 0               | NA                                           | NA                                         | NA                    | 0                                           | Pump shut down.         |

Key:

gpm = gallons per minute
mm:ss = minutes:seconds

NA = not applicable

#### Notes:

- 1. Average rate for the entire time of pumping 0.09 gpm considering the total volume pumped over the entire duration from pump start to absence of flow (77.5). This includes the volume of the discharge tubing, which filled to top if casing in the first minute of pumping (1.05 gallons). If the duration of pumping is assumed to be equal to when the pumping setting was set to the maximum value to when flow stopped (37.1 minutes), average discharge is 0.18 gpm.
- 2. A small amount of water may have been drawn into the tubing while pump failed to flow water.

The recovery period for MW-02 began 78.23 minutes after pumping initially began. Note that the water level increased by 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing. The recovery period was observed for approximately one hour, during which periodic water level measurements were obtained as a check on the transducer. The wellhead was then secured with all the down-hole equipment intact and with the transducer continuing to log the recovering water level as programmed.

The MW-02 site was revisited after eight days and the logging terminated followed by removal of the test equipment. A chart of drawdown in MW-02 computed for the period of record starting from when pumping began until the transducer was removed from the well is presented in Figure 3.

MW-01, MW-02, MW-03







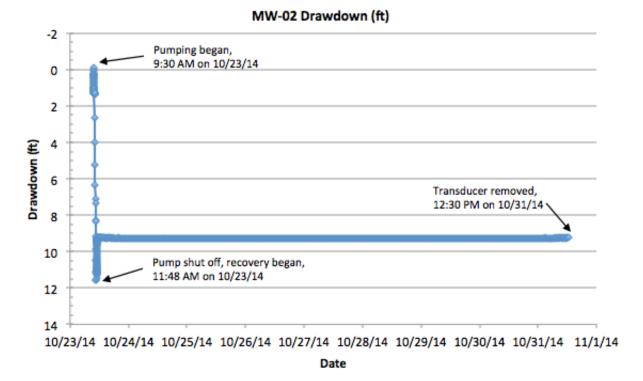



Figure 3. MW-02 Drawdown Computed for Pumping and Recovery Period of Record.

Figure 4 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery. This figure shows the water level response to the 40-minute period of insufficient pump rates and the corresponding rise in water temperature as the operation of the pump heated the stagnant water column. After flow is achieved at approximately 40.8 minutes, the water level begins to drop at a rate of about 0.6 feet per minute (ft/min). The down-hole water temperature then decreases as groundwater at ambient temperatures is drawn into the well screen. As the pump nears its capacity to lift, the water temperature begins to increase again as less water is drawn into the well.

Note that the calculation of duration of pumping is somewhat subjective. If the total time since the pump was turned on until the pump was shut off were assumed, the duration would be approximately 78.24 minutes. If the total time since the pump was turned on until no flow was observed at top of casing were assumed, the duration would be approximately 77.23 minutes. If the total time since the pump was set to 255 to the time no flow was observed at top of casing were assumed, the total time would be calculated as 37.07 minutes, with an average rate of drawdown of approximately 0.3 ft/min.







Two analyses were performed on data obtained from the MW-02 pump and recovery testing. The results from the testing conducted in MW-02 are summarized in Table 6 and depicted in Figure 5 (pumping) and Figure 6 (recovery).

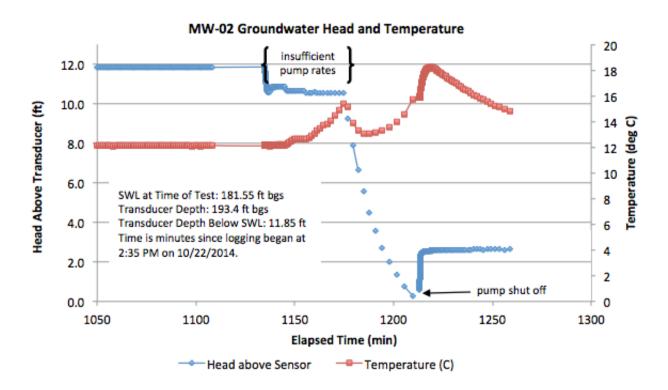



Figure 4. MW-02 Drawdown and Initial Recovery with Groundwater Temperature.







Table 6. Summary of Results from MW-02.

| Analysis                    | Discharge<br>Rate<br>(gpm) | Volume<br>Pumped<br>(gallons) | Duration of<br>Test Period | Maximum<br>Drawdown<br>or Recovery<br>(feet) | Estimated<br>Transmissivity<br>(ft²/day) | Estimated<br>Hydraulic<br>Conductivity<br>(ft/day) |
|-----------------------------|----------------------------|-------------------------------|----------------------------|----------------------------------------------|------------------------------------------|----------------------------------------------------|
| Moench                      | Variable                   | 6.8                           | 77.2 minutes               | 11.59                                        | 1E-01                                    | 7E-04                                              |
| Theis Recovery <sup>1</sup> | 0.09                       |                               | 8.1 days                   | 2.35                                         | 1.2                                      | 7E-02                                              |
| Theis Recovery <sup>3</sup> | 0.18                       |                               | 8.1 days                   | 2.35                                         | 2.6                                      | 2E-01                                              |

Key:

ft/day = feet per day

ft<sup>2</sup>/day = square feet per day

gpm = gallons per minute

### Notes:

- 1. Average discharge rate of 0.09 gpm is calculated by assuming the duration is represented by the time pumping initially started to when water stopped flowing at top of casing (77.5 minutes), and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.05 gallons).
- 2. Average discharge rate 0.18 gpm is calculated by assuming the duration is represented by the time at which the pump setting was set to the to the maximum value of 255 to when water stopped flowing at top of casing (37 minutes), and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.05 gallons).

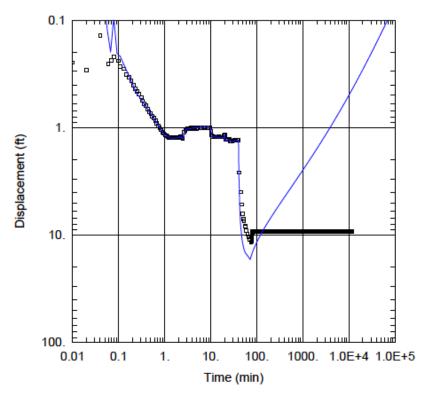



Figure 5. Aqtesolv Plot of Moench (1997) Curve-fit to MW-02 Time-Drawdown Data.







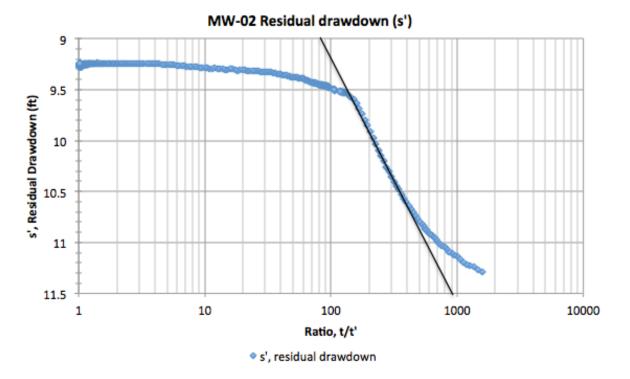



Figure 6. Theis (1935) Recovery Analysis of MW-02 Residual Drawdown Versus Ratio of t/t'.

The pumping period was analyzed by the method of Moench (1997) as implemented by the Aqtesolv<sup>TM</sup> well hydraulics analytical software program (Duffield 2007). Aqtesolv<sup>TM</sup> plots for all well tests are presented in Appendix B. The duration of pumping assumed was 77.5 minute, as explained above, which reflects the total time the pump was on until no flow was observed at ground surface. Estimated intermediate pump rates were entered into Aqtesolv<sup>TM</sup> to account for the 40 initial minutes of pumping with no flow at top of casing and to account for decreasing rates as lowered head decreased pump performance.

The recovery period was analyzed by the residual drawdown method derived from the Theis (1935) non-equilibrium equation as presented by Driscoll (1986). The recovery response analysis was complicated by the non-linear response of the recovery and possibly by water draining back down the discharge tubing at the cessation of pumping. The selection of the portion of the recovery curve to analyze is therefore somewhat subjective, but is generally taken as an independent check on the results calculated from the pumping period (Driscoll 1986), and is especially valuable when a constant discharge rate could not be maintained during the pumping period.

The duration of pumping is not relevant to the recovery analysis, but figures into the calculation of the average rate for input into the equation. Two values for average rate were calculated. One was based on the total volume pumped from the well divided by the total time of pumping until no flow, yielding an average rate of 0.09 gallons per minute (gpm) for the pumping period.







The second value was calculated assuming a total pumping duration represented by the time at which the pump setting was set to the maximum value of 255 to when water stopped flowing at the top of the casing (37 minutes), yielding an average rate of 0.18 gpm.

The values of transmissivity obtained from the Theis recovery analysis are several orders of magnitude higher than the Moench analysis conducted in Aqtesolv<sup>TM</sup>. It is also clear that the values are affected by the average discharge rate selected for input into the recovery analysis equation, with larger values of average discharge yielding higher values of transmissivity. Because of the subjectivity involved in selecting the appropriate portion of the curve to analyze, and the range in average discharge values, the transmissivity estimate obtained from the recovery analysis should receive much less weight. The value of 1.2 square feet per day (ft²/day) (Table 6) should be regarded as the absolute upper end for transmissivity, and the estimate obtained from Aqtesolv as a more appropriate value.

## **MW-03 Test Summary**

Data collected before and during the instrumentation process in MW-03 are presented in Table 7.

The pump was powered up at approximately 12:52 PM on October 23, 2014. Based on the experience with the pump performance in the previous well test, the initial pump setting was set to 255 in an attempt to bring water to the surface as soon as possible. This setting resulted in an overcurrent shutdown almost immediately after the pump started.

The setting was then decreased to 235 and a restart was attempted with the same overcurrent result. At 12:56 PM, the setting was changed to 225 and reattempted, which resulted in a successful pump start. Water appeared at ground surface one minute later, enabling discharge measurements to be made.

Table 7. MW-03 Test Parameters.

| Water Level<br>at Start (ft<br>btoc) <sup>1</sup> | Height of<br>Static<br>Water<br>Column<br>(feet) | Length of<br>Wetted<br>Screen<br>(feet) | Pump<br>Bottom<br>(ft bgs) | Transducer<br>Depth Below<br>Water Level<br>(feet) <sup>3</sup> | Volume Displaced<br>by Downhole<br>Equipment<br>(gallons) | Undissipated Head<br>at Time of Test<br>Start (feet) <sup>4</sup> |
|---------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| 191.53                                            | 10.34                                            | 7.64                                    | 198.62                     | 7.65                                                            | 1.32                                                      | 0.37                                                              |

### Key:

ft bgs = feet below ground surface

ft btoc = feet below top of casing

### Notes:

- 1. Water level shown is manually measured depth to water immediately before starting pump. The static water level measured the previous day before the well was instrumented was 191.9 ft btoc.
- 2. Referenced to total depth of well (200 ft bgs).
- 3. Value calculated from pressure measurement read immediately preceding the start of pumping.
- 4. This value represents the remaining increase in water level since the time the well was instrumented on 10/22/2014.







A summary of pump settings and average discharge measurements made per gallon pumped is presented in Table 8. The water level in the well decreased fairly rapidly, at an average rate of approximately 0.9 ft/min. At approximately 7:56 minutes into pumping, the transducer reading indicated that the transducer was about to dewater (0.09 psi), and the pump was shut down seconds later. Maximum observed drawdown was 7.41 feet.

The recovery period for MW-03 began 8.1 minutes after pumping began. Similar to the early case in MW-02, the water level increased by about 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing.

Table 8. MW-03 Pump Setting and Discharge Measurements

| Time Since<br>Pumping<br>Began<br>(minutes) | Pump<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>Discharge<br>(gpm) <sup>1</sup> | Comment                           |
|---------------------------------------------|-----------------|----------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------|-----------------------------------|
| -4                                          | 255             | NA                                           | NA                                         | NA                    | NA                                                       | Overcurrent shutdown <sup>2</sup> |
| -2                                          | 235             | NA                                           | NA                                         | NA                    | NA                                                       | Overcurrent shutdown <sup>2</sup> |
| 0                                           | 225             | NA                                           | NA                                         | NA                    | NA                                                       | Pump started                      |
| 1.02                                        | 225             | 1:01                                         | 4:04                                       | 3.05                  | 0.33                                                     | Grey, silty hydrocarbon odor      |
| 4.07                                        | 225             | 4:04                                         | 7:02                                       | 2.97                  | 0.34                                                     | Alternating clear and dark        |
| 7.56                                        | 225             | NA                                           | NA                                         | NA                    | NA                                                       | 0.091 psi                         |
| 8.1                                         | 255             | NA                                           | NA                                         | NA                    | NA                                                       | Pump off                          |

### Key:

gpm = gallons per minute

mm:ss = minutes:seconds

NA = not applicable

psi = pounds per square inch

### Notes:

- 1. Average rate for the entire time of pumping 0.39 gpm considering the total volume pumped, including the volume of the discharge tubing, which filled to top if casing in the first minute of pumping (1.1 gallons).
- 2. A small amount of water may have been drawn into the tubing and subsequently released each time the pump was started and stopped due to current overload.

The recovery period was observed for approximately one hour before securing the wellhead with the down-hole equipment intact and the transducer continuing to log the recovering water level. The MW-03 site was revisited after eight days, and the logging terminated followed by removal of the test equipment. Figure 7 presents a chart of drawdown in MW-03 computed for the period of record starting from when pumping began until the transducer was removed from the well.







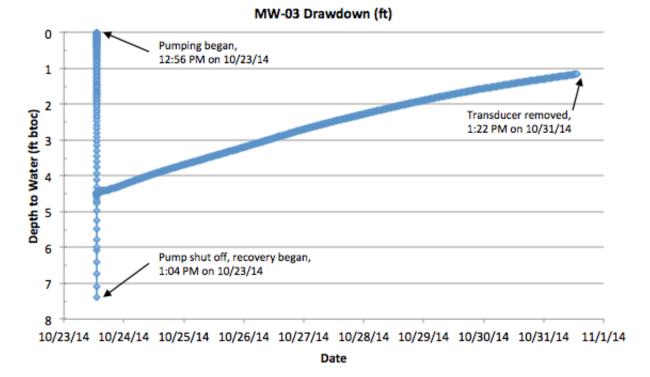



Figure 7. MW-03 Drawdown Computed for Pumping and Recovery Period of Record.

Figure 8 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery in MW-03. Inspection of Figure 8 reveals a steady drop in water level in response to a fairly constant pump rate over a short period of time. A small temperature increase is noted, likely due to the initial attempts at pumping that resulted in overcurrent condition. After flow is achieved, the temperature drops slightly as groundwater at ambient temperatures is drawn into the well screen.

As the pumping in MW-03 began to nearly dewater the transducer, the pump was shut down. The water temperature was observed to rise markedly due to the small amount of water left in the well available to adsorb heat from the pump. At some point during recovery, the temperature drops as groundwater at ambient temperature enters the well.

The data obtained from the pumping period in MW-03 were analyzed by the method of Moench (1997) as implemented in Aqtesolv<sup>TM</sup>. Aqtesolv<sup>TM</sup> plots for all well tests are presented in Appendix B.

The results from the testing conducted in MW-03 are summarized in Table 9. The results of the Moench (1997) analysis of the pumping phase data are depicted in Figure 9.







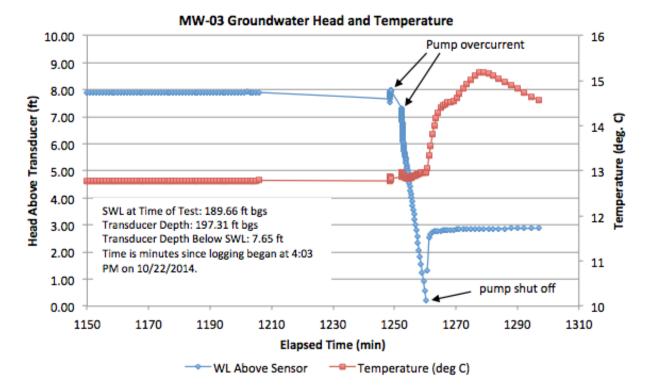



Figure 8. MW-03 Drawdown and Initial Recovery with Groundwater Temperature.

Table 9. Summary of Results from MW-03.

| Analysis       | Discharge<br>Rate<br>(gpm) <sup>1</sup> | Volume<br>Pumped<br>(gallons) | Duration of<br>Test Period | Maximum<br>Drawdown<br>or Recovery<br>(feet) | Estimated<br>Transmissivity<br>(ft <sup>2</sup> /day) | Estimated<br>Hydraulic<br>Conductivity<br>(ft/day) |
|----------------|-----------------------------------------|-------------------------------|----------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| Moench         | 0.39                                    | 3.14                          | 8.1 minutes                | 7.41                                         | 6E-02                                                 | 7E-03                                              |
| Theis Recovery | 0.39                                    |                               | 8 days                     | 6.25                                         | 4.3                                                   | 0.52                                               |

Key:

ft/day = feet per day

ft<sup>2</sup>/day = square feet per day

gpm = gallons per minute

## Notes:

Significant in Figure 9 is the unusual flexure of the recovery portion of curve, signifying an increasing rate of recovery at large times. When the assumptions of theory are met, the rate of recovery is initially quick and decays exponentially with time, with the concave portion of the

<sup>1.</sup> Average rate for the entire time of pumping is 0.39 gpm calculated from time pumping started to when water stopped flowing, and considering the calculated volume of the discharge tubing that filled with water before water appeared at land surface (1.1 gal).







curve directed downwards on a log-log plot. This is the opposite of the behavior typically observed in infinite-acting isotropic and homogeneous aquifers with radial flow towards the well.




Figure 9. Agtesolv Plot of Moench (1997) Curve-fit to MW-03 Time-Drawdown Data.

An attempt was made to analyze the recovery period data by the Driscoll (1986) implementation of the Theis (1935) residual drawdown method (Figure 10). As shown on Figure 10, the recovery response analysis was complicated by the unusual recovery curve, indicating that the recovery response at small ratios of t/t' did not fit the assumptions of the analytical model. Furthermore, there was little insight as to which part of the curve to fit. Assuming that the latter part of the curve at large values of t/t' was the beginning of the appropriate segment for analysis, values for transmissivity and hydraulic conductivity were estimated. The values shown in Table 9 for recovery appear large when compared to the results from MW-03 pumping phase and both recovery and pumping phase results from MW-02.

Similar to the case of MW-02, it is believed that the MW-03 recovery values represent an overestimate, and the pumping phase data, corrected for casing storage within the Moench (1997) analytical model, yields a more reliable estimate of transmissivity. The explanation for the inaccuracy of the recovery value is that at small ratios of t/t', the computed value was







essentially unity for a significant portion of that the MW-03 recovery period. The plausible explanation for the cause of this is the short duration of pumping (due to the lack of usable drawdown), possibly in concert with low permeability material in contact with the MW-03 well screen. As a result, a significant percentage of the water yield was likely derived from casing storage, which will produce an overestimate of transmissivity. The derivative analysis and the radial flow plot for MW-03 (Figure 11) also suggest this to be the case.

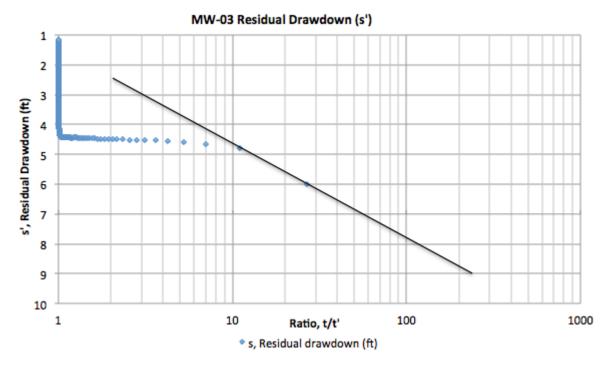



Figure 10. Theis (1935) Recovery Analysis of MW-03 Residual Drawdown Versus Ratio of t/t'.

On the log-log radial flow plot shown in Figure 11, early-time data exhibiting a unit slope are indicative of wellbore storage (Duffield 2007). This plot suggests that for a short time, the aquifer began to behave as if it was yielding water by radial flow, but shortly later resumed characteristics of wellbore storage for the duration of the pumping test.







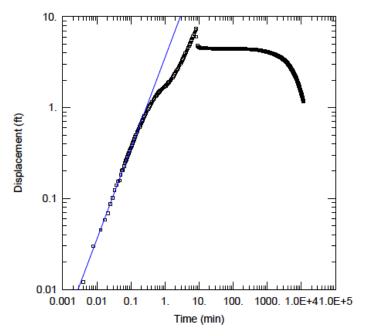



Figure 11 Radial Flow Plot for MW-03 Indicating Significant Casing Storage Effects.

A cursory derivative analysis was also performed. The fact that the derivative never approaches a constant with time (not shown, see Appendix B3) is additional evidence that radial flow was not a dominant source of water to the well.

## **MW-01 Test Summary**

Two tests were attempted in MW-01 on November 7, 2014. Data collected before and during the instrumentation process in MW-01 are presented in Table 10.

Table 10. MW-01 Test Parameters.

| Water<br>Level at<br>Start<br>(ft btoc) <sup>1</sup> | Height of<br>Static<br>Water<br>Column<br>(feet) <sup>2</sup> | Length of<br>Wetted<br>Screen<br>(feet) | Pump<br>Bottom<br>(ft bgs) | Transducer<br>Depth Below<br>Water Level (ft) <sup>3</sup> | Volume Displaced<br>by Downhole<br>Equipment<br>(gallons) | Undissipated Head<br>at Time of Test<br>Start (feet) <sup>4</sup> |
|------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|----------------------------|------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|
| 175.17                                               | 26.54                                                         | 25.54                                   | 197.89                     | 20.17                                                      | 2.18                                                      | 0.22                                                              |

### Key:

ft bgs = feet below ground surface

ft btoc = feet below top of casing

## Notes:

- 1. Water level shown is manually measured depth to water immediately before starting pump. The static water level measured the previous day before the well was instrumented was 175.41 ft btoc.
- 2. Referenced to total depth of well (200 ft bgs).
- 3. Value calculated from pressure measurement read immediately preceding the start of pumping.
- 4. This value represents the remaining increase in water level since the time the well was instrumented on 11/6/2014.







The first test, which began at approximately 9:19 AM on November 7, 2014, was aborted due to poor pump performance. After unsuccessful attempts to increase the power setting to a value that would discharge water at ground surface, the first test was terminated approximately 23 minutes after starting.

Based on experience in the previous well tests, the initial pump setting was set to 225 in an attempt to bring water to the surface as soon as possible without over-powering the pump. This setting resulted in an overcurrent shutdown almost immediately after the pump started. The setting was decreased to 200 and a restart was successful, commencing pumping at 9:21 AM. At 1.63 minutes later, the pump power setting was successfully changed to 225. Another attempt was made at 3 minutes, but the controller indicated that 225 was the maximum possible setting at this time. At 11.05 minutes, the power setting was successfully increased to 231. Water appeared at ground surface at 13.67 minutes after pumping began but did not flow past the top of the outer casing. At 16.5 minutes, the water level rose an additional 5 to 6 inches but still but did not flow past the top of the outer casing. At 17:75 minutes, the level in the discharge tubing began falling, and then rose again at 18:5 minutes. At 22 minutes, it was decided to remove the extension cord out of the power loop to the generator to eliminate that as a possible source of line loss. The pump was momentarily stopped and restarted without a change in performance. At 23:25 minutes, it was decided to abort the test and change the pump to a backup unit in an effort to flow water at ground surface.

A summary of pump settings and associated observations for the aborted test is presented in Table 11.

Table 11. MW-01 Pump Setting and Discharge Measurements (Attempt 1)

| Time<br>After<br>Pumping<br>Began<br>(minutes) | Pumping<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>Discharge<br>(gpm) <sup>1</sup> | Comment                            |
|------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------|------------------------------------|
| -2                                             | 225                | NA                                           | NA                                         | NA                    | NA                                                       | Overcurrent shutdown. <sup>2</sup> |
| 0                                              | 200                |                                              |                                            |                       |                                                          | Pump started.                      |
| 1.63                                           | 225                | NA                                           | NA                                         | NA                    | NA                                                       | Power increase successful.         |
| 3                                              | 225                | NA                                           | NA                                         | NA                    | NA                                                       | Power change attempted.            |
| 8:67                                           | 225                | NA                                           | NA                                         | NA                    | NA                                                       | Manual W.L. 176.98 ft btoc.        |
| 11.05                                          | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Power increase successful.         |







Table 11. MW-01 Pump Setting and Discharge Measurements (Attempt 1)

| Time<br>After<br>Pumping<br>Began<br>(minutes) | Pumping<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>End<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>Discharge<br>(gpm) <sup>1</sup> | Comment                                                      |
|------------------------------------------------|--------------------|----------------------------------------------|--------------------------------------------|-----------------------|----------------------------------------------------------|--------------------------------------------------------------|
| 13:67                                          | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Water at top of casing. Water slightly discolored to clear.  |
| 16.5                                           | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Water in tube rising, water clear.                           |
| 17.75                                          | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Water in tube falling.                                       |
| 18.5                                           | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Water in tube rising.                                        |
| 22                                             | 231                | NA                                           | NA                                         | NA                    | NA                                                       | Pump shut down and restarted to remove extension cord.       |
| 23.25                                          | 0                  | NA                                           | NA                                         | NA                    | NA                                                       | Test aborted, pump shut down.                                |
| 60                                             |                    | -                                            |                                            |                       | -1                                                       | New pump reinstalled<br>to same depth. WL<br>175.27 ft btoc. |
| 72.5                                           |                    |                                              | -1                                         |                       | 1                                                        | New log begun for trend. <sup>3</sup>                        |
| 75                                             |                    |                                              |                                            |                       |                                                          | WL 175.2 ft btoc.                                            |
| 101                                            |                    |                                              |                                            |                       |                                                          | WL 175.2 ft btoc.                                            |

### Key:

ft botc = feet below top of casing gpm = gallons per minute mm:ss = minutes:seconds
NA = not applicable

## Notes:

- 1. No water produced past top of casing.
- 2. A small amount of water may have been drawn into the tubing and subsequently released each when the pump was started and stopped due to current overload.
- 3. Logging for trend was commenced to determine when the water level was stable after the removal and replacement of all down-hole equipment to same depths.

The pump was removed and replaced with an identical model at 10:22 AM on November 7, 2014. The replacement pump was set to the depth identical to the previous installation. A manual water level of 175.27 ft btoc was obtained after the pump was secured. The transducer was reinstalled to a depth below water of approximately 21 feet.

A water level trend transducer log was started to determine when water level change was sufficiently small to begin a new test. At 10:34 AM, a manual measurement indicated that water was 175.2 feet btoc. At 11:00 AM, the same measurement was obtained. At this time, it







was decided to proceed with the second test, as water level appeared stable and differed only by 0.03 feet from the value obtained just before the previous test.

At 11:05, the pump for test 2 was successfully started at a power setting of 225. One minute later, the power setting was increased to 240. At 1.33 minutes after pumping started, flowing water appeared at top of casing and discharge measurements commenced. At 31 minutes after pumping began, flow could no longer be maintained at land surface. At 31.5 minutes, the pump power setting was successfully changed to the maximum setting with no change in flow at land surface. At 33.4 minutes after pumping began, the pump was shut down, and the recovery period for MW-01 began. Maximum observed drawdown for the pumping period was 10.7 feet.

A summary of pump settings and average discharge measurements made per gallon pumped is presented in Table 12.

Table 12. MW-01 Pump Setting and Discharge Measurements (Attempt 2)

| Time<br>Since<br>Pumping<br>Began<br>(minutes) | Pumping<br>Setting | Discharge<br>Measurement<br>Start<br>(mm:ss) | Discharge<br>Measurement<br>Start<br>(mm:ss) | Duration<br>(minutes) | Calculated<br>Average<br>discharge<br>(gpm) <sup>1</sup> | Comment                                                                            |
|------------------------------------------------|--------------------|----------------------------------------------|----------------------------------------------|-----------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|
| 0                                              | 225                | NA                                           | NA                                           | NA                    | NA                                                       | Pump started.                                                                      |
| 1                                              | 240                | NA                                           | NA                                           | NA                    | NA                                                       | Power increase successful.                                                         |
| 1.33                                           | 240                | 1:20                                         | 5:30                                         | 4.17                  | 0.24                                                     | Water flowing at top of casing light grey with suspended fines. 1 gallon pumped.   |
| 5.5                                            | 240                | 5:30                                         | 10:00                                        | 4.5                   | 0.22                                                     | Total 2 gallons pumped.                                                            |
| 10.33                                          | 240                | 10:20                                        | 17:31                                        | 7.18                  | 0.14                                                     | Total 3 gallons pumped.                                                            |
| 17.52                                          | 240                | 17:31                                        | 27:00                                        | 9.48                  | 0.11                                                     | Total 4 gallons pumped.                                                            |
| 25:33                                          | 247                | NA                                           | NA                                           | NA                    | NA                                                       | Power increase successful.                                                         |
| 27                                             | 247                | 27:00                                        | 31:00                                        | 4                     | 0.19                                                     | 0.75 gallons produced in this time interval. Cumulative total 4.75 gallons pumped. |
| 31                                             | 247                | NA                                           | NA                                           | NA                    | NA                                                       | Water stopped flowing.                                                             |
| 31.5                                           | 255                | NA                                           | NA                                           | NA                    | NA                                                       | Power increase successful.<br>No flow.                                             |
| 33.4                                           | 0                  | NA                                           | NA                                           | NA                    | NA                                                       | Pump shut down.                                                                    |







## Key and Notes to Table 12

Key:

gpm = gallons per minute mm:ss = minutes:seconds NA = not applicable

Notes:

Similar to what was observed in the other wells, the water level increased by about 2 feet in the first 30 seconds, indicating that some water may have drained back into the well from the tubing.

The recovery period was observed for approximately one hour before securing the well with the down-hole equipment intact and the transducer continuing to log the recovering water level. The MW-01 site was revisited after 7.9 days and the logging terminated followed by removal of the test equipment. A chart of drawdown in MW-01 computed for the period of record starting from when pumping began until the transducer was removed from the well is presented in Figure 12.

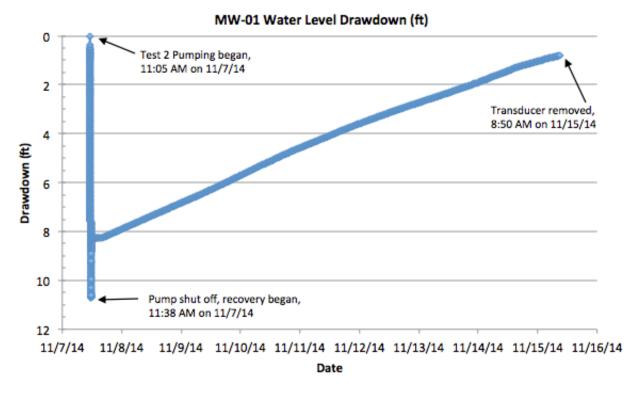



Figure 12. MW-01 Drawdown Computed for Pumping and Recovery Period of Record.

<sup>1.</sup> Average rate for the entire time of pumping 0.19 gpm, calculated from time pumping started to when water stopped flowing, and considering the volume of the discharge tubing (1.01 gallons).







Figure 13 presents a chart of water level above the transducer sensor and water temperature for the pump period and initial recovery in MW-01. Inspection of Figure 13 reveals a standard water level response indicative of water contributed from the water bearing zone with a minimal amount of influence from casing storage A flexure is apparent at about 60 minutes (about 25 minutes after pumping began), which reflects the increase in pump rate when the power setting was increased to 247.

The groundwater temperature response in MW-01 was somewhat different than the other wells. In the case of MW-01, the temperature displayed a relatively significant decrease in temperature as groundwater at ambient temperatures was initially drawn into the well screen. Only when drawdown decreased the amount of water in the well, and the decrease in pumping rate slowed the intake of groundwater into the screen, did the temperature begin to increase. After the cessation of pumping, the temperature spiked, reflecting the heat transferred to the relatively static column of water left in the well.

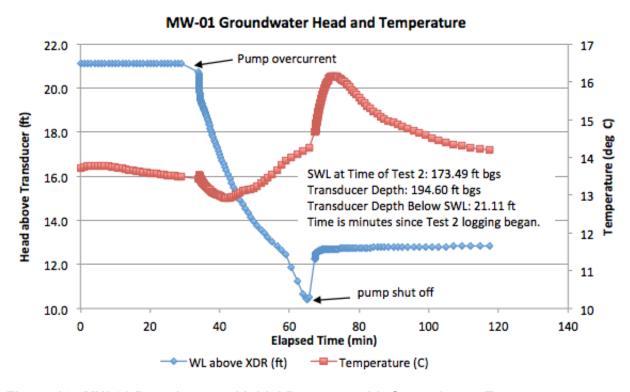



Figure 13. MW-01 Drawdown and Initial Recovery with Groundwater Temperature.

A summary of results from the testing conducted in MW-01 is presented in Table 13. The data obtained from the pumping period in MW-01 were analyzed by the method of Moench (1997) as implemented by the Aqtesolv<sup>TM</sup> well hydraulics analytical software program (Duffield 2007). Aqtesolv<sup>TM</sup> plots for all analyses performed for the MW-01 testing are presented in Appendix B1.







Table 13. Summary of Results from MW-01.

| Analysis       | Discharge<br>rate<br>(gpm) <sup>1</sup> | Volume<br>Pumped<br>(gallon) | Duration of<br>Test Period <sup>2</sup> | Maximum<br>Drawdown<br>or Recovery<br>(feet) | Estimated<br>Transmissivity<br>(ft <sup>2</sup> /day) | Estimated<br>Hydraulic<br>Conductivity<br>(ft/day) |
|----------------|-----------------------------------------|------------------------------|-----------------------------------------|----------------------------------------------|-------------------------------------------------------|----------------------------------------------------|
| Moench         | Variable                                | 5.76                         | 31 minutes                              | 10.7                                         | 6E-03                                                 | 2E-04                                              |
| Theis Recovery | 0.19                                    |                              | 7.9 days                                | 9.88                                         | 37                                                    | 1.5                                                |

Key:

ft/day = feet per day

ft<sup>2</sup>/day = square feet per day

gpm = gallons per minute

#### Notes

- 1. Average rate for the entire time of pumping is 0.19 gpm calculated from time pumping started to when water stopped flowing, and considering the volume of the discharge tubing filled with water before water appeared at land surface (1.01 gallons).
- 2. Pump was shut off after 33 minutes, but water stopped flowing at 31 minutes.

The results of the Moench (1997) analysis of the pumping phase data are depicted in Figure 14. Some difficulty was experienced in the curve-fitting process due to apparent fluctuations in the rate of drawdown during the pumping phase of the test.

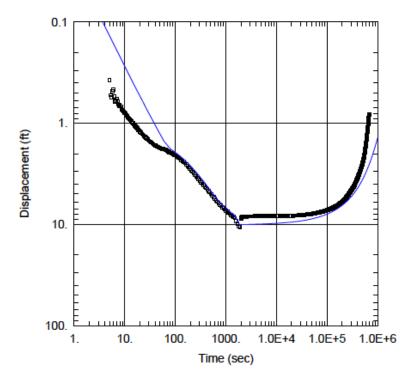



Figure 14. Aqtesolv Plot of Moench (1997) Curve-fit to MW-01 Time-Drawdown Data.







In an effort to set the pump to its maximum rate, the pump power setting was increased three times: at 1 minute, at 25.3 minutes, and at 31.5 minutes, approximately 30 seconds after water stopped flowing at the surface. Though the pump was set to the maximum possible power setting at 31.5 minutes, water did not resume flowing.

A case could be made that the slight flexure at 1 minute resulted from the increase in pump rate at that time. However, there is seemingly no explanation based on pump rate that could account for other changes in the drawdown curve.

In order to rule out pump rates as the cause, intermediate rates were added into the Aqtesolv<sup>TM</sup> input file. Intermediate rates that decreased with time were estimated at quasi-regular time intervals. Care was taken to ensure that the volumes produced in those time intervals matched the production measured by bucket and stopwatch for the corresponding timeframe. This resulted in a somewhat closer fit, but still not close enough for the solution to converge.

Other possible explanations are boundary conditions that result in leakage, recharge, no flow, or reduced flow. Such boundary conditions could be a leaky aquitard, recharge from a large fracture or fault, or a pinching water-bearing zone such as that often displayed by lens-shaped sand bodies.

Finally, following guidance in the Aqtesolv<sup>TM</sup> Documentation (Duffield 2007), parameter tweaking was employed iteratively, focusing mainly on well effective radius ( $r_c$ ) and well skin factor ( $s_w$ ). These adjustments proved successful in fitting MW-01 mid-to-late time data, initially employing automatic curve matching for the preliminary fit, followed by a slight adjustments in  $s_w$  and  $r_c$  for the final fit.

Early time data were not well-fit, presumably due to casing storage effects, which were evaluated with the radial flow plot and derivative analysis. Early-time data with unit slope on a radial flow plot with log-log axes is characteristic of wellbore storage, whereupon inspection of the radial flow plot presented in Figure 15 confirms that well-bore storage was a minor but contributing factor.







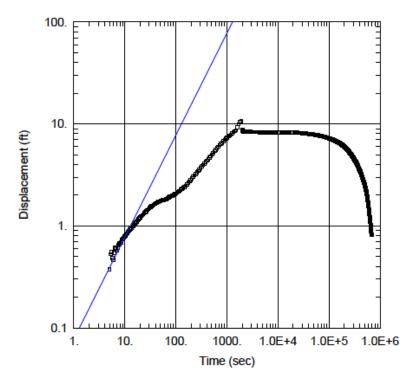



Figure 15. Radial Flow Plot for MW-01 Illustrating Well-Bore Storage at Early Times.

The derivative analysis confirmed this conclusion, with a pronounced peak in the derivative (red colored data) that is characteristic of well-bore storage (Figure 16). At intermediate to late time, the derivative approaches a constant value when the aquifer is infinite-acting (i.e., radial flow is occurring). Unfortunately, the pump was not able to sustain discharge soon after that point; thus, further data supporting radial flow after this time this were not available. At the end of the test, the derivative approaches zero, suggesting the influence of recharge or leakage (e.g., pump rate falling to zero, allowing recharge to enter the well).

An attempt was made to analyze the recovery period data by the residual drawdown method derived from the Theis (1935) non-equilibrium equation as presented by Driscoll (1986). The first issue in evaluating the recovery response was to correct for spikes discovered in the downhole pressure measurement record. Upon arriving at the MW-01 site on November 15, 2014, it was evident that vandals had cut the tape securing both the pump and the transducer cables to the outer casing.







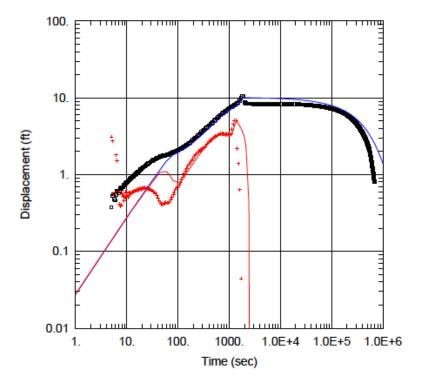



Figure 16. MW-01 Derivative Analysis Indicating Well-Bore Storage and Incipient Radial Flow.

After unlocking and opening the cover on the outer well casing, it appeared that the transducer had moved downwards by some amount. The pump, however, did not appear to have slipped downwards by much, if at all. When the well was initially secured on November 7, 2014, the excess pumping tubing was coiled up and pressed down in the annular space between the inner and outer well casing. Apparently, when the tape securing the pump cable was cut, the coiled end of discharge tubing had hung up inside the casing, preventing the pump from slipping down into the bottom of the well. The lack of movement was confirmed by the tape mark that indexed the pump suspension cable to the top of the outside casing.

According to the transducer log, the time at which the transducer movement first occurred was approximately 6:34 PM on November 13, 2014 (Figure 17). The vandalism probably occurred at that time, or possibly sometime earlier.

In any case, the damage to the transducer mounting allowed the transducer to slip downwards, resulting in an apparent instantaneous change in water level of 0.97 feet upwards. At approximately 11:19 PM, another abrupt change of 0.13 feet was detected, due to further slippage of the transducer. Finally, at 2:34 AM on November 14, 2014, one additional water level change of 0.064 feet was observed. These changes were easily corrected for and have no







bearing on the results. The chart of MW-01 drawdown presented in Figure 12 and the MW-01 hydrograph presented in Appendix D show the water level record corrected for these changes.

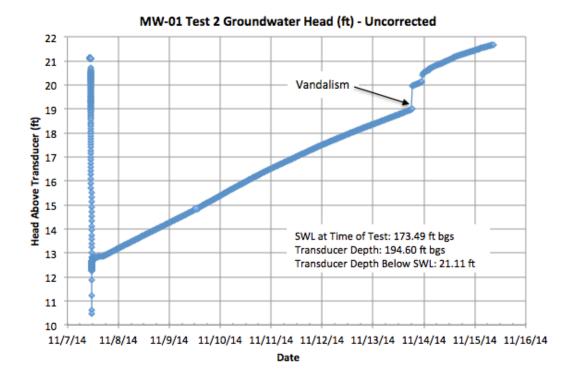



Figure 17. MW-01 Drawdown and Recovery Showing Abrupt change in Water Level Due to Vandalism of Cable Suspension Mount Point.

Once the corrections were made to the water level record, the recovery response was analyzed by the Driscoll (1986) implementation of the Theis (1935) residual drawdown method. As shown in Figure 18, the response was such that a linear fit was achieved to the semi-log plot of the data, allowing the estimation of transmissivity to be made directly from the regression equation. However, the estimated value of transmissivity from this analytical method was an order of magnitude larger (37 ft²/day) than the results of the same analysis conducted for the other wells.

In comparison to the recovery analysis conducted in the other wells, there is less uncertainty in the computation of the average discharge rate for MW-01, which was assumed to be equal to the total volume pumped from the well divided by the time of pumping. With respect to the other two wells, there was subjectivity in the selection of the duration of pumping because of the issues surrounding achieving an initial sustainable pump rate in those wells. Note that the recovery-based transmissivity results from MW-02 (Table 6) and MW-03 (Table 9) compare somewhat closely to MW-01 when using the same method for calculating the pumping







duration and when considering the subjectivity involved in that and the assumptions required for the Theis (1935) method.

In any case, other contributing factors to the larger values of transmissivity calculated for all the wells by the Theis (1935) recovery method likely include the conventions required by the method, which assume confined conditions, radial flow, an infinite-acting aquifer, and the neglection of casing storage and aquitard leakage.

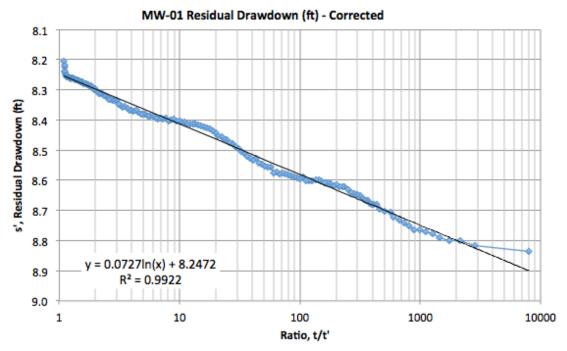



Figure 18. Theis (1935) Recovery Analysis of MW-01 Residual Drawdown Versus Ratio of t/t'.

Due to the limitation if the Theis (1935) under the hydrogeologic conditions at the TomCo site, the estimate of transmissivity for MW-01 provided through the use of the Moench (1997) analysis (Table 13) should be considered the best available estimate.

## 4 **CONCLUSIONS**

Aquifer stress testing was conducted to provide hydrogeologic data regarding the nature and extent of groundwater resources at depths of up to 200 feet beneath the TomCo site. Testing included pump-drawdown tests followed by a recovery period of up to eight days. Data collected included discharge and drawdown data, cumulative volumes pumped, water level recovery rates, and hydraulic properties estimates.







Measured depths to water obtained in October 2013 and a year later in October 2014, maximum water level drawdown during pumping, cumulative gallons pumped and best engineering estimates of hydraulic properties are presented in Table 14.

Table 14. Summary of TomCo Monitoring Well Test Observations.

| WELL ID | October<br>2013<br>DTW<br>(ft bgs) | October<br>2014<br>DTW<br>(ft bgs) | Water<br>Level<br>Decrease<br>(feet) | Maximum<br>Drawdown<br>(feet) | Volume<br>Pumped<br>(gallons) | BEE <sup>1</sup> Specific Capacity (gpm/ft) | BEE T<br>(ft²/day) | BEE K<br>(ft/day) |
|---------|------------------------------------|------------------------------------|--------------------------------------|-------------------------------|-------------------------------|---------------------------------------------|--------------------|-------------------|
| MW-01   | 175.3                              | 173.69                             | +1.61                                | 10.7                          | 5.76                          | 0.02                                        | 6E-03              | 2E-04             |
| MW-02   | 180.3                              | 181.85                             | -1.55                                | 11.42                         | 6.85                          | 0.02                                        | 1E-02              | 7E-04             |
| MW-03   | 180.7                              | 190.03                             | -9.33                                | 7.41                          | 3.14                          | 0.05                                        | 6E-02              | 7E-03             |

Key:

BEE = best engineering estimate

ft bgs = feet below ground surface

ft/day = feet per day

ft<sup>2</sup>/day = square feet per day

gpm/ft = gallons per minute per foot

K = Hydraulic Conductivity

T = Transmissivity

Notes:

1) In all cases, value obtained from the Moench (1997) analysis.

The lack of significant head in each well suggests that substantial water bearing zones are not present beneath the TomCo site. This conclusion is also supported by the diminished capacity of each well to transmit appreciable amounts of groundwater when pumped at low rates (generally 0.34 to 0.1 gpm). Specific capacities ranged from a low of 0.02 gpm/ft to a high of 0.05 gpm/ft, which reflects the efficiency of the well and suggests that the well screens are in contact with material of low permeability, and may also be affected by well skin.

An evaluation of the data included the use of analytic models to estimate values for transmissivity, for which best estimates ranged from  $6x10^{-3}$  ft<sup>2</sup>/day to  $6x10^{-2}$  ft<sup>2</sup>/day, assuming unconfined conditions under the Moench (1997) model. Estimates of transmissivity obtained using the Theis (1935) residual recovery method as described by Driscoll (1986) were up to several orders of magnitude larger, underscoring the limitations of that method under nonconfined conditions, casing storage effects, and boundary influences, resulting in non-infinite acting aquifer conditions, and non-radial flow.

By the assumption that the wetted screen length represented the thickness of the zone thought to have potential to bear water, estimates of hydraulic conductivities ranged from a low of







 $2x10^{-4}$  ft/day to a high of  $7x10^{-3}$  ft/day. These values are consistent with published values representative of silt, clayey sand, or silty sand (Halford and Kuniansky 2002; Fetter 1994).

The testing and analysis presented herein indicates that while minor water-bearing zones may be present in the sub-surface in the vicinity of the TomCo project site, these by definition cannot be classified as aquifers due to the low yield, and apparent limited lateral and vertical extent of the water-bearing zones in contact with the screened intervals of TomCo MW-01. MW-02. And MW-03.







## 5 REFERENCES CITED

- Driscoll, F.G., 1986. Groundwater and Wells (2nd ed.), Johnson Filtration Systems, Inc., St. Paul, Minnesota, pp. 252-257.
- Duffield, G.M., 2007. AQTESOLV for Windows Version 4.5 User's Guide, HydroSOLVE, Inc., Reston, VA.
- Fetter, C.W., 1994. Applied Hydrogeology (3<sup>rd</sup> Edition), Prentice-Hall, Inc., Upper Saddle River, New Jersey, pg 98.
- Halford, K.J. and Kuniansky, E.L., 2002. Documentation of Spreadsheets for the Analysis of Aquifer-Test and Slug-Test Data, U.S. Geological Survey Open-File Report, 02-197, 51 p.
- Moench, A.F., 1997. Flow to a well of finite diameter in a homogeneous, anisotropic water-table aquifer, Water Resources Research, vol. 33, no. 6, pp. 1397-1407.
- Papadopulos, I.S. and H.H. Cooper, 1967. Drawdown in a well of large diameter, Water Resources Research, vol. 3, no. 1, pp. 241-244.
- Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.







## **APPENDIX A: WELL CONSTRUCTION AND LITHOLOGIC LOGS**







# Appendix A Lithological Logs

MW-01, MW-02, MW-03, MW-04
Installed September 19th to October 9th, 2013
The Oil Mining Company, Inc.
Uintah County, Utah

# Legend



Sandstone



Grainstone



Siltstone



Mudstone



Marlstone



Shale



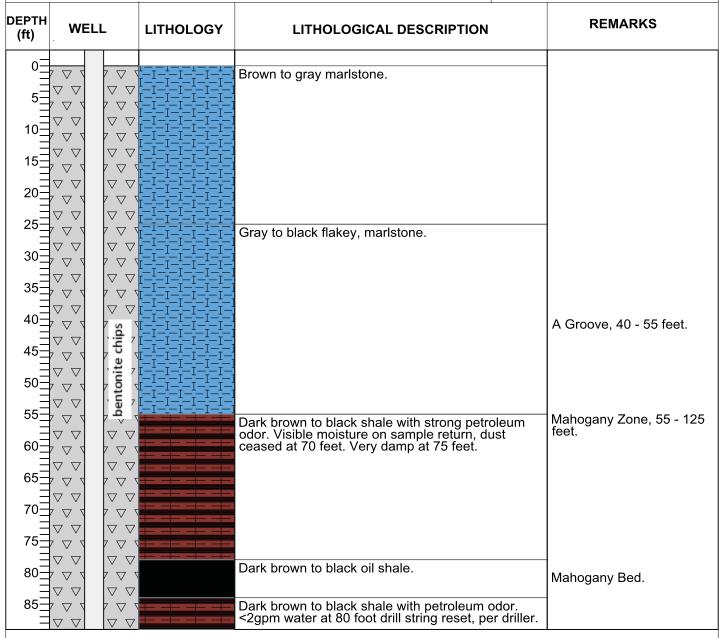
Oil shale



Mahogany Zone



Volcanic tuff

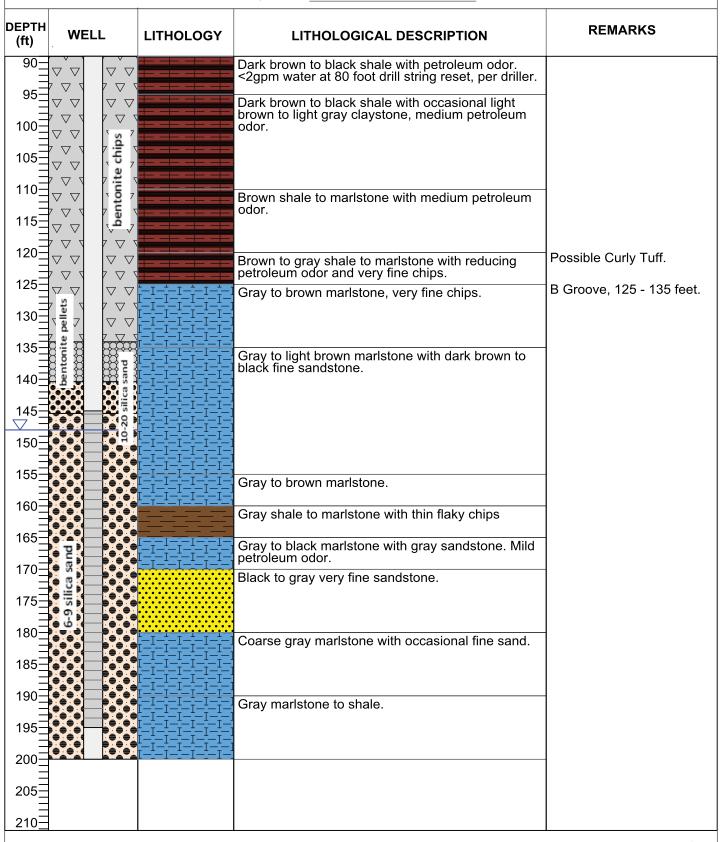

Client The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-01

| Drilling Contractor Himes Drilling  □ Drilled by Sam Homedew  □ Logged By J.J. Brown  □ Drill Rig Truck-mounted Portadrill TKT  □ Drilling Method Rotary                                                    | Completion Date 10/09/2013  Drilling Fluid Air and foam  Borehole Depth 200'  Borehole Dia. (in) 6.25"                                                                                                                                                                     | Northing 4405433.9 Easting 654547.7 Surface Elev. (ft) 6092.0 TOC Elev. (ft) 6094.5 Stick-up/down 2.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 148' - 198' Backfill Material Bentonite chips | Backfill Interval 0' - 134.1'  Filter Material 6-9 Colorado Silica Sand  Filter Interval 140.4' - 200'  Seal Material Bentonite pellets  Seal Interval 134.'1 - 140.4'  Surface Seal Cement pad  Development Surge, air lift on 10/9/13  Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 150.5 10/1/2013 * DTW measured after well development  Notes:                          |



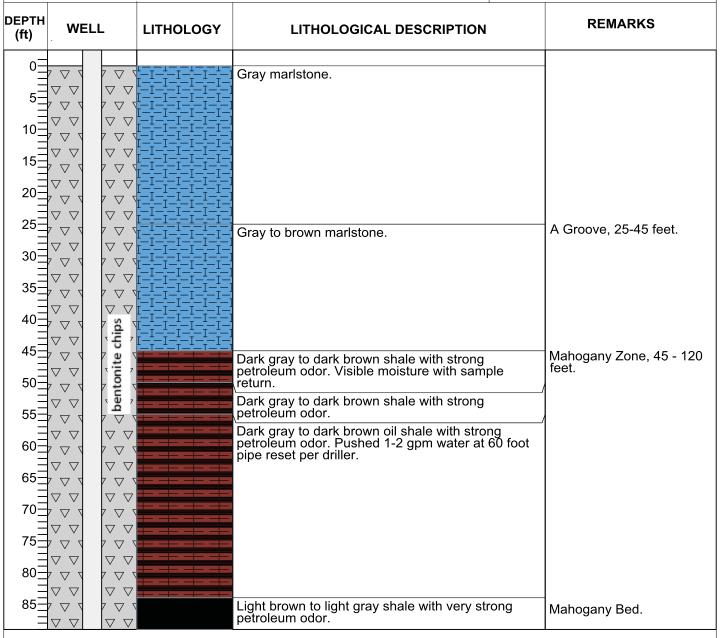

Client The Oil Mining Company

**Project Holliday Block Groundwater Study** 



Well ID MW-01




Client The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-02

| Drilling Contractor Himes Drilling  □ Drilled by Sam Homedew  □ Logged By J.J. Brown  □ Drill Rig Truck-mounted Portadrill TKT  □ Drilling Method Rotary                                                    | Completion Date 10/08/2013  Drilling Fluid Air and foam  Borehole Depth 200'  Borehole Dia. (in) 6.25"                                                                                                                                                                     | Northing 4403964.9 Easting 654602.0 Surface Elev. (ft) 6232.0 TOC Elev. (ft) 6234.5 Stick-up/down 2.5 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 148' - 198' Backfill Material Bentonite chips | Backfill Interval 0' - 127.4'  Filter Material 6-9 Colorado Silica Sand  Filter Interval 134.5' - 200'  Seal Material Bentonite pellets  Seal Interval 127.4' - 134.5'  Surface Seal Cement pad  Development Surge, air lift on 10/9/13  Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 115.3 10/1/2013 * DTW measured after well development  Notes:                          |



Client \_ The Oil Mining Company

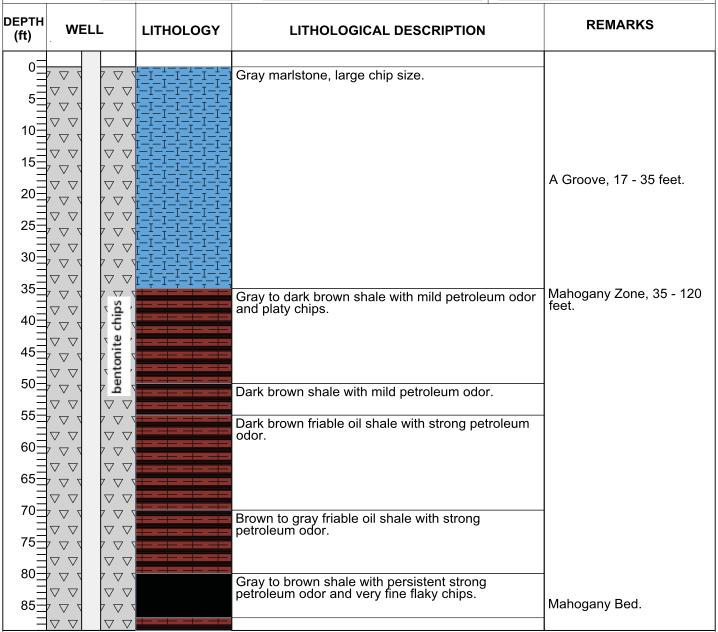
205

 $210^{-}$ 

**Project Holliday Block Groundwater Study** 



Well ID MW-02 Project No. LO-000080-0003-10TTO DEPTH **REMARKS** WELL **LITHOLOGY** LITHOLOGICAL DESCRIPTION (ft) 90 Light brown to light gray shale with very strong petroleum odor. bentonite chips Light brown to light gray shale with petroleum odor. 100 105  $\nabla$  $\triangle \triangle$ 115 120 B Groove, 120 - 130 feet. Gray marlstone. 125-130 135 140 145 Gray to light brown marlstone. 150 Gray to light brown marlstone with occasional buff to yellowish brown tuff. 155 160 Gray to brown marlstone to shale. Gray to black marlstone. 170 175 Black to gray very fine sandstone to very coarse marlstone 180 185 Gray marlstone. 190 200


Client The Oil Mining Company

Project Holliday Block Groundwater Study



Well ID MW-03

| Drilling Contractor Himes Drilling  □ Drilled by Sam Homedew  □ Logged By J.J. Brown  □ Drill Rig Truck-mounted Portadrill TKT  □ Drilling Method Rotary                                                        | Completion Date 10/09/2013` Drilling Fluid Air and foam Borehole Depth 200' Borehole Dia. (in) 6.25"                                                                                                                                                                         | Northing 4405418.3 Easting 655179.6 Surface Elev. (ft) 6132.4 TOC Elev. (ft) 6134.9 Stick-up/down 2.5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Well Depth (bgs) 200' Casing Type Sch. 80 PVC Casing Joints Threaded / Flush Casing Dia. (in) 2"  Screen Type Sch. 80 PVC  Slot Size (in) 0.0 Screen Interval 117.3' - 197.3' Backfill Material Bentonite chips | Backfill Interval 0' - 110.8'  Filter Material 6-9 Colorado Silica Sand  Filter Interval 117.3' - 199.3'  Seal Material Bentonite pellets  Seal Interval 102.6' - 110.8'  Surface Seal Cement pad  Development Surge, air lift on 10/9/13  Surge, air lift, pump on 10/22/13 | DTW (ft. btoc) 129.4 10/1/2013 * DTW measured after well development  Notes:                          |



Client \_ The Oil Mining Company

Project Holliday Block Groundwater Study



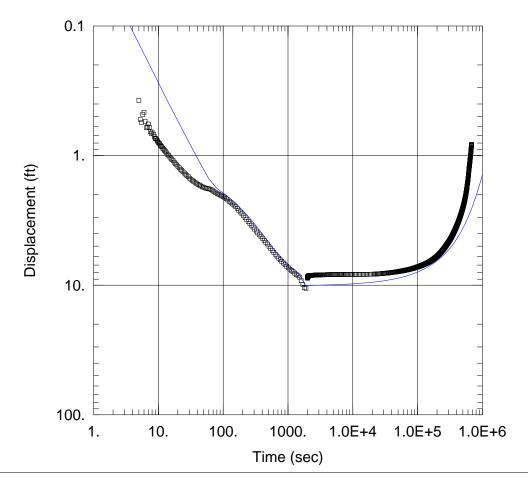
Well ID MW-03 Project No. LO-000080-0003-10TTO

| DEPTH<br>(ft)       | WELL                 | LITHOLOGY LITHOLOGICAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                        | REMARKS                    |  |
|---------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 90_                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Light gray to dark brown marlstone and shale with odor and chips as above.                                                                             |                            |  |
| 95=                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gray to dark brown marlstone and shale with odor and chips as above.                                                                                   |                            |  |
| 100                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gray to dark brown shale with odor and chips as above.                                                                                                 |                            |  |
| 105                 | entonite<br>entonite |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gray to dark brown marlstone and shale with odor and chips as above.                                                                                   |                            |  |
| 110=                | XXXXXX               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gray to dark brown shale with odor as above.                                                                                                           | -                          |  |
| 115=                | 20 silica            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 120=                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Buff colored tuff.                                                                                                                                     | Wavy Tuff, 120 - 123 feet. |  |
| 125                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dark gray coarse marlstone, very fine chips, poor strength.                                                                                            | B Groove, 123 - 133 feet.  |  |
| 130=                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 135                 |                      | I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I — I | Dark gray weak coarse marlstone with trace very fine sandstone. Tangy odor. Coarse silt and very fine pulverized sand in cuttings with low plasticity. |                            |  |
| 140                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inne pulvenzed sand in cultings with low plasticity.                                                                                                   |                            |  |
| 145                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 150=                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 155                 | sand                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 160                 | silica               | I-†-I-†-I-†-I-<br>I-†-I-†-I-†-I-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Gray to brown marlstone and shale.                                                                                                                     | _                          |  |
| 165 <u>=</u>        | 6-9                  | I=+=I=+=I=+=I=<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                        |                            |  |
| 170 <u>=</u>        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| =<br>  175 <u>=</u> |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 180 <u>=</u>        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dork grov to brown abole                                                                                                                               | _                          |  |
| 185 <u></u>         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dark gray to brown shale.                                                                                                                              |                            |  |
| 190=                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        | -                          |  |
| 195                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Light gray shale with light gray to white marlstone with low competency.                                                                               |                            |  |
| 200                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gray marlstone.                                                                                                                                        |                            |  |
| =                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 205                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        |                            |  |
| 210                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        | Page 2 of 2                |  |








# **APPENDIX B: AQTESOLV PLOTS**











Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-01 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:08:33

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-01
Test Date: 11/7/2014

#### AQUIFER DATA

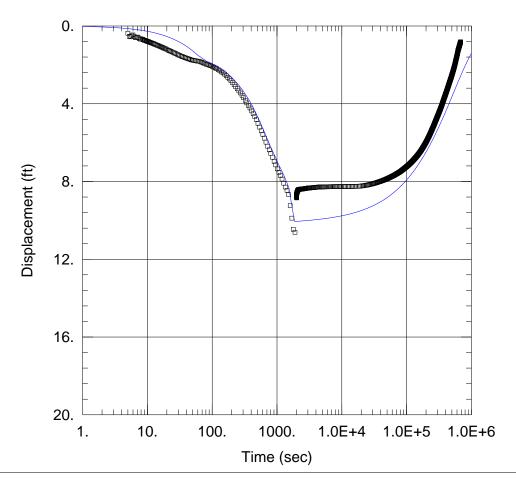
Saturated Thickness: 24.54 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping weils |        |        | Observation wells |        |        |  |
|---------------|--------|--------|-------------------|--------|--------|--|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |  |
| MW-01         | 0      | 0      | □ MW-01           | 0      | 0      |  |

#### **SOLUTION**

Aquifer Model: Unconfined


 $T = 0.005655 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.1306}{\text{Sw}}$  =  $\frac{-1.655}{0.1589}$  ft

Solution Method: Moench

S = 5.002E-5 S = 8.173E-5r(w) = 0.2218 ft

alpha =  $1.249E - 8 \text{ sec}^{-1}$ 



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-01 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:07:32

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

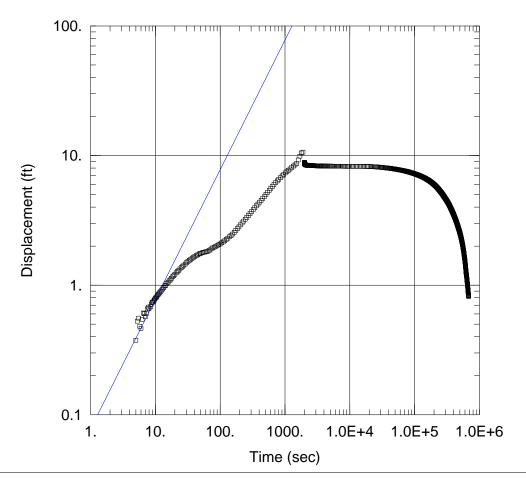
Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-01
Test Date: 11/7/2014

## **AQUIFER DATA**

Saturated Thickness: 24.54 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**


| Pumping Wells |        |        | Observation Wells |        |        |
|---------------|--------|--------|-------------------|--------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-01         | 0      | 0      | □ MW-01           | 0      | 0      |

#### **SOLUTION**

Aquifer Model: Unconfined Solution Method: Moench

 $T = 0.005655 \text{ ft}^2/\text{day}$  S = 5.002E-5 Sy = 0.1306 S = 8.173E-5Sw = -1.655 Sw = 0.2218 ft

r(c) = 0.1589 ft alpha =  $1.249E-8 \text{ sec}^{-1}$ 



Data Set: C:\...\MW-01 Moench (unconfined) Radial Flow log-log.aqt
Date: 11/17/14 Time: 17:58:55

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo
Project: WO 15-1

Location: Holliday Block
Test Well: MW-01
Test Date: 11/7/2014

#### AQUIFER DATA

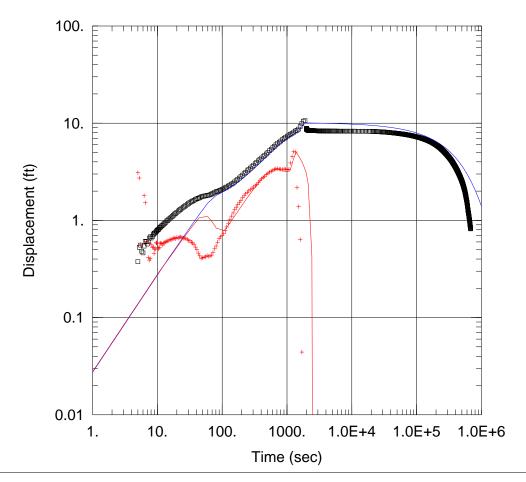
Saturated Thickness: 24.54 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping Wells |        |        | Observation Wells |        |        |
|---------------|--------|--------|-------------------|--------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-01         | 0      | 0      | □ MW-01           | 0      | 0      |

#### **SOLUTION**

Aquifer Model: Unconfined


 $T = 0.005655 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.1306}{\text{Sw}}$  =  $\frac{-1.655}{0.1589}$  ft

Solution Method: Moench

S = 5.002E-5 G = 8.173E-5r(w) = 0.2218 ft

alpha =  $1.249E - 8 \text{ sec}^{-1}$ 



Data Set: C:\...\MW-01 Moench (unconfined) Derivitive Analysis.aqt
Date: 11/17/14 Time: 18:02:16

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-01
Test Date: 11/7/2014

#### **AQUIFER DATA**

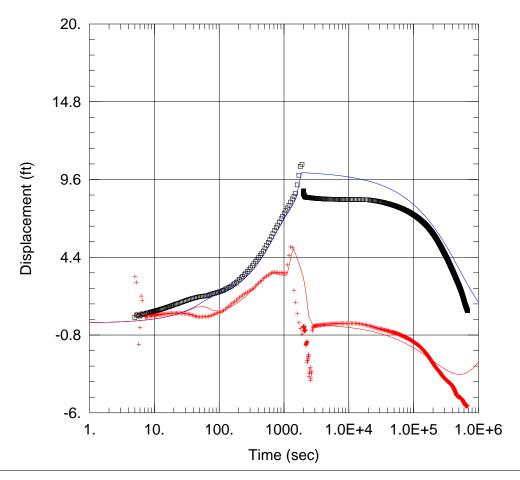
Saturated Thickness: 24.54 ft Anisotropy Ratio (Kz/Kr): 1.

# **WELL DATA**

| Pumping Wells |        |        | Observation Wells |        |        |
|---------------|--------|--------|-------------------|--------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-01         | 0      | 0      | □ MW-01           | 0      | 0      |

#### **SOLUTION**

Aquifer Model: Unconfined


 $T = 0.005655 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.1306}{\text{Sw}}$  =  $\frac{-1.655}{0.1589}$  ft

Solution Method: Moench

S = 5.002E-5 G = 8.173E-5r(w) = 0.2218 ft

alpha =  $\overline{1.249E}$ -8 sec<sup>-1</sup>



Data Set: C:\...\MW-01 Moench (unconfined) Derivitive Analysis.aqt
Date: 11/17/14 Time: 18:04:13

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

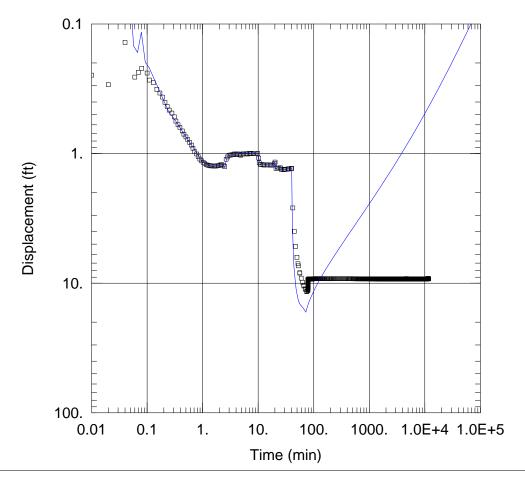
Location: Holliday Block Test Well: MW-01 Test Date: 11/7/2014

## AQUIFER DATA

Saturated Thickness: 24.54 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping vveils |        |        | Observation wells |        |        |
|----------------|--------|--------|-------------------|--------|--------|
| Well Name      | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-01          | 0      | 0      | □ MW-01           | 0      | 0      |


#### **SOLUTION**

Aquifer Model: Unconfined Solution Method: Moench

 $T = 0.005655 \text{ ft}^2/\text{day}$  S = 5.002E-5 Sy = 0.1306 S = 8.173E-5Sw = -1.655 Sw = 0.2218 ft

r(c) = 0.1589 ft alpha =  $1.249E-8 \text{ sec}^{-1}$ 





Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-02 Moench (unconfined) ver4.aqt

Date: 11/12/14 Time: 13:24:52

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo
Project: WO 15-1

Location: Holliday Block
Test Well: MW-02
Test Date: 10/22/2014

#### AQUIFER DATA

Saturated Thickness: 16.45 ft Anisotropy Ratio (Kz/Kr): 2.438

#### **WELL DATA**

| Pumping vveils |        |        | Observation Wells |        |        |
|----------------|--------|--------|-------------------|--------|--------|
| Well Name      | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-02          | 0      | 0      | □ MW-02           | 0      | 0      |

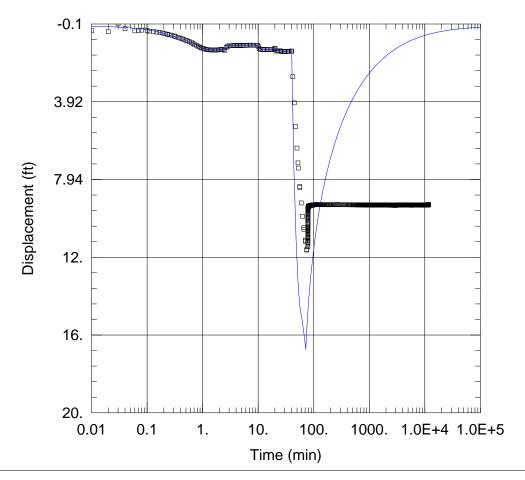
#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.01091 \text{ ft}^2/\text{day}$ 

Sy = 0.00121

 $\overrightarrow{Sw} = \overline{0}.$ 


r(c) = 0.0833 ft

Solution Method: Moench

S = 1.

 $\beta = 0.000609$ 

r(w) = 0.26 ft



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-02 Moench (unconfined) ver4.aqt

Date: <u>11/12/14</u> Time: <u>13:25:21</u>

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-02
Test Date: 10/22/2014

#### AQUIFER DATA

Saturated Thickness: 16.45 ft Anisotropy Ratio (Kz/Kr): 2.438

#### **WELL DATA**

| Pumping weils |        |        | Observation wells |        |        |  |
|---------------|--------|--------|-------------------|--------|--------|--|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |  |
| MW-02         | 0      | 0      | □ MW-02           | 0      | 0      |  |

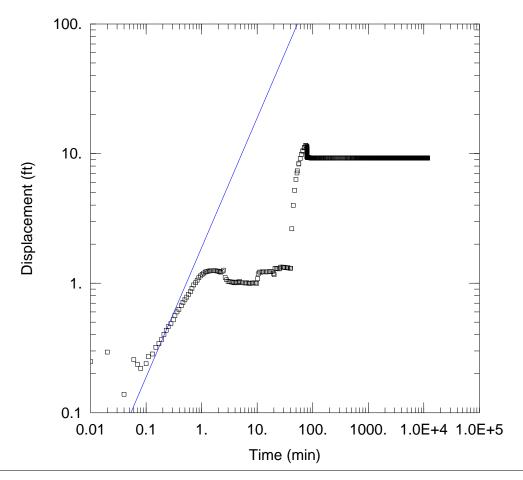
#### SOLUTION

Aquifer Model: Unconfined

 $T = 0.01091 \text{ ft}^2/\text{day}$ 

Sy = 0.00121

Sw =  $\overline{0}$ .


r(c) = 0.0833 ft

Solution Method: Moench

 $S = \underline{1}.$ 

 $r(w) = \overline{0.26 \text{ ft}}$ 

alpha =  $\overline{2.71}$ 9E+9 min<sup>-1</sup>



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-02 Moench (unconfined) ver4.aqt

Date: 11/12/14 Time: 13:29:10

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-02
Test Date: 10/22/2014

## **AQUIFER DATA**

Saturated Thickness: 16.45 ft Anisotropy Ratio (Kz/Kr): 2.438

#### **WELL DATA**

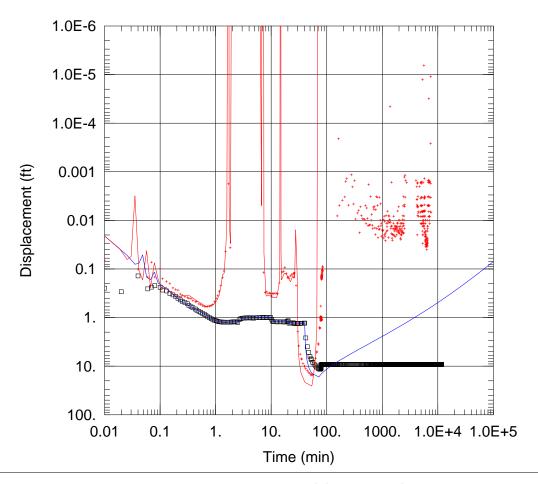
| Pumping Wells |        |        | Observation Wells |        |        |
|---------------|--------|--------|-------------------|--------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-02         | 0      | 0      | □ MW-02           | 0      | 0      |

#### SOLUTION

Aquifer Model: Unconfined

 $T = 0.01091 \text{ ft}^2/\text{day}$ 

Sy = 0.00121Sw = 0.


r(c) = 0.0833 ft

Solution Method: Moench

 $S = \underline{1}.$ 

= 0.000609

 $r(w) = \overline{0.26 \text{ ft}}$ 



Data Set: C:\...\MW-02 Moench (unconfined) ver4 Derivitive Analysis.aqt
Date: 11/12/14 Time: 13:32:57

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-02
Test Date: 10/22/2014

#### AQUIFER DATA

Saturated Thickness: 16.45 ft Anisotropy Ratio (Kz/Kr): 2.438

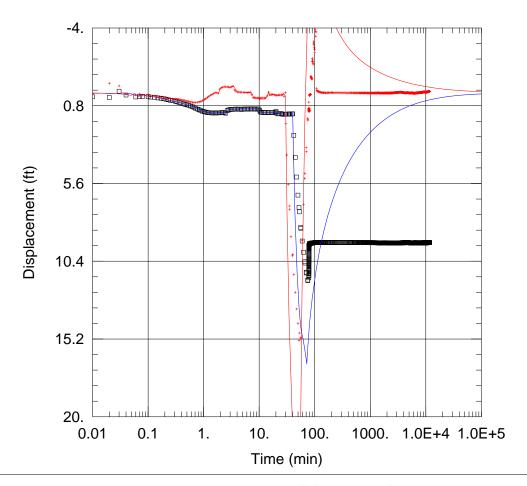
#### **WELL DATA**

| Pumping Wells |        |        | Observation Wells |        |        |
|---------------|--------|--------|-------------------|--------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name         | X (ft) | Y (ft) |
| MW-02         | 0      | 0      | □ MW-02           | 0      | 0      |

#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.01091 \text{ ft}^2/\text{day}$ 


Sy = 0.00121Sw = 0.

r(c) = 0.0833 ft

Solution Method: Moench

 $S = \underline{1}.$ 

 $R = \frac{0.000609}{0.26 \text{ ft}}$ 



Data Set: C:\...\MW-02 Moench (unconfined) ver4 Derivitive Analysis.aqt
Date: 11/12/14 Time: 13:33:21

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-02
Test Date: 10/22/2014

#### **AQUIFER DATA**

Saturated Thickness: 16.45 ft Anisotropy Ratio (Kz/Kr): 2.438

#### **WELL DATA**

| Pumping vveils |        |        | Observation vveils |        |        |  |
|----------------|--------|--------|--------------------|--------|--------|--|
| Well Name      | X (ft) | Y (ft) | Well Name          | X (ft) | Y (ft) |  |
| MW-02          | 0      | 0      | □ MW-02            | 0      | 0      |  |

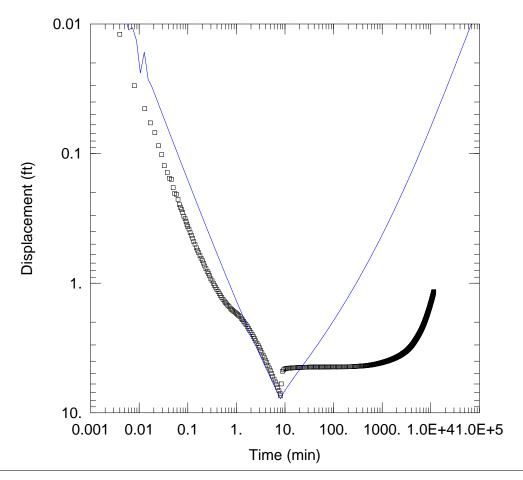
#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.01091 \text{ ft}^2/\text{day}$ 

Sy = 0.00121Sw = 0.

r(c) = 0.0833 ft


Solution Method: Moench

 $S = \underline{1}.$ 

R = 0.000609

 $r(w) = \overline{0.26 \text{ ft}}$ 





Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-03 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:17:51

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

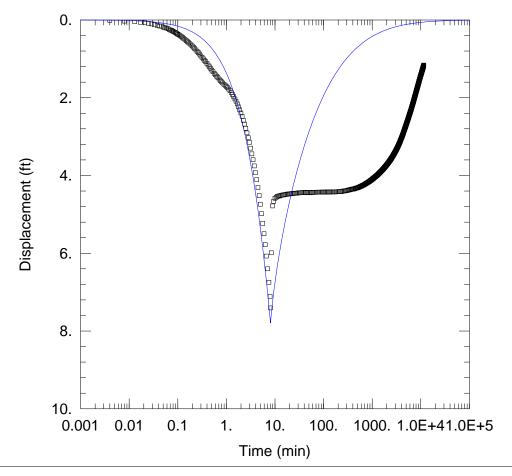
Location: Holliday Block
Test Well: MW-03
Test Date: 10/22/2014

## **AQUIFER DATA**

Saturated Thickness: 7.64 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping vveils |        |        | Observa   | tion vveiis |        |
|----------------|--------|--------|-----------|-------------|--------|
| Well Name      | X (ft) | Y (ft) | Well Name | X (ft)      | Y (ft) |
| MW-03          | 0      | 0      | □ MW-03   | 0           | 0      |


#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.06091 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.5}{0.075}$ Sw =  $\frac{-0.075}{0.1025}$  ft Solution Method: Moench

S = 0.7937 S = 0.001167 r(w) = 0.261 ft alpha = 1.0E+30 min<sup>-1</sup>



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-03 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:16:29

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-03
Test Date: 10/22/2014

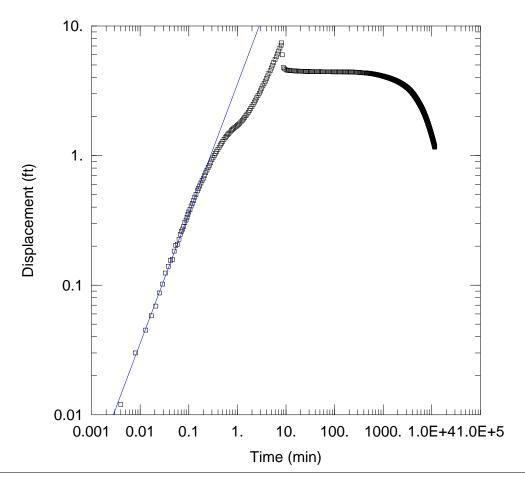
#### **AQUIFER DATA**

Saturated Thickness: 7.64 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping vveils |        |        | Observa   | tion vveiis |        |
|----------------|--------|--------|-----------|-------------|--------|
| Well Name      | X (ft) | Y (ft) | Well Name | X (ft)      | Y (ft) |
| MW-03          | 0      | 0      | □ MW-03   | 0           | 0      |

#### **SOLUTION**


Aquifer Model: Unconfined

 $T = 0.06091 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.5}{0.075}$ Sw =  $\frac{-0.075}{0.1025}$  ft Solution Method: Moench

 $S = \frac{0.7937}{0.001167}$   $R(w) = \frac{0.261}{0.261} \text{ ft}$   $R(w) = \frac{0.261}{0.261} \text{ ft}$ 

 $alpha = \overline{1.0E + 30 \text{ min}^{-1}}$ 



Data Set: C:\...\MW-03 Moench (unconfined) Radial Flow log-log.aqt
Date: 11/17/14 Time: 19:28:30

# PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

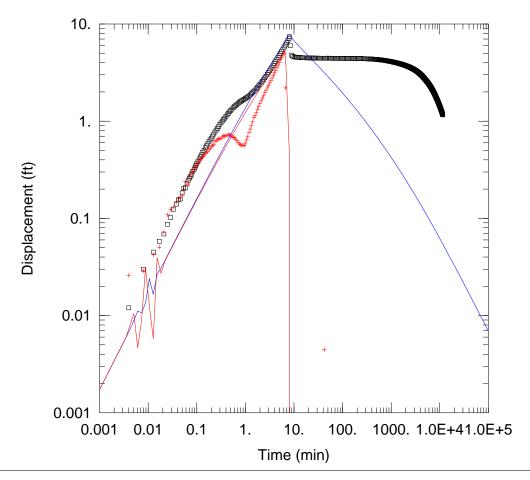
Location: Holliday Block
Test Well: MW-03
Test Date: 10/22/2014

## AQUIFER DATA

Saturated Thickness: 7.64 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping Wells |        |        | Obser     | ation Wells |        |
|---------------|--------|--------|-----------|-------------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name | X (ft)      | Y (ft) |
| MW-03         | 0      | 0      | □ MW-03   | 0           | 0      |


#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.06091 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.5}{0.075}$ Sw =  $\frac{-0.075}{0.1025}$  ft Solution Method: Moench

S = 0.7937 B = 0.001167 C(w) = 0.261 ft C(w) = 0.261 ft C(w) = 0.261 alpha = 1.0E+30 min<sup>-1</sup>



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-03 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:20:55

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo
Project: WO 15-1

Location: Holliday Block
Test Well: MW-03
Test Date: 10/22/2014

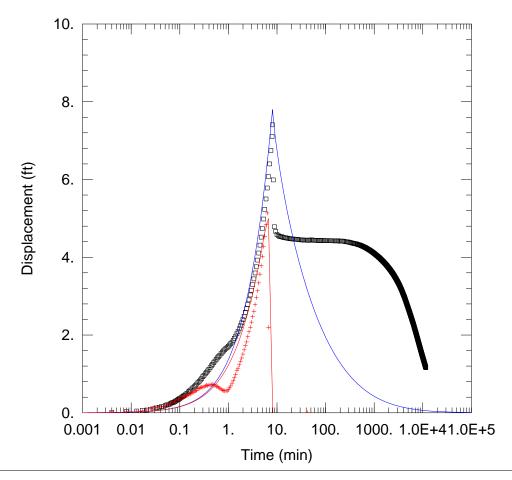
## AQUIFER DATA

Saturated Thickness: 7.64 ft Anisotropy Ratio (Kz/Kr): 1.

مالم// بم من: مرد.

#### **WELL DATA**

| Pumping vveils |        |        | Observa   | tion vveiis |        |
|----------------|--------|--------|-----------|-------------|--------|
| Well Name      | X (ft) | Y (ft) | Well Name | X (ft)      | Y (ft) |
| MW-03          | 0      | 0      | □ MW-03   | 0           | 0      |


#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.06091 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.5}{0.075}$ Sw =  $\frac{-0.075}{0.1025}$  ft Solution Method: Moench

 $S = \frac{0.7937}{0.001167}$  $g(w) = \frac{0.261}{1.0E+30}$  ft alpha =  $\frac{1.0E+30}{1.0E+30}$  min<sup>-1</sup>



Data Set: C:\Users\Jon Kaminsky\Documents\Personal\MW-03 Moench (unconfined).aqt

Date: 11/17/14 Time: 18:21:27

#### PROJECT INFORMATION

Company: Mesa Hydro-Logic

Client: TOMCo Project: WO 15-1

Location: Holliday Block
Test Well: MW-03
Test Date: 10/22/2014

#### AQUIFER DATA

Saturated Thickness: 7.64 ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

| Pumping Wells |        |        | Observ    | ation Wells |        |
|---------------|--------|--------|-----------|-------------|--------|
| Well Name     | X (ft) | Y (ft) | Well Name | X (ft)      | Y (ft) |
| MW-03         | 0      | 0      | □ MW-03   | 0           | 0      |

#### **SOLUTION**

Aquifer Model: Unconfined

 $T = 0.06091 \text{ ft}^2/\text{day}$ 

Sy =  $\frac{0.5}{0.075}$ Sw =  $\frac{-0.075}{0.1025}$  ft Solution Method: Moench







# **APPENDIX C: PHOTOGRAPHS**









Figure C- 1. View of Aquifer Test Setup at MW-01.



Figure C- 2. Close-up View of Pump Controller (right) and Electronic Water Level Measuring Tape (left) at MW-01.



Figure C- 3. View of Dark Gray Discolored Discharge Water Being Measured with a Graduated Bucket. At MW-01

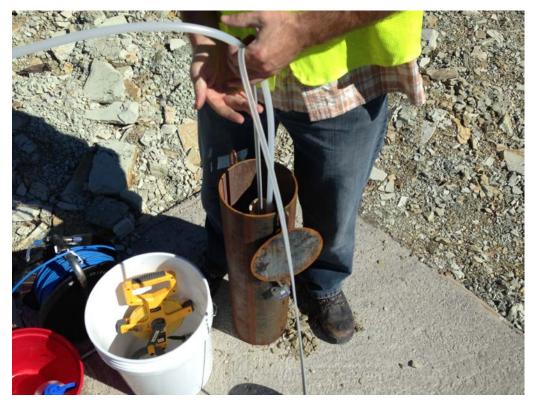



Figure C- 4. View of Pump and discharge tubing being lowered into MW-02.

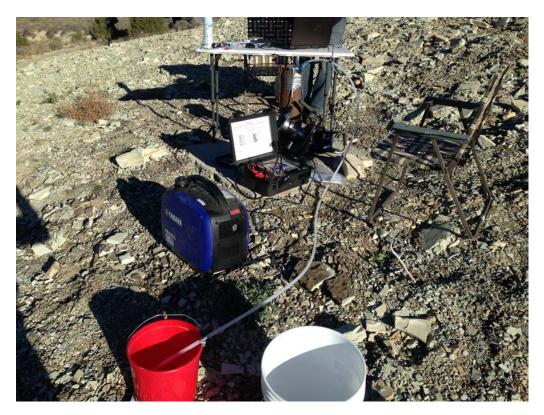



Figure C- 5. Completed Test Setup at MW-02.



 $Figure \ C-\ 6.\ Obtaining\ the\ Initial\ Depth\ to\ Water\ Level\ Measurement\ at\ MW-03.$ 



Figure C- 7. Completed Test Setup at MW-03.

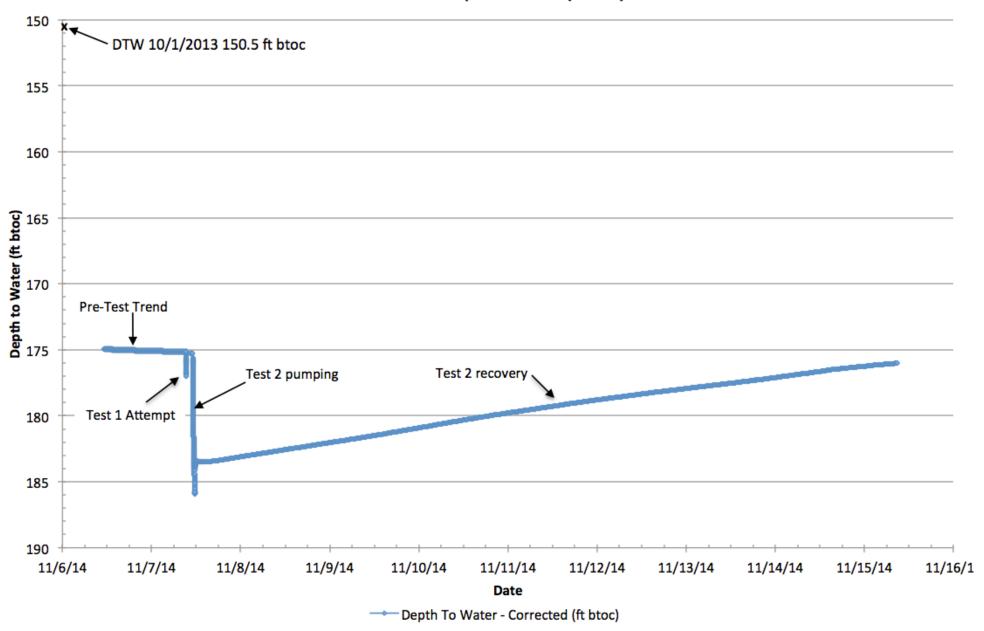


Figure C- 8. View into Graduated Bucket Containing Black Discolored Discharge Water from MW-03.

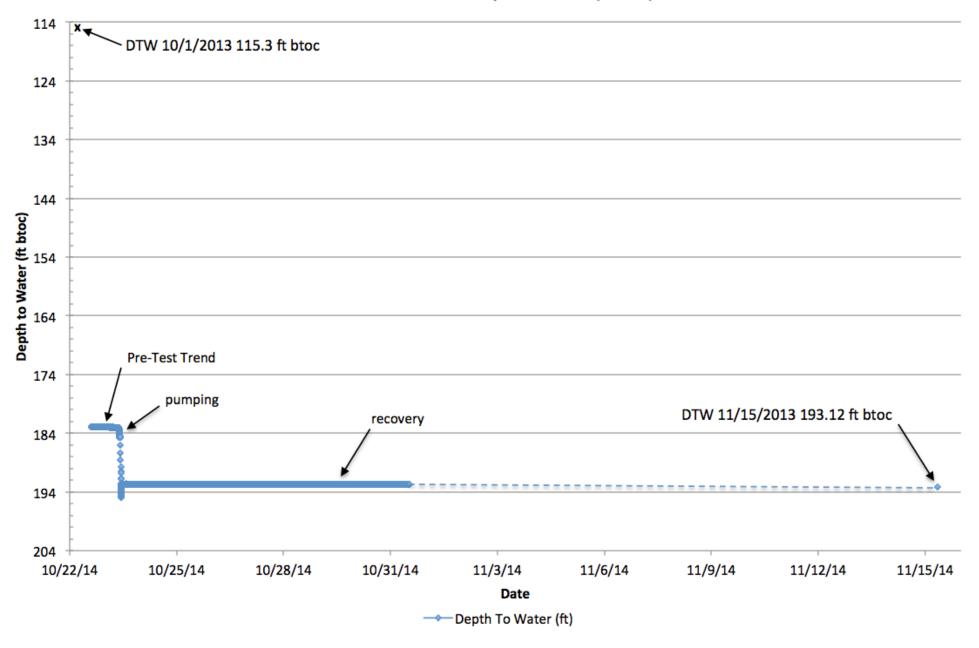




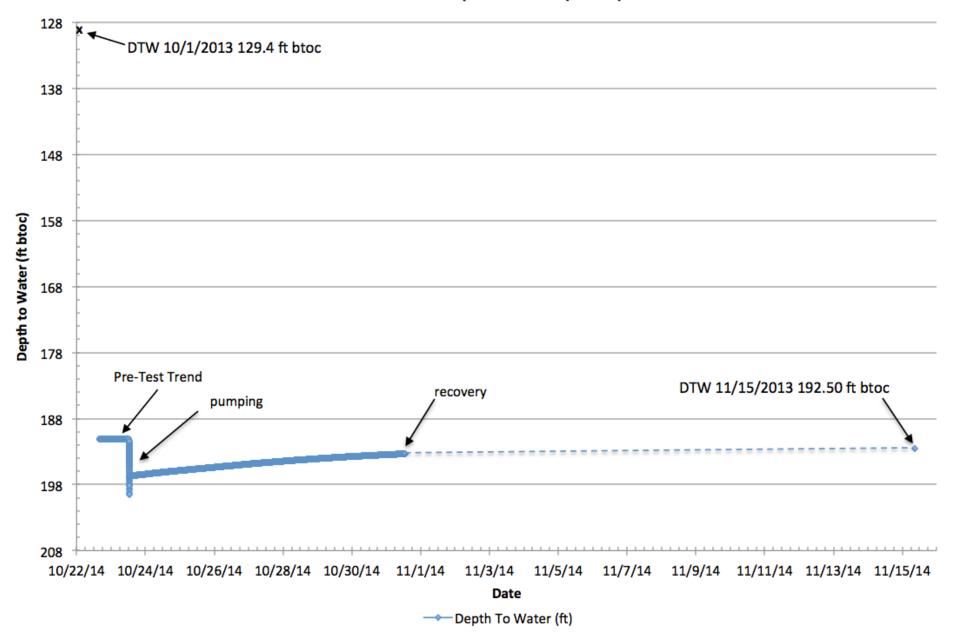



# **APPENDIX D: HYDROGRAPHS**









# MW-01 Depth To Water (ft btoc)



# MW-02 Depth To Water (ft btoc)



# MW-03 Depth To Water (ft btoc)



## **APPENDIX K**

# GEOLOGICAL EVALUATION OF TOMCO AND RED LEAF PROPERTIES

## GEOLOGICAL COMPARISON OF THE TOMCO SITE WITH RED LEAF SITE

## Prepared for:

TomCo Energy PLC 50 Jermyn Street London SW1Y United Kingdom

December 2014

Prepared by:















#### **EXECUTIVE SUMMARY**

The Oil Mining Company, Inc. (TomCo) proposes to develop an oil shale mine and production project in Uintah County, Utah in Township 12 South, Range 24 East. As part of the permitting process, TomCo submitted a Ground Water Discharge Permit (GWDP) application to the Utah Division of Water Quality (DWQ) in February 2014.

After reviewing this GWDP application, the DWQ requested that TomCo provide information on the geochemical characteristics of spent oil shale so this information could be considered during the DWQ's preparation of a GWDP.

The DWQ specifically requested that TomCo conduct Synthetic Precipitation Leaching Procedure (SPLP) tests on spent shale—the material that would remain on site after ore processing was complete. The purpose of SPLP analysis is to determine if specific leachable contaminants are present in spent oil shale. Results from such testing can then be used to determine potential for contaminant release from spent shale waste and to assess possible impacts on groundwater quality.

The SPLP test must be conducted on material representative of site-specific materials. In the case of TomCo's project, the subject material is spent oil shale ore. However, because TomCo's project is in the development phase, no mining or processing of ore has been conducted; thus, there has not yet been an opportunity to provide representative spent shale waste rock material. TomCo has proposed to utilize SPLP results from similar material from the nearby Red Leaf Oil Shale Mining Project (Red Leaf) site if it can be demonstrated that the geologic site conditions at the Red Leaf site are sufficiently similar to TomCo to act as a surrogate data set for waste rock characteristics

This report provides a comparison of the geologic characteristics at the TomCo and Red Leaf sites.

Digital data obtained from United States Geological Survey (Johnson et al. 2010) and the Utah Geological Survey (Vanden Berg 2008) from over 630 wells drilled in the study region were reviewed for this report. These data were supplemented with well data obtained directly from the Utah Division of Oil, Gas and Mining Online Oil and Gas Information System. Information available from these sources included collar elevations, formation tops, Fischer assay results, and various geophysical logs. These data were parsed for appropriate location, focusing on the Red Leaf and TomCo sites and the intervening area between the sites.

The analysis demonstrated that the stratigraphy between the sites is remarkably similar and contiguous and that the Fischer analyses obtained for the Mahogany Zone were similar throughout the region studied. The similarity of the Fischer analyses suggest that these data can be extrapolated to the waste ore characteristics based on the hypothesis that spent waste







rock of similar lithology, containing similar amounts of hydrocarbon, sharing a common geologic origin, and demonstrated to be contiguous throughout the region studied, should yield similar SPLP results.







## **TABLE OF CONTENTS**

| <u>S</u> | <u>ection</u> |                             | <u>Page</u> |
|----------|---------------|-----------------------------|-------------|
| Ε        | XECUTI        | IVE SUMMARY                 | i           |
| 1        | . Intr        | roduction                   | 1           |
| 2        | . Ove         | erview of the Projects      | 5           |
|          | 2.1           | TomCo Project Background    | 5           |
|          | 2.2           | Red Leaf Project Background | 5           |
| 3        | 8 Reg         | gional Geology              | 8           |
| 1        | l Rof         | farances cited              | 44          |







## **LIST OF TABLES**

| <u>Table</u> <u>Page</u>                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1. Summary of Stratigraphic Nomenclature of the Green River Formation 11                                                                  |
| Table 2. Representative Values of Compared Bed Thicknesses and Assay Values Between TomCo and Red Leaf Sites                                    |
| LIST OF FIGURES                                                                                                                                 |
| <u>Figure</u> <u>Page</u>                                                                                                                       |
| Figure 1. Location Map of the TomCo and Red Leaf Projects with Respect to Uinta Basin 3                                                         |
| Figure 2. TomCo Project Area Showing Lease Boundary, Selected Proposed Features, and Land Ownership                                             |
| Figure 3. The Red Leaf Project Area Showing Lease Boundaries, Selected Features, and Land Ownership                                             |
| Figure 4. West-east Cross-Section Across Uinta Basin, the Douglas Creek Arch and Piceance Basin (after Johnson 2014)                            |
| Figure 4a. Location of the Project Areas with Respect to the Cross-Section Shown in Figure 4 (after Johnson 2014)                               |
| Figure 5. Cross-Section Showing Members of the Green River Formation, Lean-and Rich Oil Shale Zones, and Lake Uinta Stages (after Johnson 2014) |
| Figure 6. Type Stratigraphic Column for the TomCo Project Area (TomCo 2014)22                                                                   |
| Figure 7. Map Showing Location of TomCo Coreholes and Monitoring Wells23                                                                        |
| Figure 8. Type Stratigraphic Column for the Red Leaf Resources Project Area (Red Leaf 2013). 24                                                 |
| Figure 9. Map Showing Location of Red Leaf Resources Coreholes                                                                                  |
| Figure 10. A-Groove Isopach Map For Area Surrounding the TomCo and Red Leaf Sites 29                                                            |
| Figure 11. A-Groove Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites 31                                                        |







| Figure 12. | Mahogany Zone Isopach Map For Area Surrounding the TomCo and Red Leaf Sites.33 |
|------------|--------------------------------------------------------------------------------|
| •          | Mahogany Zone Isoresource Map for Area Surrounding the TomCo and Red Leaf      |
| Figure 14. | B-Groove Isopach Map For Area Surrounding the TomCo and Red Leaf Sites 37      |
| Figure 15. | B-Groove Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites 39  |
| Figure 16. | Bed R6 Isopach Map For Area Surrounding the TomCo and Red Leaf Sites 42        |







## **ACRONYMS AND ABBREVIATIONS**

amsl above mean sea level

BAS bentonite amended soil

bgs below ground surface

DOGM Utah Division of Oil, Gas and Mining

DWQ Utah Division of Water Quality

EPS Early Production System

GPT gallons per ton

GWDP Ground Water Discharge Permit

LMO Large Mining Operation

OOGIS Online Oil and Gas Information System

RLR Red Leaf Resources, Inc.
SMO Small Mining Operation

SPLP Synthetic Precipitation Leaching Procedure

TomCo The Oil Mining Company, Inc.







#### 1 INTRODUCTION

The Utah Division of Water Quality (DWQ) requested that The Oil Mining Company, Inc. (TomCo) provide information on the geochemical characteristics of spent oil shale ore that would be produced in a single proposed Early Production System (EPS) capsule, to be located in Uintah County, Utah. This information will assist the DWQ in evaluating the likelihood of the EPS process impacting Utah's groundwater.

The DWQ requested that TomCo conduct Synthetic Precipitation Leaching Procedure (SPLP) testing on spent shale to be used in the EPS capsule. The purpose of SPLP analysis is to determine if leachable contaminants are present in the spent shale. Results from such testing can then be used to determine the potential for contaminant release from spent shale waste and possible impacts to groundwater quality.

Typically, SPLP is conducted via United States Environmental Protection Agency Solid Waste SW-846 Method 1312. Method 1312 is designed to determine the mobility of both organic and inorganic analytes present in liquids, soils, and wastes. The SPLP test simulates leaching, then analyzes leachate, which is defined as any liquid that, in passing through solid matter (in this case, spent shale), extracts solutes, suspended solids, or any other leachable component of the material through which it has passed. The SPLP test is designed to simulate material sitting in or on top of the ground surface exposed to rainfall (with an assumption that the rainfall is slightly acidic), then determine the mobility of both organic and inorganic analytes present in liquids, soils, and waste from the leachate the material produces. SPLP is used to determine the leaching potential of soils, waste, and wastewater caused primarily by rainfall (precipitation).

The SPLP test must be conducted on material representative of site-specific materials. In the case of TomCo's project, the subject material is spent shale. However, because TomCo's project is in the development phase, no mining and processing of ore has been conducted; thus, there has not yet been an opportunity to provide representative spent shale waste rock material. TomCo proposes to utilize SPLP results from similar material from the nearby Red Leaf Oil Shale Mining Project (Red Leaf) site if it can be demonstrated that the geologic site conditions at the Red Leaf site are sufficiently similar to TomCo act as a surrogate data set for waste rock characteristics.

This report compares the site characteristics of the TomCo and Red Leaf sites (**Figure 1**). To accomplish this comparison, digital data obtained from the United States Geological Survey (USGS) (Johnson et al. 2010) and the Utah Geological Survey (Vanden Berg 2008) from over 630 wells drilled in the study region were reviewed. These data were supplemented with well data obtained directly from the Utah Division of Oil, Gas and Mining (DOGM) Online Oil and Gas Information System (OOGIS):

(http://oilgas.ogm.utah.gov/Data Center/LiveData Search/main menu.htm).







Information available from these sources included collar elevations, formation tops, Fischer assay results, and various geophysical logs. These data were parsed for appropriate location, focusing on the Red Leaf and TomCo sites and the intervening area between the sites. The borehole depth data were recalculated against mean sea level and imported into the Surfer gridding and contouring software package (Golden Software 2013) to create surfaces representing the elevation and attitude of key marker beds. This analysis demonstrated that the stratigraphy between the sites is remarkably similar and contiguous and that the Fischer analyses obtained for the Mahogany Zone were similar throughout the region studied.

The results of this analysis show that the lithologies beneath the sites are continuous, have the same formations and origin, are similar in thickness, and contain similar amounts of oil. These similarities suggest that SPLP testing on spent shale at the Red Leaf site would yield similar results to SPLP testing conducted on similar material at the TomCo site.

The similarity of the Fischer analyses suggests that these data can be extrapolated to the spent shale characteristics based on the hypothesis that a similar lithological rock type containing similar amounts of hydrocarbon and sharing a common geologic origin, and demonstrated to be contiguous throughout the region studied, should yield similar SPLP results.







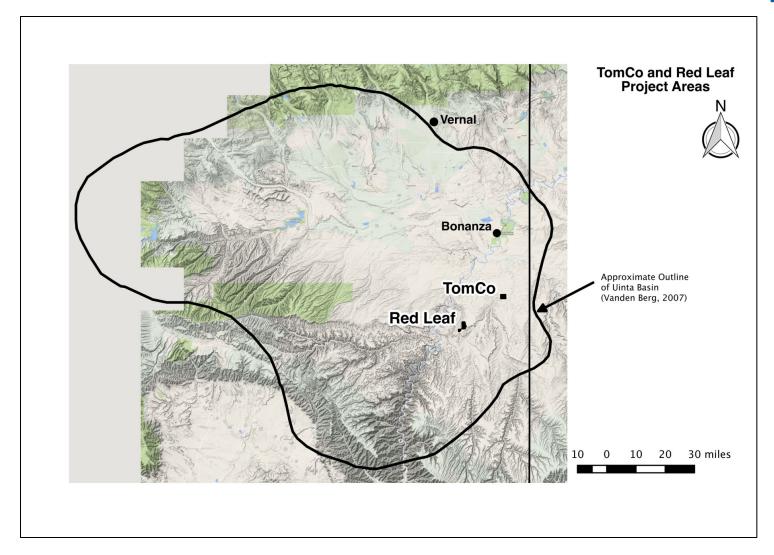



Figure 1. Location Map of the TomCo and Red Leaf Projects with Respect to Uinta Basin.













#### 2 OVERVIEW OF THE PROJECTS

## 2.1 TomCo Project Background

Initially, TomCo plans to simultaneously mine oil shale and construct a single retort capsule, termed the EPS capsule, for the purpose of extracting oil from the oil shale (TomCo 2014). The project area is located in Uintah County, Utah, in Township 12 South, Range 24 East, and includes the entirety of Section 13 and portions of Sections 11, 12, and 14 (Error! Reference source not found.). TomCo has leased approximately 1,186 acres (an area called the "Holliday Block") from the State of Utah School and Institutional Trust Lands Administration as mineral lease ML-49571. The results of the EPS will be used in the design and construction of the commercial capsules.

TomCo has entered into a licensing agreement with Red Leaf Resources, Inc. (RLR) to use their EcoShale™ In-Capsule Technology, a proven method for extracting petroleum from oil shale. The EcoShale™ process involves placing ore in sealed capsules, heating the encapsulated ore, and extracting liquid hydrocarbons via a pipe and tank storage system. TomCo's mine operation is designed to be a zero-discharge facility. There are no point discharges from the operation, and the facility is conservatively designed. The project is designed to contain all product liquids and gases via secondary containment around all tanks and 3-foot-thick clay seals (bentonite amended soils (BAS)) surrounding the capsule.

Equally as important as site geology, the EPS has been designed to minimize infiltration of water into the capsule, reduce the probability of spent shale coming into contact with outside water, and contain the entire retort process within the EPS, thereby substantially reducing the potential for groundwater and other ecological impacts.

As part of the extraction process, the shale will be encapsulated and left in place, and the disturbance area reclaimed. The capsule's design is intended to prevent impacts on groundwater and the surrounding ecosystem by utilizing an impermeable liner of BAS.

TomCo's agreement with RLR allows the company to receive updates to the technologies used at RLR's facility on Seep Ridge Road (the Southwest #1 Project, M/047/0120), located approximately 10.5 miles to the southwest of the TomCo site. RLR has been in continuous operation since 2008 testing capsules of the EcoShale™ In-Capsule Process through its Small Mining Operation (SMO) permit, S/047/0102, and shares results of tests and studies with TomCo.

## 2.2 Red Leaf Project Background

The Red Leaf project area is located approximately 10 miles south-southwest of the TomCo project area and 60 miles south of Vernal, Utah, in the south-central portion of the Uinta Basin. It includes two state mineral lease tracts (Error! Reference source not found.). RLR, a privately held corporation, developed the EcoShale™ In-Capsule Technology to extract petroleum from oil shale. RLR is attempting to prove the new technology at this location under authority of its







SMO and Large Mine Operation (LMO) permits issued by DOGM. Mining initiated in SE1/4 of Section 30, Township 13 South, Range 23 East with the first test-scale capsule. RLR is currently constructing an EPS capsule at the southwest mine property. This capsule will be approximately 75 percent of the size of the full commercial scale capsule.

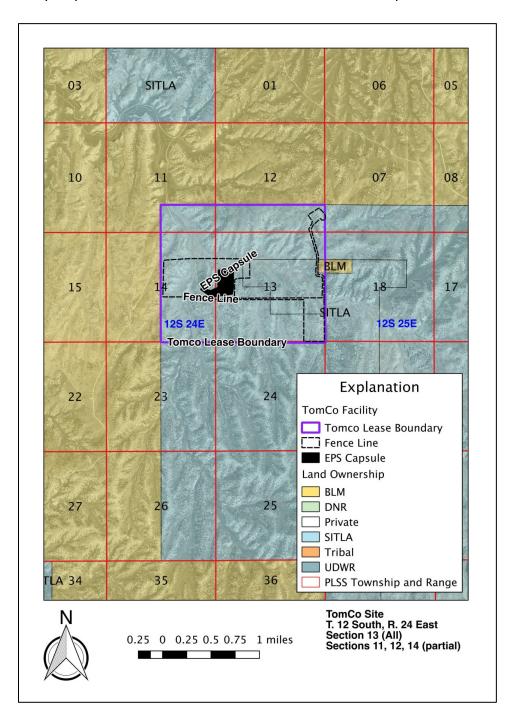









Figure 2. TomCo Project Area Showing Lease Boundary, Selected Proposed Features, and Land Ownership

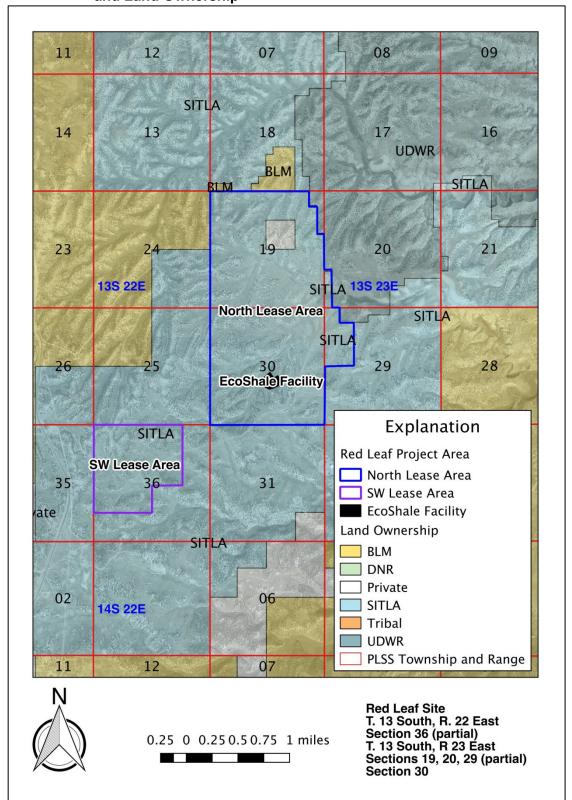



Figure 3. The Red Leaf Project Area Showing Lease Boundaries, Selected Features, and Land Ownership







Based on the findings of EPS capsule tests, RLR plans to proceed with construction of subsequent capsules, progressing east to west and south to north within the current southwest mine project area.

The EPS capsule is constructed with an impermeable wrap of BAS. Inside the BAS layer is a 13-foot thick rind of coarse-sized material or gravel that serves as insulation inside the BAS barrier to conserve heat and protect the BAS from thermal breakdown. A steel liquids-collection pan will be installed within the insulating layer to direct the liberated petroleum liquids to a collection system and to prevent loss of oil to the underlying liner or the environment. The pan will be sloped to direct liquids to a collection trough formed between the slope of the collection pan and the slope of the bulkhead to the north, where pipes will deliver the liquids to a tank system for storage and processing.

Above the pan, approximately 100 feet of ore will be placed in lifts at the same time the side walls, end walls, and insulation layers are built. The mined material is placed in layers with corrugated steel collection pans and heating pipes throughout the capsule. The ore and heating pipes will be incrementally stacked on top of one another. Initially, the capsule will be heated to a temperature approximately the boiling point of water. After steam production diminishes, the heat is increased to a maximum temperature of approximately 725 degrees Fahrenheit when, through pyrolysis, the liquid and gaseous components of kerogen are liberated and collected via the pan/pipe system.

## 3 REGIONAL GEOLOGY

The TomCo and RLR project areas are located in the Uinta Basin section of the Colorado Plateau physiographic province (Stokes 1986) in Township 12 South 24 East. This physiographic province is also known as the Colorado Plateau's Level III Eco region (Woods et al. 2001). The TomCo and Red Leaf project areas are shown in **Figure 1**.

The Uinta Basin is a structural depression with Eocene fluvial and lacustrine sedimentary rocks exposed at the surface. The project areas are located in the southern part of the basin and are underlain by north-dipping middle Eocene strata. The region is characterized by a dissected plateau with strong relief (Stokes 1986). Elevations in the basin range from under 5,000 feet in the basin center near the Green and White Rivers to above 8,000 feet at the southern basin margins. Incised tributaries of the two rivers flow northward as ephemeral, intermittent, and perennial streams providing the framework for rapid runoff throughout the southern portion of the basin.

The southern Uinta Basin is underlain almost entirely by the Green River Formation. The Green River Formation in the Uinta and Piceance Basins was deposited in Lake Uinta, a large saline lake that formed in early Eocene time when two much smaller freshwater lakes, one in each







basin, coalesced across the Douglas Creek arch to form one large lake during a major transgression called the Long Point transgression (Mercier and Johnson 2012). The Douglas Creek arch was an area with relatively low subsidence rates throughout the Paleocene and Eocene, and pre-Long Point Paleocene and lower Eocene rocks thin and largely wedge out on both flanks of the arch.

The Green River Formation has been divided variously into three categories: (1) members based on lithology (Bradley 1931), (2) stages based on the evolution of the lake (Johnson 1985), and (3) rich and lean oil shale zones representing approximately time-stratigraphic intervals of alternating high-organic productivity and low-organic productivity (Trudell et al. 1970; Cashion and Donnell 1972). These divisions will be discussed briefly below.

Four of the members of the Green River Formation—Parachute Creek, Douglas Creek, Garden Gulch, and Evacuation Creek—were originally defined by Bradley (1931), who recognized them in both the Uinta and Piceance Basins, thereby reinforcing the concept that Lake Uinta was a single, unbroken lake spanning the two basins and the intervening Douglas Creek arch throughout much of its history (Mercier and Johnson 2012). The name Evacuation Creek was later abandoned (Cashion and Donnell 1974) because it was determined to be lithologically and stratigraphically equivalent to the upper part of the Parachute Creek Member. In the oil shale section deposited in the offshore areas of the lake, the name Garden Gulch is applied to the illitic oil shale deposited early in the history of Lake Uinta, and the name Parachute Creek is applied to the dolomitic oil shales deposited later. The name Douglas Creek Member is applied to marginal lacustrine rocks along the east and south margins of the Uinta Basin and the west and south margins of the Piceance Basin (Bradley 1931; Cashion 1967).

Trudell and others (1970) correlated individual oil shale beds throughout the central part of the Piceance Basin. Cashion and Donnell (1972) recognized that the entire Parachute Creek and Garden Gulch Members in the Piceance Basin could be subdivided into a sequence of oil-rich zones (R-0 through R-6 zones) and oil-lean zones (L-0 through L-5 zones). The lower zones, from L-0 zone through L-1 zone, are clay-rich and contain little carbonate; they form the Garden Gulch Member. All zones above L-1 zone are dolomitic and form the Parachute Creek Member, which is characterized by the presence of oil shale throughout its thickness. Units above R-6 zone are (in ascending order) B-groove, which is a lean zone; Mahogany zone, the richest oil shale zone in the basin and containing the so-called Mahogany Bed, which can exceed 70 gallons of oil per ton (Vanden Berg 2008), and A-groove, another lean zone.

Though comprehensive cross-sections depicting the correlation between the three classification systems are available (e.g., Johnson 2014; Mercier and Johnson 2012; Johnson 2003; Johnson 1989), it can be difficult to conceptualize the role of the Douglas Creek Member within and between the three frameworks. The Douglas Creek member is considered the first principal aquifer beneath the TomCo and Red Leaf sites, and thus it is helpful to highlight its relationship to the more finely classified stages and zones. For this reason, the Green River Formation members, the stage definitions, and zone definitions are summarized in tabular form (







Table 1). The purpose of this exercise was to not correct or update stratigraphic nomenclature or classification of the region but to attempt to harmonize the several frameworks.







Table 1. Summary of Stratigraphic Nomenclature of the Green River Formation

| Table 1. Summary of Stratigraphic Nomenciature of the Green River Formation |                 |                 |                                 |       |                   |           |  |  |
|-----------------------------------------------------------------------------|-----------------|-----------------|---------------------------------|-------|-------------------|-----------|--|--|
| Generalized Members Definitions <sup>1</sup>                                |                 |                 |                                 | Stage | Zone <sup>2</sup> | Notes     |  |  |
| W. Uinta Basin <sup>3</sup>                                                 | C. Uinta Basin⁴ | E. Uinta Basin⁵ | Douglas Creek Arch <sup>6</sup> |       |                   |           |  |  |
|                                                                             | РСМ             | PCM             | ~                               | 5     |                   | Bed 44    |  |  |
|                                                                             |                 |                 |                                 |       | B44               | bottom is |  |  |
|                                                                             |                 |                 |                                 |       |                   | top of A- |  |  |
| GRFU-MLCC                                                                   |                 |                 |                                 |       |                   | Groove    |  |  |
| GIVI O-IVILECE                                                              |                 |                 |                                 |       | AGR               | Lean zone |  |  |
|                                                                             |                 |                 |                                 |       | MAH<br>Z          | Contains  |  |  |
|                                                                             |                 |                 |                                 |       |                   | Mahogany  |  |  |
|                                                                             |                 |                 |                                 |       |                   | Bed       |  |  |
|                                                                             |                 |                 | DCM                             | 4     | BGR               | Lean zone |  |  |
|                                                                             |                 |                 |                                 |       | R-6               |           |  |  |
|                                                                             |                 |                 |                                 |       | L-5               |           |  |  |
|                                                                             |                 |                 |                                 |       | R-5               |           |  |  |
|                                                                             |                 |                 |                                 |       | L-4               |           |  |  |
|                                                                             | DCM             | DCM DCM         |                                 | 3     | R-4               |           |  |  |
|                                                                             |                 |                 |                                 |       | L-3               |           |  |  |
| GRFU-LSC                                                                    |                 |                 |                                 |       | R-3               |           |  |  |
|                                                                             |                 |                 |                                 |       | L-2               |           |  |  |
|                                                                             |                 |                 |                                 |       | R-2               |           |  |  |
|                                                                             |                 |                 |                                 | 2     | L-1               |           |  |  |
|                                                                             | DCM             |                 |                                 |       | R-1               |           |  |  |
|                                                                             | GGM             | GGM             |                                 |       |                   |           |  |  |
|                                                                             | GGM             | GGM             |                                 |       | L-0               |           |  |  |
|                                                                             |                 |                 |                                 | 1     | R-0               |           |  |  |

#### NOTES

- Member abbreviations: GRFU Green River Formation undifferentiated; MLCC = Marginal lacustrine clastic and carbonate rock; LSC = Lacustrine shale and carbonate rock; PCM = Parachute Creek Member; DCM = Douglas Creek Member; GGM = Garden Gulch Member
- 2. Zone abbreviations: B44 Bed 44; AGR A-Groove; MAHZ Mahogany zone; BGR B-Groove.
- 3. Assumed to be in vicinity of Wells 1 and 2, Plate 1 of Mercier and Johnson (2013).
- 4. Assumed to be in vicinity of Wells 13 and 14, Plate 1 of Mercier and Johnson (2013).
- 5. Assumed to be in vicinity of Wells 25 to 27, Plate 1 and U-53, Figure 3, of Mercier and Johnson (2013)
- 6. Assumed to be in vicinity of Wells 29 and 30, Plate 1 of Mercier and Johnson (2013).

On a finer scale, many individual rich and lean beds within each rich and lean zone can be traced for considerable distances as well. All of these oil shale zones grade into marginal lacustrine rocks (e.g., Douglas Creek Member) toward the margins of the Piceance Basin, and their marginal equivalents are difficult to identify. Johnson et al. (1988) were able to trace some of the rich and lean zones into their marginal lacustrine equivalents along the eastern margin of the Uinta Basin and western margin of the Piceance Basin.

The cross-section provided by Johnson (2014), reproduced in

, in conjunction with the diagrammatic cross-section of Johnson (2014) reproduced in **Figure 5**, together provide a visual conceptualization of the classification systems. **Figure 4a** provides the







location of the project areas with respect to the cross-section line in **Figure 4**. The cross-section shown in **Figure 5** is approximately northwest to southeast, and well U-53 is about 7 miles directly north of the TomCo site. Appendix B includes a southwest to northeast cross section of the Red Leaf project area to the TomCo project area. This cross-section intercepts two coreholes drilled at each site. The Red Leaf coreholes are RL-3, located near the southwest corner of the Red Leaf project area, and RL-4, located near the northeast corner of the project area. The TomCo coreholes are HB-2, located near the southwest corner of the TomCo project area, and HB-7, located near the northeast corner of the project area. The cross-section shows the consistency of geology between the two sites.







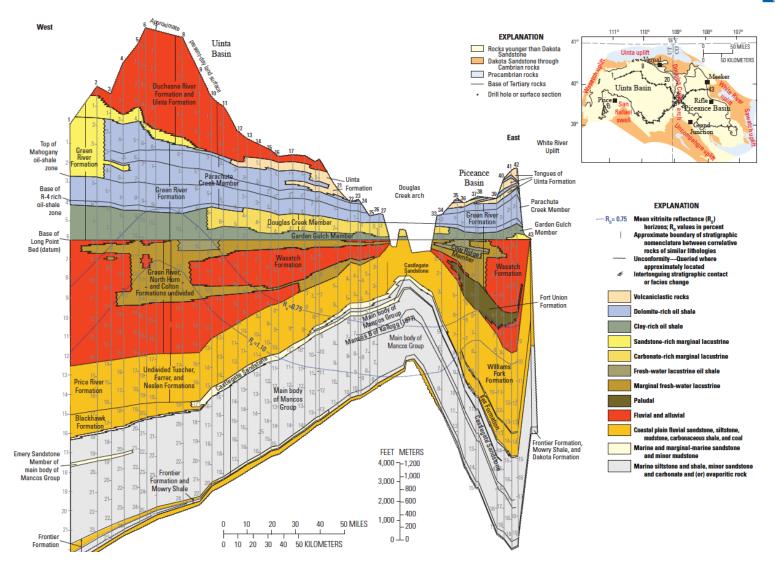



Figure 4. West-east Cross-Section Across Uinta Basin, the Douglas Creek Arch and Piceance Basin (after Johnson 2014).













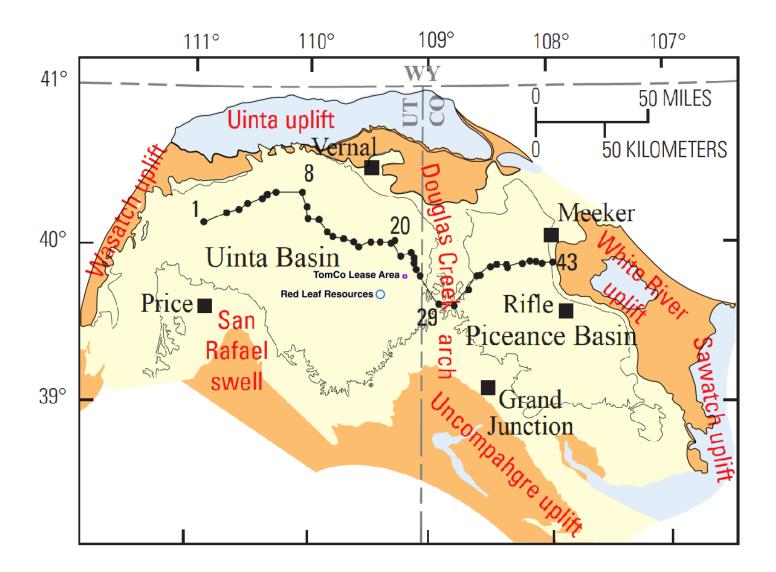



Figure 4a. Location of the Project Areas with Respect to the Cross-Section Shown in Figure 4 (after Johnson 2014).













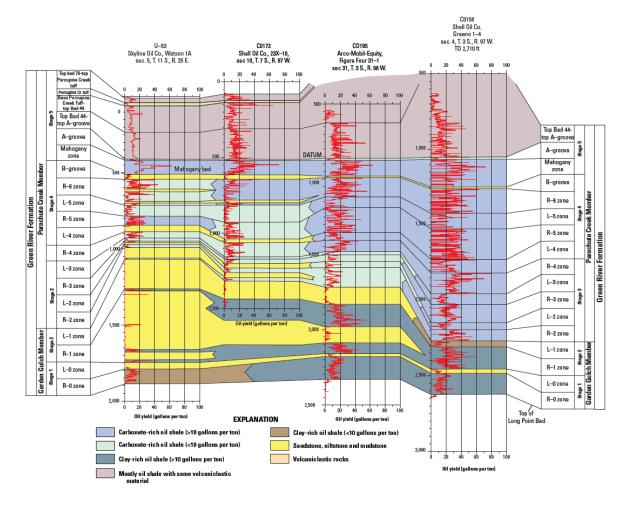



Figure 5. Cross-Section Showing Members of the Green River Formation, Lean-and Rich Oil Shale Zones, and Lake Uinta Stages (after Johnson 2014).













#### **Parachute Creek Member**

The Parachute Creek Member is known to be carbonate-rich and more kerogen rich in the center of the Uinta Basin to the northwest, where deeper water levels persisted throughout the period during which the sediments that formed the Parachute Creek Member were deposited. In the center of the basin, oil shale is present in significant quantities (measured in gallons per ton; GPT) throughout the 1,100-foot thickness of the member. To the east and south, toward the Douglas Creek Arch and Uncompahgre Uplift, respectively, deposition of terrigenous clastic sediments below the Mahogany zone increased, forming silty and sandy marlstones and locally siltstone and sandstone horizons. Deposition of carbonate rocks and organic matter occurred when water levels in the lake in which the Green River Formation was deposited (termed Lake Uinta) were high and deep-water; anoxic conditions prevailed. Fluctuations in lake depth over time nearer the basin margins resulted in greater quantities of clastic sediments when lake levels dropped, and more carbonate and organic matter deposition occurred with higher lake levels and deeper water conditions (Keiglin 1977; Pipiringos 1978).

Key stratigraphic markers include the Wavy and Curly Tuffs, the Mahogany Marker (also a tuff) and Mahogany Bed. The latter two are located within the Mahogany Zone. The tuffs, which resulted from volcanic eruptions, are recognized throughout the eastern Uinta Basin and Piceance Basin. Two other units, which are less easily recognized, are the A Groove, a lean interval which generally lies about 20 feet below the Wavy Tuff, and the B Groove, a lean interval which generally marks the bottom of the Mahogany Zone. The Mahogany Bed, the principal ore zone for the TomCo and Red Leaf project areas, is located approximately 400 feet above the bottom of the Parachute Creek Member. Throughout its thickness, the Parachute Creek member is kerogen-rich and is commonly described as oil shale (Vanden Berg 2008).

#### **Garden Gulch Member**

The name Garden Gulch Member has been generally applied in the eastern part of the Uinta Basin and throughout the Piceance Basin to the clay-rich (mainly illite) oil shale interval that was deposited in offshore areas early in the history of Lake Uinta (Bradley 1931). More recently however, there is disagreement over the use Garden Gulch terminology in the Uintah Basin in Utah because the illitic oil shale equivalent to that occurring in the Piceance Basin appears to be different. In any case, the R-O zone consists of the lowermost part of this illitic oil shale interval and the L-1 zone contains the uppermost part. The name Parachute Creek Member is applied in the eastern part of the Uinta Basin and the Piceance Basin to the dolomitic oil shale that overlies the Garden Gulch Member (Bradley, 1931). The name Douglas Creek Member is applied to marginal lacustrine rocks in both the eastern part of the Uinta Basin and the western part of the Piceance Basin.

<sup>&</sup>lt;sup>1</sup> Personal communication, December 2, 2014, M. Vanden Berg (Utah Geological Survey) to M. Sawyer (Lowham Walsh).







### **Douglas Creek Member**

The Douglas Creek Member contains more massive sandstones than those observed in the younger Parachute Creek Member. The depositional system of the Douglas Creek Member is likely composed of multistoried channel sands of a delta that prograded out into the Green River Basin during a period of time when the lake level was much lower. In the southeast Uintah Basin, it is difficult to determine the boundary between the Parachute Creek Member and the Douglas Creek member. Further north, in the paleodepocenter of ancient Lake Uintah, the boundary is considered to be at the base of the R-2 zone.<sup>2</sup> To the south, the occurrence of sand below the Mahogany Zone greatly increases and is interbedded with dolomitic oil shale.<sup>2</sup>

Groundwater is produced at higher rates in the Douglas Creek Member than in the Parachute Creek Member. The likelihood of any contaminants impacting the Douglas Creek Aquifer from mining activity in the Mahogany Zone seems extremely remote. At least a 400-foot section of mostly impermeable shale and marlstone separates the two formations. Even with occasional sand lenses and secondary porosity resulting from fractured bedrock, there is unlikely to be enough interconnectivity between the two formations for them to communicate hydrologically. Further, the Douglas Creek Aquifer has been recognized in the project areas as confined, which provides additional support for the contention that it is hydrologically separate from the Parachute Creek Member.

### **Summary of TomCo Geology**

Figure 6 provides a type stratigraphic column for the TomCo site.

The Parachute Creek Member is closest to the surface in the Tomco project area, and a mantle of soils overlies it in some places. The Parachute Creek Member outcrops in the southeast portion of the project area and in several small canyons across the site. The Parachute Creek Member is of very low permeability and would be classified as shale or a dolomitic/calcareous marlstone. Coarser sandstone and siltstone beds have been identified above and below the Mahogany Zone. The Douglas Creek Member begins at the base of the Parachute Creek Member and, depending on the elevation across the project area, ranges from 400 to 700 feet below ground surface (bgs).

The Mahogany Zone is the primary ore-bearing zone, and therefore the primary zone of interest in the project area. It is located within the Parachute Creek Member at the base of the Upper Green River Formation and is of Eocene Age. The Mahogany Zone is bounded on two sides by volcanic tuffs, the Wavy Tuff and the Curly Tuff, that have been age dated at 48.7 million years and 49.3 million years, respectively (Birgenheier et al., 2013). The approximate thickness of the zone in the project area is 85 feet. Tests previously performed on the Mahogany Zone in other areas of the Green River Basin indicate that it will produce up to 30

<sup>&</sup>lt;sup>2</sup> Personal communication, December 2, 2014, M. Vanden Berg (Utah Geological Survey) to M. Sawyer (Lowham Walsh).







gallons of oil per ton (Wallace, 2012). Within the Mahogany Bed itself, which is about 8 feet thick in the project area, production may be as high as 50 GPT (Vanden Berg 2008).

In 2010, TomCo drilled nine coreholes across the project area to determine the thickness and depth of the Mahogany Zone (TomCo 2014). Figure 7 shows the locations of these coreholes. The depth of penetration of the coreholes ranged between 116 to 304 feet bgs. In general, the Mahogany Zone is closest to the surface in the southern portion of the project area, particularly in the southeast, and deepest in the northeast corner where the 304-foot-deep corehole was located. The Mahogany Zone itself was very tight and did not appear to be water bearing. However, a number of sandstones below the Mahogany Zone were recognized in the cores. For the most part, these sandstones were fine-grained, poorly sorted, or filled with tar (i.e., tar sand) and were not classified as aquifer media. Three of the coreholes actually had "shows" of groundwater, suggesting that they could contain limited water bearing zones. Aquifer testing of nearby monitoring wells conducted in 2013 and 2014 showed that the water production rates were very low (below or only slightly above 1 gpm with very slow recharge rates), and that water quality was poor.

## **Summary of Red Leaf Site Geology**

**Figure 8** is a typical stratigraphic column for the section penetrated by the core drilling at the Red Leaf site.

The Parachute Creek Member consists mainly of oil shale, which is a dolomitic marlstone (a clayey and/or silty carbonate rock) that contains a solid hydrocarbon material known as kerogen. The oil shale interbeds with minor amounts of siltstone, sandstone, and altered volcanic tuff beds. The Mahogany Oil Shale Zone within the Parachute Creek Member will be the oil shale source for the Red Leaf operation. Depth to the top of the Mahogany Marker is between the surface and 160 feet bgs at the Project Area and occurs at the top of the kerogenrich Mahogany Zone that is found within the Mahogany Bed.

Based on core drilling in the project area (**Figure 9**), the typical stratigraphic column at the Red Leaf site includes the Mahogany Marker, the Mahogany Bed, a stratigraphic interval located above the Mahogany Marker known as the A Groove, and another interval beneath the ore zone called the B Groove. These two horizons get their names from their appearance in outcrop; unlike the cliff-forming Mahogany zone, they form slopes. The B-Groove is easily identified in outcrop; however, its appearance in the subsurface is difficult to distinguish visibly. As a result, the B-Groove is typically identified in the subsurface by geophysical logs or Fisher assay data as it is a lean zone and easily differentiated from the richer zones by assay or by the density or sonic logs.

The rock types present in all of the coreholes are consistent, and the dominant rock type is oil shale. The other rock types are mudstones that occur in the A-Groove and B-Groove horizons and elsewhere, and thin silicified tuff horizons, most notably the Mahogany Marker. A







sandstone bed is located in all holes in the zone to be mined. The sandstone is cemented by calcium carbonate and is apparently not porous (Red Leaf Resources 2013).

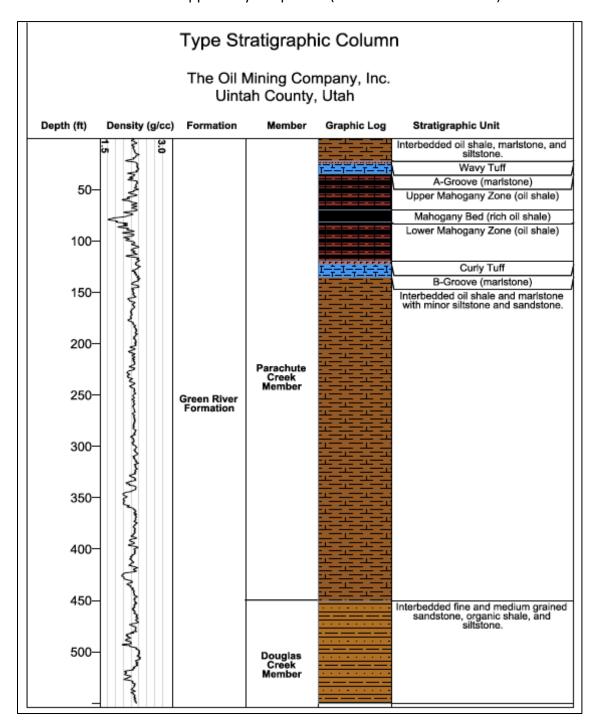



Figure 6. Type Stratigraphic Column for the TomCo Project Area (TomCo 2014).







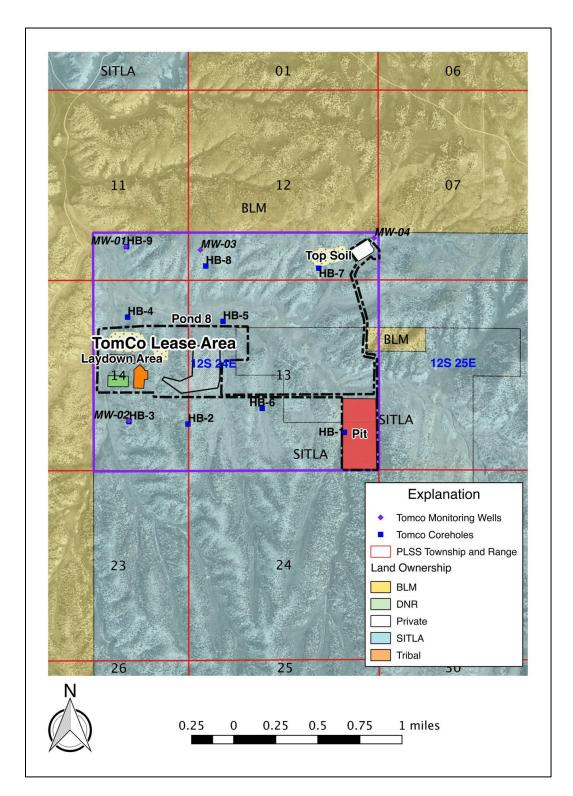



Figure 7. Map Showing Location of TomCo Coreholes and Monitoring Wells.







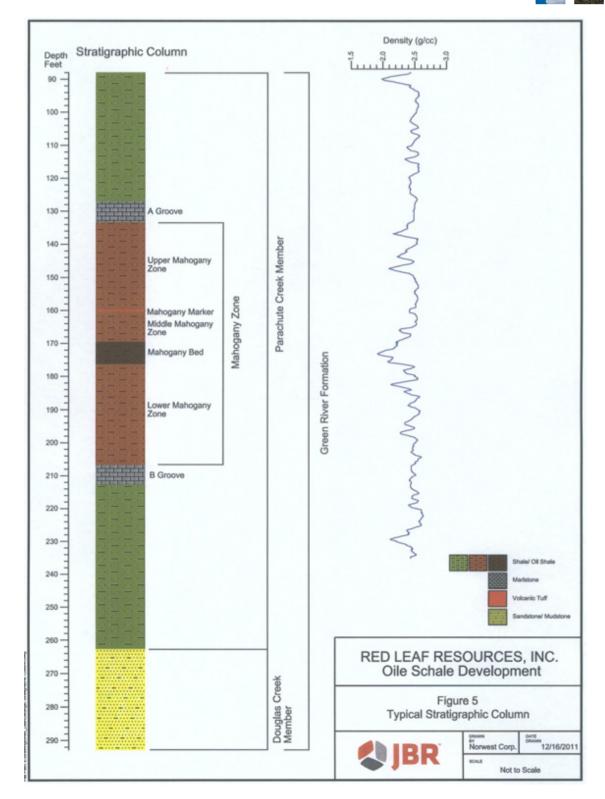



Figure 8. Type Stratigraphic Column for the Red Leaf Resources Project Area (Red Leaf 2013).







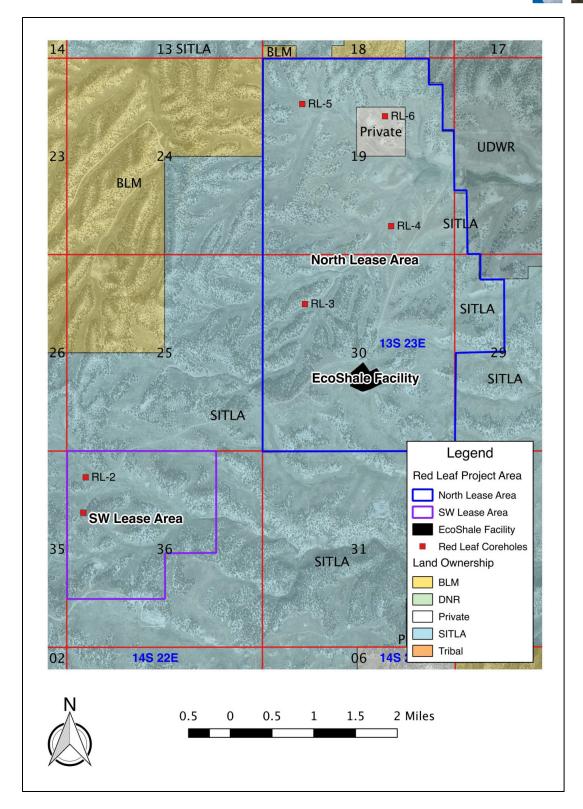



Figure 9. Map Showing Location of Red Leaf Resources Coreholes.







## **Database and Well Boring Log Review**

There was some difficulty in finding wells in the right location with full logs in order illustrate continuity in bedding between the TomCo and Red Leaf sites. Oil companies usually do not bother to log either shallow lithology or geophysics until they are near their target zone, and boreholes drilled specifically for oil shale are usually not deep enough to provide detailed stratigraphic data below, say, R6.

The available data were largely obtained from the USGS Database (Johnson et al., 2010), and data presented in Vanden Berg (2008). Borehole information from the USGS database in the form of a shapefile were imported into a geographic information system (GIS) and plotted. Wells to be reviewed were selected based on location (near and between the TomCo and Red Leaf sites), and then according to whether assay data were available from the database or from Vanden Berg (2008). Selected wells were reviewed within the well database Microsoft Access file. Borehole data from Vanden Berg (2008) were manually parsed and, when the same entry was available in the USGS database, compared to those data to ensure agreement and, in some cases, used to supplement the USGS data. Borehole data reviewed from all sources are tabulated in Appendix A, and boreholes in the vicinity of the TomCo and Red Leaf project areas are nominally presented in Figure A-1 of Appendix A.

Raster data from Johnson et al. (2010) were brought into GIS to produce a series of figures to illustrate the degree of continuity between the TomCo and Red Leaf sites with respect to Fischer assay and bed thicknesses. These data were then visually compared to the Unita Basin-wide graphical presentations contained in Mercier and Johnson (2012) to ensure accuracy of the GIS raster processing.

Representative values for each site were obtained by randomly sampling the raster at multiple locations within the respective site boundaries.

#### Results

Review of each of the datasets presented in **Figure 10** through **Figure 17** yielded a series of numerical comparisons of bedding and assay values (Table 2), which illustrate the following:

- 1. A-Groove bedding thickness and Fischer assay results are consistent between the two sites, varying in thickness between about 16 feet at the Red Leaf site to about 9.5 feet at the TomCo site. Fischer assays ranged between about 2.5 GPT oil to about 3.6 GPT oil.
- 2. Mahogany Zone bedding thickness and Fischer assay results are fairly consistent between the two sites, varying in thickness between about 95 feet at the Red Leaf site to about 65 feet at the TomCo site. Fischer assays ranged between about 17 to about 21 GPT oil. The difference in thickness between the two sites may be a result of erosion as the Mahogany Zone lies near or at ground surface in the vicinity of both sites (see Mahogany Bed outcrop on Figure 12). Therefore, it is conceivable that where measurements were obtained, the entire Mahogany zone thickness may not be present.





Table 2. Representative Values of Compared Bed Thicknesses and Assay Values

Between TomCo and Red Leaf Sites.

| Compared<br>Bed  | TomCo Site<br>Representative<br>Bed Thickness<br>(feet) | Red Leaf Site<br>Representative<br>Bed Thickness<br>(feet) | TomCo Site<br>Representative<br>Assay (GPT Oil) | Red Leaf Site<br>Representative Assay<br>(GPT Oil) |  |
|------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--|
| A-Groove         | 9.5                                                     | 16                                                         | 3.6                                             | 2.5                                                |  |
| Mahogany<br>Zone | 65                                                      | 95                                                         | 21                                              | 17                                                 |  |
| B-Groove         | 11                                                      | 7                                                          | 21                                              | 17                                                 |  |
| Bed R6           | 235                                                     | 193                                                        | 5.2                                             | 2.7                                                |  |

- 3. B-Groove bedding thickness and Fischer assay results are consistent between the two sites, varying in thickness between about 7 feet at the Red Leaf site to about 11 feet at the TomCo site. Fischer assays ranged from about 17 to about 21 GPT oil.
- 4. Bed R6 bedding thickness and Fischer assay results are fairly consistent between the two sites, varying in thickness between about 235 feet at the Red Leaf site to about 193 feet at the TomCo site. Fischer assays ranged from about 2.7 to about 5.2 GPT oil.

Thus, on the basis of this comparison, the lithologies beneath the sites are continuous, have the same formations and origin, are similar in thickness, and contain similar amounts of oil. Therefore, there is no reason to believe that there is a significant difference in these rock characteristics that would result in a significant difference in waste rock characteristics based upon potential results of SPLP testing.













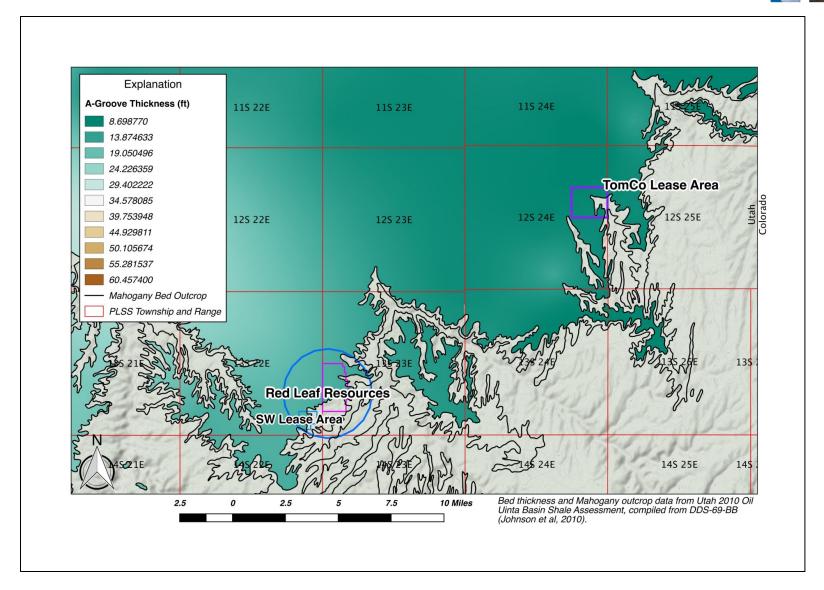



Figure 10. A-Groove Isopach Map For Area Surrounding the TomCo and Red Leaf Sites.













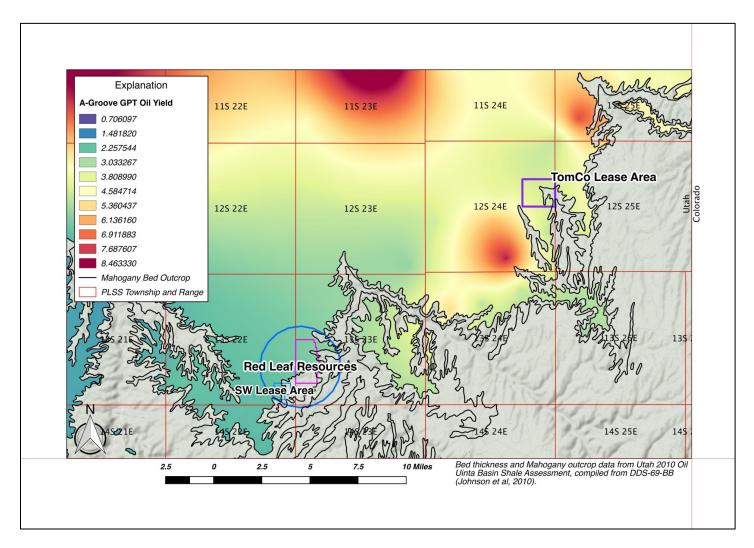



Figure 11. A-Groove Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites.













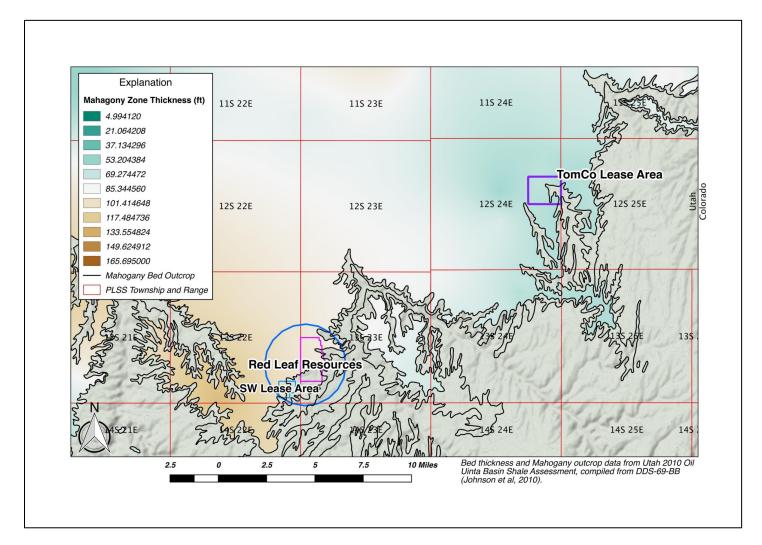



Figure 12. Mahogany Zone Isopach Map For Area Surrounding the TomCo and Red Leaf Sites.













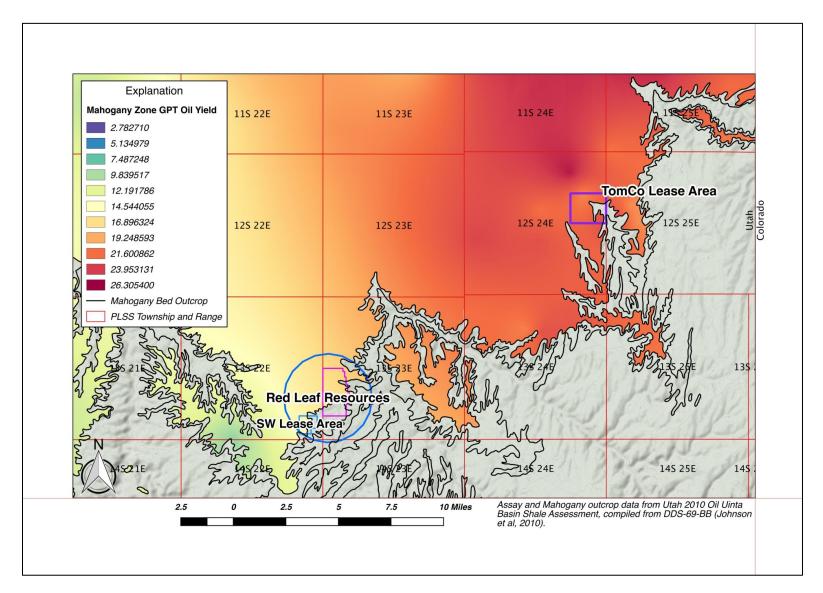



Figure 13. Mahogany Zone Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites.













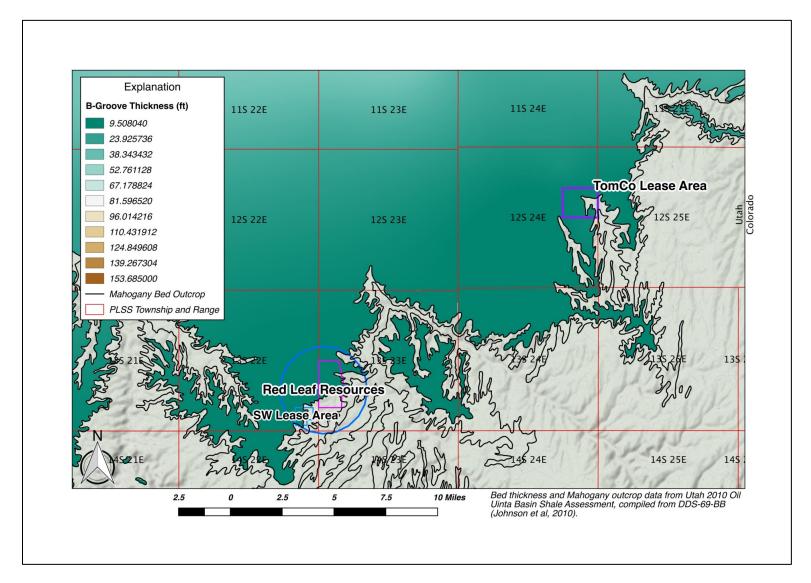



Figure 14. B-Groove Isopach Map For Area Surrounding the TomCo and Red Leaf Sites.













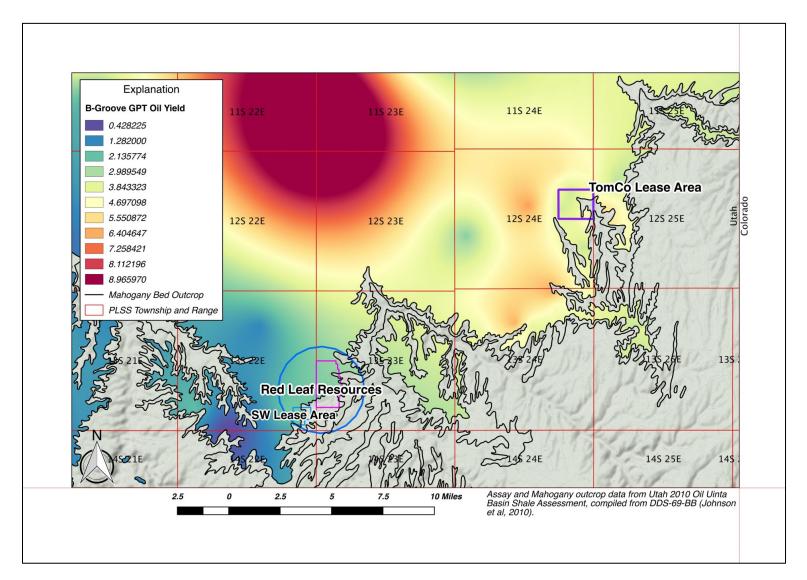



Figure 15. B-Groove Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites.













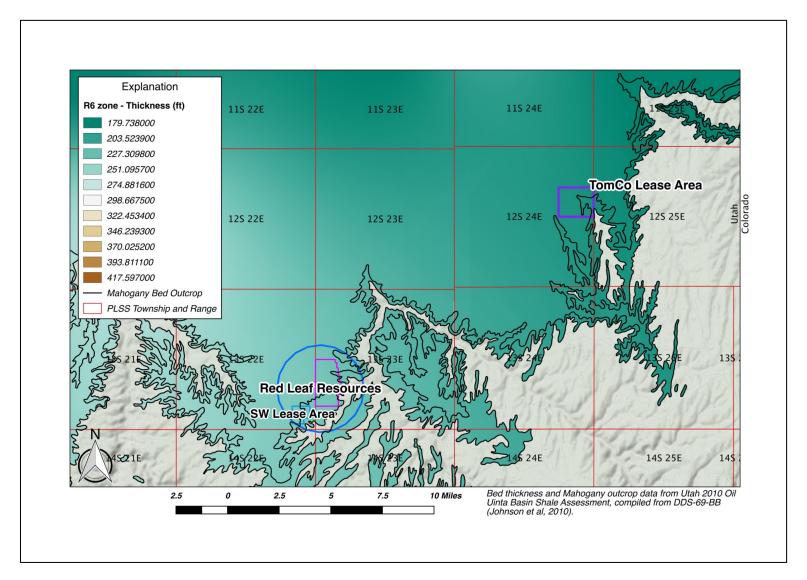



Figure 16. Bed R6 Isopach Map For Area Surrounding the TomCo and Red Leaf Sites.













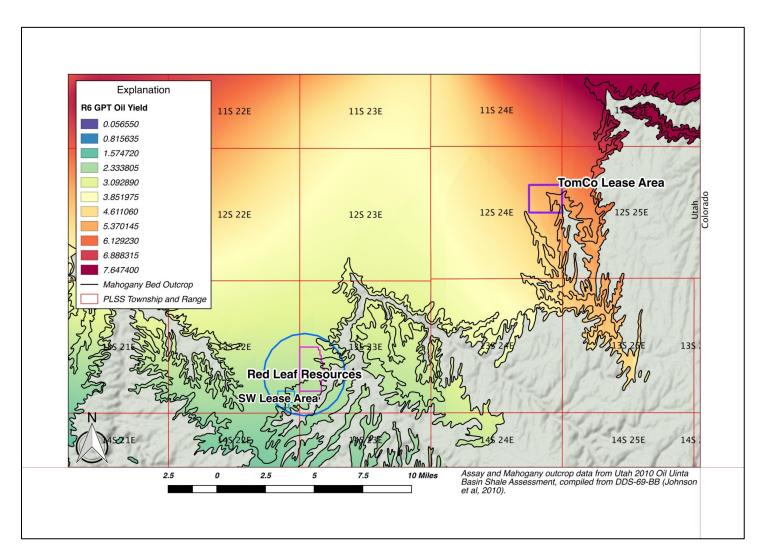



Figure 17. Bed R6 Isoresource Map for Area Surrounding the TomCo and Red Leaf Sites.







#### 4 REFERENCES CITED

- Birgenheier, Lauren, Michael Vanden Berg, Morgan Rosenberg, and Leah Toms, 2013., Sedimentology and Stratigraphy of the Green River Formation, Uinta Basin, A Field Trip for GRF Project Sponsor, Total, April 30 – May 3, 2013.
- Bradley, W.H., 1931, Origin and microfossils of the oil shale of the Green River Formation of Colorado and Utah: U.S. Geological Survey Professional Paper 168, 58 p.
- Cashion, W.B., and Donnell, J.R., 1972, Chart showing correlation of selected key units in the organic-rich sequence of the Green River Formation, Piceance Creek Basin, Colorado, and Uinta Basin, Utah: U.S. Geological Survey Oil and Gas Investigations Chart OC–65.
- Cashion, W.B., and Donnell, J.R., 1974, Revision of nomenclature of the upper part of the Green River Formation, Piceance Creek Basin, Colorado, and Eastern Uinta Basin, Utah: U.S. Geological Survey Bulletin 1394–G, 9 p.
- Golden Software, 2013, Surfer Gridding and Contouring Software Program, Surface Mapping System version 11, Golden Software, Inc. Golden Colorado.
- Johnson, R.C., 1985, Early Cenozoic History of the Uinta and Piceance Creek Basins, Utah and Colorado, with Special Reference to the Development of Eocene Lake Uinta, in Flores, R.M., and Kaplan, S.S., eds., Cenozoic Paleogeography of the West-central United States: The Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists, Rocky Mountain Paleogeography Symposium 3, p. 247–276.
- Johnson, R.C., 1989, Detailed Cross Section Correlating the Upper Cretaceous and Lower Tertiary Rocks between the Uinta Basin of Eastern Utah and Western Colorado and the Piceance Basin of western Colorado: U.S. Geological Survey Miscellaneous Investigations Map I–1974.
- Johnson, R.C., 2003, Northwest to Southeast Cross Section of Cretaceous and Lower Tertiary Rocks across the Eastern Part of the Uinta Basin, Utah, chap. 11 of U.S. Geological Survey Uinta-Piceance Assessment Team, compilers, Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado: U.S. Geological Survey Digital Data Series 69–B, 6 p.
- Johnson, R.C., 2014, Detailed north-south cross section showing environments of deposition, organic richness, and thermal maturities of lower Tertiary rocks in the Uinta Basin, Utah: U.S. Geological Survey Scientific Investigations Map 3304, 12 p., 1 sheet, http://dx.doi.org/10.3133/sim3304.
- Johnson, R.C., Nichols, D.J., and Hanley, J.H., 1988, Stratigraphic sections of Lower Tertiary strata and charts showing palynomorph and mollusc assemblages, Douglas Creek arch







- area Colorado and Utah: U.S. Geological Survey Miscellaneous Field Investigations Map MF–1997.
- Johnson, R.C., and the U.S. Geological Survey Oil Shale Assessment Team, 2010, Oil Shale Resources of the Uinta Basin, Utah and Colorado: U.S. Geological Survey Digital Data Series DDS-69-BB, [CD-ROM].
- Keighin, C.W., 1977, Preliminary Geologic Map of the Cooper Canyon Quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-874, scale 1:24,000.
- Mercier, T.J., and Johnson, R.C., 2012, Isopach and isoresource Maps for Oil Shale Deposits in the Eocene Green River Formation for the Combined Uinta and Piceance Basins, Utah and Colorado: U.S. Geological Survey Scientific Investigations Report 2012–5076, 85 p., 1 pl.
- Pipiringos, G.N., 1978, Preliminary Geologic Map of the Bates Knolls Quadrangle, Utah: U.S. Geological Survey Miscellaneous Field Investigations Map MF–1025, scale 1:24,000.
- Red Leaf Resources, 2013, Utah Groundwater Discharge permit Application for Red Leaf Resources, Inc., Southwest #1 Project, Submitted to the State of Utah Division of Water Quality, June, 2014.
- Stokes, W.L. 1986. Geology of Utah. Utah Museum of Natural History and Utah Geological and Minerals Survey.
- TomCo, 2014, Groundwater Discharge Permit Application, Holliday Block, Submitted to the State of Utah Division of Water Quality, February 14, 2014.
- Trudell, L.G., Beard, T.N., and Smith, J.W., 1970, Green River Formation Lithology and Oil Shale Correlations in the Piceance Creek Basin, Colorado: U.S. Bureau of Mines Report of Investigations 7357, 11 p., 212 tables.
- Vanden Berg, M.D., 2008, Basin-Wide Evaluation of Uppermost Green River Formation's Oil-Shale Resource, Unita Basin, Utah and Colorado, Utah Geological Survey Special Study SS 128.
- Wallace, Janea. 2012. Baseline Water Quality and Estimated Quantity for Selected Sites in the Southeastern Uinta Basin, Utah. Open File Report 595, Utah Geological Survey, Utah Department of Natural Resources, 2012, 66 p.
- Woods, A.J., Lammers, D.A., Bryce, S.A., Omernik, J.M., Denton, R.L., Domeier, M., and Comstock, J.A., 2001, Ecoregions of Utah (color poster with map, descriptive text,







summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,175,000)







### APPENDIX A: REVIEWED WELLS AND BOREHOLES WITH BEDDING **TOPS**













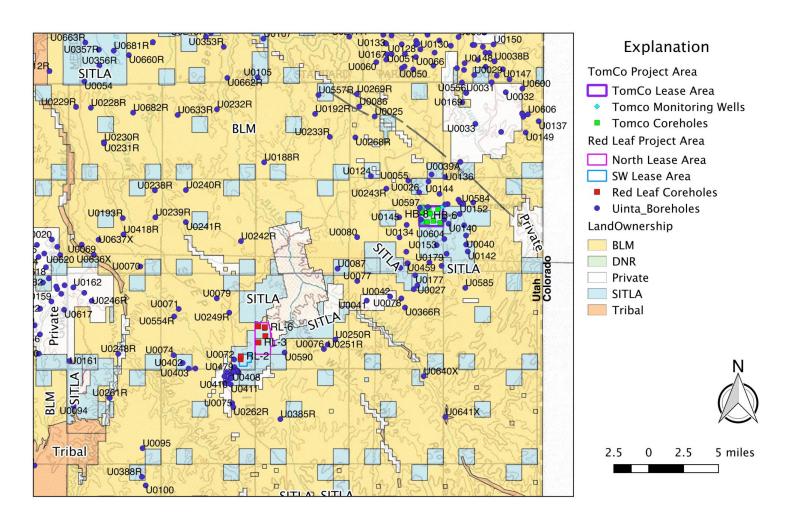



Figure A- 1. Boreholes in Vicinity of the TomCo and Red Leaf Project Area.













Table A- 1. A-Groove Tops (see footnote for sources of data)

| Well ID       | Tnp        | Rng | Sec | <b>½- ½</b> | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | A-<br>Groove<br>Top<br>(feet<br>amsl) | A-<br>Groove<br>Top<br>(feet<br>bgs) |
|---------------|------------|-----|-----|-------------|--------|---------|---------------------|--------------------------|---------------------------------------|--------------------------------------|
| TomCo MW-01   | 125        | 24E | 11  | SW SE       | 654548 | 4405434 | 200                 | 6092                     | 6052                                  | 40                                   |
| TomCo MW-02   | <b>12S</b> | 24E | 14  | NW SE       | 654602 | 4403965 | 200                 | 6232                     | 6207                                  | 25                                   |
| TomCo MW-03   | <b>12S</b> | 24E | 12  | SW SW       | 655180 | 4405418 | 200                 | 6132                     | 6115                                  | 17                                   |
| TomCo MW-04   | 125        | 24E | 12  | SE SE       | 656648 | 4405549 | 1100                | 6437                     | 6237                                  | 200                                  |
| TomCo HB-1    | 125        | 24E | 13  | SE SE       | 656430 | 4403904 | 164.60              | 6431                     | 6402                                  | 29                                   |
| TomCo HB-2    | 125        | 24E | 14  | SE SE       | 655104 | 4403947 | 215                 | 6373                     | 6285                                  | 88                                   |
| TomCo HB-4    | 125        | 24E | 14  | NW NE       | 654575 | 4404839 | 195                 | 6179                     | 6113                                  | 66                                   |
| TomCo HB-7    | 125        | 24E | 12  | SW SE       | 656185 | 4405284 | 304                 | 6394                     | 6214                                  | 180                                  |
| TomCo HB-9    | 125        | 24E | 11  | SW SE       | 654555 | 4405434 | 180                 | 6097                     | 6059                                  | 38                                   |
| Red Leaf RL-1 | 135        | 22E | 36  | SW NW       | 636298 | 4389653 | 138.3               | 6654                     | 6645.7                                | 8,3                                  |
| Red Leaf RL-2 | 135        | 22E | 36  | NW NW       | 636313 | 4389943 | 159                 | 6650                     | 6609.9                                | 40.1                                 |
| Red Leaf RL-3 | 135        | 23E | 30  | SW NW       | 638090 | 4391395 | 178.6               | 6460                     | 6403.9                                | 56.1                                 |
| Red Leaf RL-4 | 135        | 23E | 19  | SW SE       | 638788 | 4392046 | 169.2               | 6355                     | 6313                                  | 42                                   |
| Red Leaf RL-5 | 135        | 23E | 19  | NW NW       | 638040 | 4393033 | 239.2               | 6342                     | 6225.7                                | 116.3                                |
| Red Leaf RL-6 | 135        | 23E | 19  | SW NE       | 638721 | 4392945 | 218.7               | 6306                     | 6219.9                                | 86.1                                 |
| U021          | 135        | 20E | 5   | SW NW       | 610525 | 4396747 |                     | 5964                     | 5888.9                                | 75.1                                 |
| U022          | 135        | 20E | 14  | NE NW       | 615775 | 4394255 |                     | 6038                     | 5960.8                                | 77.2                                 |
| U023          | 135        | 20E | 1   | NE SE       | 618235 | 4396672 |                     | 5836                     | 5747.8                                | 88.2                                 |
| U025          | 115        | 24E | 17  | NW NE       | 649592 | 4414357 |                     | 5347                     | 4870                                  | 477                                  |
| U027          | 135        | 24E | 2   | NE SW       | 654287 | 4397281 | 178                 | 6789                     | 6708                                  | 81                                   |
| U031          | 115        | 25E | 5   | NE SW       | 658872 | 4416933 |                     | 5533                     | 5131.8                                | 401.2                                |
| U032          | 115        | 25E | 3   | NE SE       | 662907 | 4417093 |                     | 6339                     | 5975.5                                | 363.5                                |
| U033          | 115        | 25E | 16  | NW SW       | 659877 | 4413814 |                     | 5905                     | 5556.9                                | 348.1                                |
| U034          | 115        | 25E | 22  | NW NE       | 662521 | 4413059 |                     | 6144                     | 5802                                  | 342                                  |
| U039          | 115        | 25E | 29  | SW SW       | 658422 | 4409929 |                     | 6110                     | 5842                                  | 268                                  |
| U041          | 135        | 24E | 8   | NW SW       | 649145 | 4395648 | 220                 | 6322                     | 6288.2                                | 33.8                                 |
| U042          | 135        | 24E | 9   | SW NE       | 651527 | 4396110 | 234                 | 6497                     | 6451.7                                | 45.3                                 |
| U055          | 125        | 24E | 3   | NE NE       | 653158 | 4407920 | 498                 | 6137                     | 5710.8                                | 426.2                                |
| U070          | 125        | 21E | 35  | SW NE       | 625945 | 4398702 |                     | 5829                     | 5769.7                                | 59.3                                 |
| U071          | 135        | 22E | 17  | NW NW       | 629942 | 4394449 | 347                 | 6183                     | 6155.5                                | 27.5                                 |
| U072          | 135        | 22E | 35  | SW NE       | 635700 | 4389409 | 217                 | 6700                     | 6639.8                                | 60.2                                 |
| U074          | 135        | 22E | 31  | NE NE       | 629496 | 4389749 | 236                 | 6628                     | 6546.6                                | 81.4                                 |
| U077          | 135        | 24E | 6   | SW NE       | 648138 | 4397625 | 276                 | 6268                     | 6124.7                                | 143.3                                |
| U078          | 135        | 24E | 10  | SE NW       | 652681 | 4395938 | 232                 | 6677                     | 6559.6                                | 117.4                                |







Table A-1. A-Groove Tops (see footnote for sources of data)

| Well ID | Tnp         | Rng | Sec | <b>½- ½</b> | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | A-<br>Groove<br>Top<br>(feet<br>amsl) | A-<br>Groove<br>Top<br>(feet<br>bgs) |
|---------|-------------|-----|-----|-------------|--------|---------|---------------------|--------------------------|---------------------------------------|--------------------------------------|
| U079    | 135         | 22E | 10  | SW NE       | 633812 | 4395597 | 581                 | 6427                     | 6024.6                                | 402.4                                |
| U080    | 12S         | 24E | 19  | NW SE       | 648046 | 4402078 | 621                 | 6261                     | 5801.2                                | 459.8                                |
| U086    | <b>11</b> S | 24E | 7   | SW NE       | 647995 | 4415339 |                     | 5250                     | 4708                                  | 542                                  |
| U087    | 12S         | 23E | 36  | NE SW       | 646100 | 4398839 | 576                 | 6362                     | 5941                                  | 421                                  |
| U088    | 115         | 24E | 36  | SW SW       | 655510 | 4408591 |                     | 6130                     | 5817                                  |                                      |
| U090    | <b>12S</b>  | 24E | 36  | NE SE       | 656719 | 4399338 | 216                 | 6900                     | 6866                                  |                                      |
| U134    | 125         | 24E | 22  | NW SW       | 652365 | 4402141 | 249                 | 6225                     | 6128                                  |                                      |
| U136    | 115         | 25E | 31  | SW SW       | 656910 | 4408355 |                     | 6295                     | 5915                                  |                                      |
| U137    | 115         | 25E | 13  | SE NE       | 666321 | 4414219 |                     | 6700                     | 6648                                  |                                      |
| U140    | <b>12S</b>  | 25E | 18  | SE SW       | 657356 | 4403625 | 196                 | 6340                     | 6287                                  |                                      |
| U141    | 12S         | 24E | 34  | SE NE       | 653267 | 4399513 | 196                 | 6450                     | 6390                                  |                                      |
| U143    | 125         | 25E | 17  | SE SW       | 658938 | 4403501 | 338                 | 6700                     | 6546                                  |                                      |
| U145    | 125         | 24E | 15  | SW NW       | 652302 | 4404186 | 503                 | 6300                     | 5953                                  |                                      |
| U149    | 115         | 25E | 24  | NW NW       | 665023 | 4413046 |                     | 6500                     | 6121                                  |                                      |
| U153    | 125         | 24E | 25  | NW NE       | 656186 | 4401431 | 239                 | 6660                     | 6598                                  |                                      |
| U156    | <b>12S</b>  | 24E | 12  | SW SW       | 655201 | 4405283 | 200                 | 6110                     | 6074                                  |                                      |
| U457    | 125         | 25E | 8   | SW NW       | 658468 | 4405835 |                     | 6430                     | 6325                                  |                                      |

No shading: TomCo GWDP (2014) Purple: Red Leaf GWDP (2013) Green: Vanden Berg (2008)

Pink: Vanden Berg (2008); Johnson et al. (2010)

Table A- 2. Mahogany Zone Tops (see footnote for sources of data).

| Well ID     | Tnp | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Zone Top<br>(feet amsl) |
|-------------|-----|-----|-----|----------|--------|---------|---------------------|--------------------------|-------------------------------------|
| TomCo MW-01 | 12S | 24E | 11  | SW SE    | 654548 | 4405434 | 200                 | 6092                     | 6037                                |
| TomCo MW-02 | 12S | 24E | 14  | NW SE    | 654602 | 4403965 | 200                 | 6232                     | 6187                                |
| TomCo MW-03 | 12S | 24E | 12  | SW SW    | 655180 | 4405418 | 200                 | 6132                     | 6097                                |
| TomCo MW-04 | 12S | 24E | 12  | SE SE    | 656648 | 4405549 | 1100                | 6437                     | 6224                                |
| TomCo HB-1  | 12S | 24E | 13  | SE SE    | 656430 | 4403904 | 164.6               | 6431                     | 6390                                |
| TomCo HB-2  | 12S | 24E | 14  | SE SE    | 655104 | 4403947 | 215                 | 6373                     | 6275                                |







Table A- 2. Mahogany Zone Tops (see footnote for sources of data).

| Well ID       | Tnp         | Rng | Sec | 1/a- 1/a | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Zone Top<br>(feet amsl) |
|---------------|-------------|-----|-----|----------|--------|---------|---------------------|--------------------------|-------------------------------------|
| TomCo HB-3    | 12S         | 24E | 14  | NW SE    | 654604 | 4403958 | 145                 | 6231                     | 6195                                |
| TomCo HB-4    | 12S         | 24E | 14  | NW NE    | 654575 | 4404839 | 195                 | 6179                     | 6104                                |
| TomCo HB-5    | 125         | 24E | 13  | NW<br>NW | 655383 | 4404819 | 175                 | 6229                     | 6187                                |
| TomCo HB-6    | 12S         | 24E | 13  | NW SW    | 655730 | 4404092 | 155                 | 6319                     | 6301                                |
| TomCo HB-7    | 12S         | 24E | 12  | SW SE    | 656185 | 4405284 | 304                 | 6394                     | 6204                                |
| TomCo HB-8    | 12S         | 24E | 12  | SW SW    | 655228 | 4405283 | 155                 | 6138                     | 6112                                |
| TomCo HB-9    | 12S         | 24E | 11  | SW SE    | 654555 | 4405434 | 180                 | 6097                     | 6049                                |
| Red Leaf RL-1 | 13S         | 22E | 36  | SW NW    | 636298 | 4389653 | 138.3               | 6654                     | 6629.6                              |
| Red Leaf RL-2 | 135         | 22E | 36  | NW<br>NW | 636313 | 4389943 | 159                 | 6650                     | 6597.8                              |
| Red Leaf RL-3 | 135         | 23E | 30  | SW NW    | 638090 | 4391395 | 178.6               | 6460                     | 6386.8                              |
| Red Leaf RL-4 | 13S         | 23E | 19  | SW SE    | 638788 | 4392046 | 169.2               | 6355                     | 6295.5                              |
| Red Leaf RL-5 | 135         | 23E | 19  | NW<br>NW | 638040 | 4393033 | 239.2               | 6342                     | 6208.6                              |
| Red Leaf RL-6 | 135         | 23E | 19  | SW NE    | 638721 | 4392945 | 218.7               | 6306                     | 6205.9                              |
| U008          | 135         | 19E | 14  |          | 605853 | 4393568 |                     | 6247                     | 6093                                |
| U010          | 13S         | 19E | 34  |          | 604747 | 4388476 |                     | 6763                     | 6613.7                              |
| U017          | 13S         | 18E | 4   |          | 594250 | 4396676 |                     | 6090                     | 6060                                |
| U018          | 135         | 19E | 7   |          | 599386 | 4394268 |                     | 6275                     | 6256.6                              |
| U021          | 135         | 20E | 8   |          | 610525 | 4396747 |                     | 5964                     | 5873.4                              |
| U022          | 135         | 20E | 14  |          | 615775 | 4394255 |                     | 6038                     | 5941.2                              |
| U023          | 135         | 20E | 1   |          | 618235 | 4396672 |                     | 5836                     | 5723.8                              |
| U025          | 11S         | 24E | 17  |          | 649592 | 4414357 |                     | 5347                     | 4859                                |
| U026          | 12S         | 24E | 2   | SE SW    | 654279 | 4406752 | 270                 | 6059                     | 5905.6                              |
| U027          | 135         | 24E | 2   | NE SW    | 654287 | 4397281 | 178                 | 6789                     | 6699.1                              |
| U031          | 11S         | 25E | 5   |          | 658872 | 4416933 |                     | 5533                     | 5121.8                              |
| U032          | 11S         | 25E | 3   |          | 662907 | 4417093 |                     | 6339                     | 5964.7                              |
| U033          | 11S         | 25E | 16  |          | 659877 | 4413814 |                     | 5905                     | 5549                                |
| U034          | 11S         | 25E | 22  |          | 662521 | 4413059 |                     | 6144                     | 5793.4                              |
| U039          | <b>11</b> S | 25E | 29  |          | 658422 | 4409929 |                     | 6110                     | 5828.5                              |
| U041          | 135         | 24E | 8   | NW SW    | 649145 | 4395648 | 220                 | 6322                     | 6283.1                              |
| U042          | 135         | 24E | 9   | SW NE    | 651527 | 4396110 | 234                 | 6497                     | 6442                                |
| U055          | <b>12</b> S | 24E | 3   | NE NE    | 653158 | 4407920 | 498                 | 6137                     | 5701.7                              |
| U070          | <b>12</b> S | 21E | 35  |          | 625945 | 4398702 |                     | 5829                     | 5741.5                              |
| U071          | 135         | 22E | 17  | NW<br>NW | 629942 | 4394449 | 347                 | 6183                     | 6126.6                              |







Table A- 2. Mahogany Zone Tops (see footnote for sources of data).

| Well ID | Tnp         | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Zone Top<br>(feet amsl) |
|---------|-------------|-----|-----|----------|--------|---------|---------------------|--------------------------|-------------------------------------|
| U072    | 135         | 22E | 35  | SW NE    | 635700 | 4389409 | 217                 | 6700                     | 6622.7                              |
| U073    | 135         | 22E | 35  | SW SE    | 635749 | 4388635 | 137                 | 6727                     | 6715.6                              |
| U074    | 13S         | 22E | 31  | NE NE    | 629496 | 4389749 | 236                 | 6628                     | 6530.4                              |
| U075    | 145         | 22E | 14  | NW NE    | 635581 | 4384956 | 139                 | 6989                     | 6978                                |
| U076    | 135         | 23E | 26  | NE SW    | 644861 | 4390642 | 118                 | 6419                     | 6412                                |
| U077    | 13S         | 24E | 6   | SW NE    | 648138 | 4397625 | 276                 | 6268                     | 6114.5                              |
| U078    | 135         | 24E | 10  | SE NW    | 652681 | 4395938 | 232                 | 6677                     | 6551                                |
| U079    | 135         | 22E | 10  | SW NE    | 633812 | 4395597 | 581                 | 6427                     | 6003.5                              |
| U080    | 12S         | 24E | 19  | NW SE    | 648046 | 4402078 | 621                 | 6261                     | 5791.2                              |
| U086    | 11S         | 24E | 7   |          | 647995 | 4415339 |                     | 5250                     | 4697                                |
| U087    | 12S         | 23E | 36  | NE SW    | 646100 | 4398839 | 576                 | 6362                     | 5931                                |
| U088    | 11S         | 24E | 36  |          | 655510 | 4408591 |                     | 6130                     | 5810                                |
| U090    | 12S         | 24E | 36  | NE SE    | 656719 | 4399338 | 216                 | 6900                     | 6856                                |
| U094    | 14S         | 21E | 18  |          | 619353 | 4384393 |                     | 6760                     | 6740                                |
| U095    | 14S         | 21E | 26  |          | 626480 | 4380217 |                     | 7002                     | 6944                                |
| U134    | 12S         | 24E | 22  | NW SW    | 652365 | 4402141 | 249                 | 6225                     | 6118                                |
| U135    | 12S         | 25E | 7   | SE NE    | 658311 | 4406094 | 443                 | 6540                     | 6262.3                              |
| U136    | <b>11</b> S | 25E | 31  |          | 656910 | 4408355 |                     | 6295                     | 5906                                |
| U137    | <b>11</b> S | 25E | 13  |          | 666321 | 4414219 |                     | 6700                     | 6639                                |
| U140    | <b>12S</b>  | 25E | 18  | SE SW    | 657356 | 4403625 | 196                 | 6340                     | 6277                                |
| U141    | 12S         | 24E | 34  | SE NE    | 653267 | 4399513 | 196                 | 6450                     | 6265                                |
| U143    | <b>12</b> S | 25E | 17  | SE SW    | 658938 | 4403501 | 338                 | 6700                     | 6536                                |
| U144    | <b>12</b> S | 24E | 1   | SE SE    | 656357 | 4406641 | 440                 | 6340                     | 6060                                |
| U145    | 12S         | 24E | 15  | SW NW    | 652302 | 4404186 | 503                 | 6300                     | 5944                                |
| U149    | 11S         | 25E | 24  |          | 665023 | 4413046 |                     | 6500                     | 6114                                |
| U152    | 125         | 25E | 17  | NW<br>NW | 658452 | 4404632 | 341                 | 6600                     | 6416                                |
| U153    | 12S         | 24E | 25  | NW NE    | 656186 | 4401431 | 239                 | 6660                     | 6588                                |
| U156    | 12S         | 24E | 12  | SW SW    | 655201 | 4405283 | 200                 | 6110                     | 6065                                |
| U160    | <b>13S</b>  | 20E | 26  |          | 615712 | 4389681 |                     | 6388                     | 6378                                |
| U161    | 135         | 21E | 31  |          | 618866 | 4388973 |                     | 6457                     | 6440                                |
| U177    | 135         | 24E | 2   | NW<br>NW | 654056 | 4398315 |                     | 6611                     | 6595                                |
| U178    | 13S         | 24E | 2   | SW SW    | 653924 | 4396901 | 128                 | 6933                     | 6902                                |
| U179    | 12S         | 24E | 36  | SW NW    | 655473 | 4399653 | 100                 | 6804                     | 6784                                |
| U457    | 12S         | 25E | 8   | SW NW    | 658468 | 4405835 |                     | 6430                     | 6315                                |







Table A- 2. Mahogany Zone Tops (see footnote for sources of data).

| Well ID          | Tnp | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Zone Top<br>(feet amsl) |
|------------------|-----|-----|-----|----------|--------|---------|---------------------|--------------------------|-------------------------------------|
| (D-11-24) 7acd-1 | 11S | 24E | 7   | SW NE    | 647997 | 4415545 | 2650                | 5245                     | 4665                                |
| CHORNEY B-NCT 1  | 135 | 22E | 23  | SE SW    | 635133 | 4392769 | 13125               | 6624                     | 6209                                |

No shading: TomCo GWDP (2014) Purple: Red Leaf GWDP (2013)

Yellow: Holmes (1980)

Blue: Sprinkel (2009); DOGM OOGIS

Green: Vanden Berg (2008)

Pink: Vanden Berg (2008); Johnson et al. (2010)

Table A- 3. Mahogany Bed Tops (see footnote for sources of data).

| Well ID       | Tnp        | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Bed Top<br>(feet amsl) |
|---------------|------------|-----|-----|----------|--------|---------|---------------------|--------------------------|------------------------------------|
| TomCo HB-1    | 12S        | 24E | 13  | SE SE    | 656430 | 4403904 | 164.60              | 6431                     | 6366                               |
| TomCo HB-2    | <b>12S</b> | 24E | 14  | SE SE    | 655104 | 4403947 | 215                 | 6373                     | 6245                               |
| TomCo HB-3    | <b>12S</b> | 24E | 14  | NW SE    | 654604 | 4403958 | 145                 | 6231                     | 6186                               |
| TomCo HB-4    | <b>12S</b> | 24E | 14  | NW NE    | 654575 | 4404839 | 195                 | 6179                     | 6073                               |
| TomCo HB-5    | <b>12S</b> | 24E | 13  | NW NW    | 655383 | 4404819 | 175                 | 6229                     | 6161                               |
| TomCo HB-6    | <b>12S</b> | 24E | 13  | NW SW    | 655730 | 4404092 | 155                 | 6319                     | 6280                               |
| TomCo HB-7    | <b>12S</b> | 24E | 12  | SW SE    | 656185 | 4405284 | 304                 | 6394                     | 6178                               |
| TomCo HB-8    | <b>12S</b> | 24E | 12  | SW SW    | 655228 | 4405283 | 155                 | 6138                     | 6103                               |
| TomCo HB-9    | <b>12S</b> | 24E | 11  | SW SE    | 654555 | 4405434 | 180                 | 6097                     | 6021                               |
| TomCo MW-01   | <b>12S</b> | 24E | 11  | SW SE    | 654548 | 4405434 | 200                 | 6092                     | 6014                               |
| TomCo MW-02   | <b>12S</b> | 24E | 14  | NW SE    | 654602 | 4403965 | 200                 | 6232                     | 6147                               |
| TomCo MW-03   | <b>12S</b> | 24E | 12  | SW SW    | 655180 | 4405418 | 200                 | 6132                     | 6052                               |
| TomCo MW-04   | <b>12S</b> | 24E | 12  | SE SE    | 656648 | 4405549 | 1100                | 6437                     | 6179                               |
| Red Leaf RL-1 | 135        | 22E | 36  | SW NW    | 636298 | 4389653 | 138.3               | 6654                     | 6592                               |
| Red Leaf RL-2 | 135        | 22E | 36  | NW NW    | 636313 | 4389943 | 159                 | 6650                     | 6564                               |
| Red Leaf RL-3 | 135        | 23E | 30  | SW NW    | 638090 | 4391395 | 178.6               | 6460                     | 6351.1                             |
| Red Leaf RL-4 | 135        | 23E | 19  | SW SE    | 638788 | 4392046 | 169.2               | 6355                     | 6262.1                             |
| Red Leaf RL-5 | 135        | 23E | 19  | NW NW    | 638040 | 4393033 | 239.2               | 6342                     | 6172.7                             |
| Red Leaf RL-6 | 135        | 23E | 19  | SW NE    | 638721 | 4392945 | 218.7               | 6306                     | 6172.2                             |
| U008          | 135        | 19E | 14  |          | 605853 | 4393568 |                     | 6247                     | 6086.4                             |







Table A- 3. Mahogany Bed Tops (see footnote for sources of data).

| Well ID | Tnp        | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Bed Top<br>(feet amsl) |
|---------|------------|-----|-----|----------|--------|---------|---------------------|--------------------------|------------------------------------|
| U010    | 135        | 19E | 34  |          | 604747 | 4388476 |                     | 6763                     | 6605                               |
| U017    | 135        | 18E | 4   |          | 594250 | 4396676 |                     | 6090                     | 5966.2                             |
| U018    | 135        | 19E | 7   |          | 599386 | 4394268 |                     | 6275                     | 6160                               |
| U021    | 135        | 20E | 8   |          | 610525 | 4396747 |                     | 5964                     | 5798.7                             |
| U022    | 135        | 20E | 14  |          | 615775 | 4394255 |                     | 6038                     | 5880                               |
| U023    | 135        | 20E | 1   |          | 618235 | 4396672 |                     | 5836                     | 5669                               |
| U025    | 115        | 24E | 17  |          | 649592 | 4414357 |                     | 5347                     | 4829                               |
| U026    | 12S        | 24E | 2   | SE SW    | 654279 | 4406752 | 270                 | 6059                     | 5879.5                             |
| U027    | 135        | 24E | 2   | NE SW    | 654287 | 4397281 | 178                 | 6789                     | 6669.4                             |
| U031    | 11S        | 25E | 5   |          | 658872 | 4416933 |                     | 5533                     | 5085                               |
| U032    | 11S        | 25E | 3   |          | 662907 | 4417093 |                     | 6339                     | 5933                               |
| U033    | 115        | 25E | 16  |          | 659877 | 4413814 |                     | 5905                     | 5522                               |
| U034    | 115        | 25E | 22  |          | 662521 | 4413059 |                     | 6144                     | 5762                               |
| U039    | 11S        | 25E | 29  |          | 658422 | 4409929 |                     | 6110                     | 5800                               |
| U040    | 12S        | 25E | 29  | NE NW    | 659186 | 4401554 | 62                  | 6799                     | 6779                               |
| U041    | 135        | 24E | 8   | NW SW    | 649145 | 4395648 | 220                 | 6322                     | 6258.3                             |
| U042    | 135        | 24E | 9   | SW NE    | 651527 | 4396110 | 234                 | 6497                     | 6410.6                             |
| U055    | 12S        | 24E | 3   | NE NE    | 653158 | 4407920 | 498                 | 6137                     | 5672.7                             |
| U070    | 12S        | 21E | 35  |          | 625945 | 4398702 |                     | 5829                     | 5700                               |
| U071    | 135        | 22E | 17  | NW NW    | 629942 | 4394449 | 347                 | 6183                     | 6081.8                             |
| U072    | 135        | 22E | 35  | SW NE    | 635700 | 4389409 | 217                 | 6700                     | 6580                               |
| U073    | 135        | 22E | 35  | SW SE    | 635749 | 4388635 | 137                 | 6727                     | 6674.9                             |
| U074    | 135        | 22E | 31  | NE NE    | 629496 | 4389749 | 236                 | 6628                     | 6480.4                             |
| U075    | <b>14S</b> | 22E | 14  | NW NE    | 635581 | 4384956 | 139                 | 6989                     | 6940                               |
| U076    | 135        | 23E | 26  | NE SW    | 644861 | 4390642 | 118                 | 6419                     | 6387                               |
| U077    | 135        | 24E | 6   | SW NE    | 648138 | 4397625 | 276                 | 6268                     | 6078.1                             |
| U078    | 135        | 24E | 10  | SE NW    | 652681 | 4395938 | 232                 | 6677                     | 6522.6                             |
| U079    | 135        | 22E | 10  | SW NE    | 633812 | 4395597 | 581                 | 6427                     | 5966.7                             |
| U080    | 12S        | 24E | 19  | NW SE    | 648046 | 4402078 | 621                 | 6261                     | 5758                               |
| U086    | 115        | 24E | 7   |          | 647995 | 4415339 |                     | 5250                     | 4669                               |
| U087    | 125        | 23E | 36  | NE SW    | 646100 | 4398839 | 576                 | 6362                     | 5897                               |
| U088    | 115        | 24E | 36  |          | 655510 | 4408591 |                     | 6130                     | 5781                               |
| U090    | 125        | 24E | 36  | NE SE    | 656719 | 4399338 | 216                 | 6900                     | 6827                               |
| U091    | 125        | 24E | 14  | NW SE    | 654533 | 4403991 | 176                 | 6165                     | 6116                               |
| U094    | 145        | 21E | 18  |          | 619353 | 4384393 |                     | 6760                     | 6679                               |
| U095    | 145        | 21E | 26  |          | 626480 | 4380217 |                     | 7002                     | 6939                               |







Table A- 3. Mahogany Bed Tops (see footnote for sources of data).

| Well ID          | Tnp         | Rng | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(feet<br>bgs) | Collar<br>(feet<br>amsl) | Mahogany<br>Bed Top<br>(feet amsl) |
|------------------|-------------|-----|-----|----------|--------|---------|---------------------|--------------------------|------------------------------------|
| U134             | 125         | 24E | 22  | NW SW    | 652365 | 4402141 | 249                 | 6225                     | 6087                               |
| U135             | 125         | 25E | 7   | SE NE    | 658311 | 4406094 | 443                 | 6540                     | 6238                               |
| U136             | <b>11</b> S | 25E | 31  |          | 656910 | 4408355 |                     | 6295                     | 5877                               |
| U137             | 115         | 25E | 13  |          | 666321 | 4414219 |                     | 6700                     | 6610                               |
| U140             | 125         | 25E | 18  | SE SW    | 657356 | 4403625 | 196                 | 6340                     | 6249                               |
| U141             | <b>12S</b>  | 24E | 34  | SE NE    | 653267 | 4399513 | 196                 | 6450                     | 6350                               |
| U143             | 125         | 25E | 17  | SE SW    | 658938 | 4403501 | 338                 | 6700                     | 6508                               |
| U144             | 125         | 24E | 1   | SE SE    | 656357 | 4406641 | 440                 | 6340                     | 6036                               |
| U145             | 125         | 24E | 15  | SW NW    | 652302 | 4404186 | 503                 | 6300                     | 5916.6                             |
| U149             | 115         | 25E | 24  |          | 665023 | 4413046 |                     | 6500                     | 6082                               |
| U152             | 125         | 25E | 17  | NW NW    | 658452 | 4404632 | 341                 | 6600                     | 6388                               |
| U153             | 125         | 24E | 25  | NW NE    | 656186 | 4401431 | 239                 | 6660                     | 6560                               |
| U156             | 125         | 24E | 12  | SW SW    | 655201 | 4405283 | 200                 | 6110                     | 6035                               |
| U159             | 135         | 20E | 11  |          | 616915 | 4395010 |                     | 5908                     | 5832                               |
| U160             | 135         | 20E | 26  |          | 615712 | 4389681 |                     | 6388                     | 6310                               |
| U161             | 135         | 21E | 31  |          | 618866 | 4388973 |                     | 6457                     | 6387                               |
| U177             | 135         | 24E | 2   | NW NW    | 654056 | 4398315 |                     | 6611                     | 6567                               |
| U178             | 135         | 24E | 2   | SW SW    | 653924 | 4396901 | 128                 | 6933                     | 6876                               |
| U179             | 12S         | 24E | 36  | SW NW    | 655473 | 4399653 | 100                 | 6804                     | 6776                               |
| U457             | 125         | 25E | 8   | SW NW    | 658468 | 4405835 |                     | 6430                     | 6290                               |
| 4304732558       | 115         | 23E | 30  |          | 638393 | 4409510 |                     | 5764                     | 4816                               |
| 4304732853       | 11S         | 23E | 35  |          | 644834 | 4407987 |                     | 5941                     | 5137                               |
| 4304734252       | 11S         | 23E | 10  |          | 643568 | 4414792 |                     | 5687                     | 4576                               |
| 4304734371       | 11S         | 23E | 9   |          | 642057 | 4414970 |                     | 6111                     | 4443                               |
| (D-11-24) 7acd-1 | <b>11</b> S | 24E | 7   | SW NE    | 647997 | 4415545 | 2650                | 5245                     | 4665                               |

No shading: TomCo GWDP (2014) Purple: Red Leaf GWDP (2013)

Yellow: Holmes (1980) Green: Vanden Berg (2008)

Pink: Vanden Berg (2008); Johnson et al. (2010)







Table A- 4. B-Groove Tops (see footnote for sources of data).

| Well ID         | Tnp         | Rng | Sec | 1/4- 1/4 | UTM E   | UTM N   | TD<br>(ft bgs) | Collar<br>(ft amsl) | B-Groove<br>Top<br>(ft amsl) |
|-----------------|-------------|-----|-----|----------|---------|---------|----------------|---------------------|------------------------------|
| TomCo HB-1      | 12S         | 24E | 13  | SE SE    | 656430  | 4403904 | 164.60         | 6431                | 5431                         |
| TomCo HB-2      | 12S         | 24E | 14  | SE SE    | 655104  | 4403947 | 215            | 6373                | 6209                         |
| TomCo HB-3      | 12S         | 24E | 14  | NW SE    | 654604  | 4403958 | 145            | 6231                | 6140                         |
| TomCo HB-6      | 12S         | 24E | 13  | NW SW    | 655730  | 4404092 | 155            | 6319                | 6242                         |
| TomCo HB-7      | 12S         | 24E | 12  | SW SE    | 656185  | 4405284 | 304            | 6394                | 6140                         |
| TomCo HB-8      | 12S         | 24E | 12  | SW SW    | 655228  | 4405283 | 155            | 6138                | 6063                         |
| TomCo HB-9      | 12S         | 24E | 11  | SW SE    | 654555  | 4405434 | 180            | 6097                | 5978                         |
| TomCo MW-<br>01 | 125         | 24E | 11  | SW SE    | 654548  | 4405434 | 200            | 6092                | 5967                         |
| TomCo MW-<br>02 | 125         | 24E | 14  | NW SE    | 654602  | 4403965 | 200            | 6232                | 6112                         |
| TomCo MW-<br>03 | 125         | 24E | 12  | SW SW    | 655180  | 4405418 | 200            | 6132                | 6009                         |
| TomCo MW-<br>04 | 125         | 24E | 12  | SE SE    | 656648  | 4405549 | 1100           | 6437                | 6134                         |
| Red Leaf RL-1   | 13S         | 22E | 36  | SW NW    | 636298  | 4389653 | 138.3          | 6654                | 6542.9                       |
| Red Leaf RL-2   | 13S         | 22E | 36  | NW NW    | 6363123 | 4389943 | 159            | 6650                | 6512                         |
| Red Leaf RL-3   | 135         | 23E | 30  | SW NW    | 638090  | 4391395 | 178.6          | 6460                | 6300                         |
| Red Leaf RL-4   | 13S         | 23E | 19  | SW SE    | 638788  | 4392046 | 169.2          | 6355                | 6211                         |
| Red Leaf RL-5   | 13S         | 23E | 19  | NW NW    | 638040  | 4393033 | 239.2          | 6342                | 6122                         |
| Red Leaf RL-6   | 13S         | 23E | 19  | SW NE    | 638721  | 4392945 | 218.7          | 6306                | 6121                         |
| U008            | 135         | 19E | 14  |          | 605853  | 4393568 |                | 6247                | 6055.4                       |
| U010            | 135         | 19E | 34  |          | 604747  | 4388476 |                | 6763                | 6590.8                       |
| U017            | 135         | 18E | 4   |          | 594250  | 4396676 |                | 6090                | 5939.8                       |
| U018            | 135         | 19E | 7   |          | 599386  | 4394268 |                | 6275                | 6128.3                       |
| U021            | 135         | 20E | 8   |          | 610525  | 4396747 |                | 5964                | 5732.6                       |
| U022            | 135         | 20E | 14  |          | 615775  | 4394255 |                | 6038                | 5811                         |
| U023            | 135         | 20E | 1   |          | 618235  | 4396672 |                | 5836                | 5602.3                       |
| U026            | 12S         | 24E | 2   | SE SW    | 654279  | 4406752 | 270            | 6059                | 5841.8                       |
| U027            | 135         | 24E | 2   | NE SW    | 654287  | 4397281 | 178            | 6789                | 6630.2                       |
| U032            | <b>11</b> S | 25E | 3   |          | 662907  | 4417093 |                | 6339                | 5879                         |
| U033            | <b>11</b> S | 25E | 16  |          | 659877  | 4413814 |                | 5905                | 5473.1                       |
| U041            | 135         | 24E | 8   | NW SW    | 649145  | 4395648 | 220            | 6322                | 6205.7                       |
| U042            | 135         | 24E | 9   | SW NE    | 651527  | 4396110 | 234            | 6497                | 6367.7                       |
| U070            | 12S         | 21E | 35  |          | 625945  | 4398702 |                | 5829                | 5633.9                       |
| U071            | 135         | 22E | 17  | NW NW    | 629942  | 4394449 | 347            | 6183                | 6019.5                       |
| U072            | 13S         | 22E | 35  | SW NE    | 635700  | 4389409 | 217            | 6700                | 6519.9                       |







Table A- 4. B-Groove Tops (see footnote for sources of data).

| Well ID | Tnp        | Rng         | Sec | 1/4- 1/4 | UTM E  | UTM N   | TD<br>(ft bgs) | Collar<br>(ft amsl) | B-Groove<br>Top<br>(ft amsl) |
|---------|------------|-------------|-----|----------|--------|---------|----------------|---------------------|------------------------------|
| U073    | 135        | 22E         | 35  | SW SE    | 635749 | 4388635 | 137            | 6727                | 6611.9                       |
| U074    | 135        | 22E         | 31  | NE NE    | 629496 | 4389749 | 236            | 6628                | 6415                         |
| U075    | 145        | 22E         | 14  | NW NE    | 635581 | 4384956 | 139            | 6989                | 6870.4                       |
| U076    | 135        | 23E         | 26  | NE SW    | 644861 | 4390642 | 118            | 6419                | 6334                         |
| U077    | 135        | 24E         | 6   | SW NE    | 648138 | 4397625 | 276            | 6268                | 6030.6                       |
| U078    | 135        | 24E         | 10  | SE NW    | 652681 | 4395938 | 232            | 6677                | 6478.8                       |
| U079    | 135        | 22E         | 10  | SW NE    | 633812 | 4395597 | 581            | 6427                | 5904.2                       |
| U080    | 12S        | 24E         | 19  | NW SE    | 648046 | 4402078 | 621            | 6261                | 5710.5                       |
| U086    | 115        | 24E         | 7   |          | 647995 | 4415339 |                | 5250                | 4622                         |
| U091    | 125        | 24E         | 14  | NW SE    | 654533 | 4403991 | 176            | 6165                | 6077                         |
| U094    | 145        | 21E         | 18  |          | 619353 | 4384393 |                | 6760                | 6670                         |
| U095    | 145        | 21E         | 26  |          | 626480 | 4380217 |                | 7002                | 6913                         |
| U134    | 12S        | 24E         | 22  | NW SW    | 652365 | 4402141 | 249            | 6225                | 6042                         |
| U135    | 12S        | 25E         | 7   | SE NE    | 658311 | 4406094 | 443            | 6540                | 6200                         |
| U136    | 115        | 25E         | 31  |          | 656910 | 4408355 |                | 6295                | 5836                         |
| U137    | 115        | <b>25</b> E | 13  |          | 666321 | 4414219 |                | 6700                | 6563                         |
| U140    | 125        | 25E         | 18  | SE SW    | 657356 | 4403625 | 196            | 6340                | 6217                         |
| U143    | 125        | 25E         | 17  | SE SW    | 658938 | 4403501 | 338            | 6700                | 6470                         |
| U144    | 125        | 24E         | 1   | SE SE    | 656357 | 4406641 | 440            | 6340                | 5996                         |
| U145    | 125        | 24E         | 15  | SW NW    | 652302 | 4404186 | 503            | 6300                | 5886                         |
| U149    | 115        | 25E         | 24  |          | 665023 | 4413046 |                | 6500                | 6026                         |
| U152    | 125        | 25E         | 17  | NW NW    | 658452 | 4404632 | 341            | 6600                | 6351                         |
| U153    | 125        | 24E         | 25  | NW NE    | 656186 | 4401431 | 239            | 6660                | 6525                         |
| U156    | 125        | 24E         | 12  | SW SW    | 655201 | 4405283 | 200            | 6110                | 5996                         |
| U160    | 135        | 20E         | 26  |          | 615712 | 4389681 |                | 6388                | 6284                         |
| U161    | 135        | 21E         | 31  |          | 618866 | 4388973 |                | 6457                | 6366                         |
| U177    | 135        | 24E         | 2   | NW NW    | 654056 | 4398315 |                | 6611                | 6527                         |
| U178    | 135        | 24E         | 2   | SW SW    | 653924 | 4396901 | 128            | 6933                | 6838                         |
| U179    | <b>12S</b> | 24E         | 36  | SW NW    | 655473 | 4399653 | 100            | 6804                | 6736                         |
| U457    | 125        | 25E         | 8   | SW NW    | 658468 | 4405835 |                | 6430                | 6237                         |

No shading: TomCo GWDP (2014) Purple: Red Leaf GWDP (2013) Green: Vanden Berg (2008)

Pink: Vanden Berg (2008); Johnson et al. (2010)







Table A- 5. Bed R6 Tops (see footnote for sources of data).

| Well ID     | Tnp         | Rng | Sec | 1/4 - 1/4 | UTM E  | UTM N   | TD<br>(ft bgs) | Collar<br>(ft<br>amsl) | R6 Top<br>(ft amsl) |
|-------------|-------------|-----|-----|-----------|--------|---------|----------------|------------------------|---------------------|
| TomCo HB-1  | 12S         | 24E | 13  | SE SE     | 656430 | 4403904 | 164.60         | 6431                   | 6307                |
| TomCo HB-2  | 12S         | 24E | 14  | SE SE     | 655104 | 4403947 | 215            | 6373                   | 6193                |
| TomCo HB-6  | 12S         | 24E | 13  | NW SW     | 655730 | 4404092 | 155            | 6319                   | 6222                |
| TomCo HB-7  | 12S         | 24E | 12  | SW SE     | 656185 | 4405284 | 304            | 6394                   | 6124                |
| TomCo HB-8  | <b>12</b> S | 24E | 12  | SW SW     | 655228 | 4405283 | 155            | 6138                   | 6050                |
| TomCo HB-9  | 12S         | 24E | 11  | SW SE     | 654555 | 4405434 | 180            | 6097                   | 5957                |
| TomCo MW-01 | <b>12S</b>  | 24E | 11  | SW SE     | 654548 | 4405434 | 200            | 6092                   | 5957                |
| TomCo MW-02 | 125         | 24E | 14  | NW SE     | 654602 | 4403965 | 200            | 6232                   | 6102                |
| TomCo MW-03 | <b>12S</b>  | 24E | 12  | SW SW     | 655180 | 4405419 | 200            | 6132                   | 5999                |
| TomCo MW-04 | <b>12S</b>  | 24E | 12  | SE SE     | 656648 | 4405549 | 1100           | 6437                   | 6124                |
| U023        | 135         | 20E | 1   |           | 618235 | 4396672 |                | 5836                   | 5579                |
| U026        | 12S         | 24E | 2   | SE SW     | 654279 | 4406752 | 270            | 6059                   | 5825.9              |
| U027        | 13S         | 24E | 2   | NE SW     | 654287 | 4397281 | 178            | 6789                   | 6625.7              |
| U041        | 13S         | 24E | 8   | NW SW     | 649145 | 4395648 | 220            | 6322                   | 6195.6              |
| U042        | 13S         | 24E | 9   | SW NE     | 651527 | 4396110 | 234            | 6497                   | 6358.6              |
| U070        | 12S         | 21E | 35  |           | 625945 | 4398702 |                | 5829                   | 5617.5              |
| U071        | 135         | 22E | 17  | NW NW     | 629942 | 4394449 | 347            | 6183                   | 6008.4              |
| U072        | 135         | 22E | 35  | SW NE     | 635700 | 4389409 | 217            | 6700                   | 6514.5              |
| U073        | 135         | 22E | 35  | SW SE     | 635749 | 4388635 | 137            | 6727                   | 6607.4              |
| U074        | 13S         | 22E | 31  | NE NE     | 629496 | 4389749 | 236            | 6628                   | 6404.5              |
| U075        | 14S         | 22E | 14  | NW NE     | 635581 | 4384956 | 139            | 6989                   | 6867.2              |
| U076        | 13S         | 23E | 26  | NE SW     | 644861 | 4390642 | 118            | 6419                   | 6328                |
| U077        | 13S         | 24E | 6   | SW NE     | 648138 | 4397625 | 276            | 6268                   | 6021.6              |
| U078        | 135         | 24E | 10  | SE NW     | 652681 | 4395938 | 232            | 6677                   | 6470.8              |
| U079        | 135         | 22E | 10  | SW NE     | 633812 | 4395597 | 581            | 6427                   | 5894.4              |
| U080        | 12S         | 24E | 19  | NW SE     | 648046 | 4402078 | 621            | 6261                   | 5701.9              |
| U086        | 11S         | 24E | 7   |           | 647995 | 4415339 |                | 5250                   | 4591.4              |
| U091        | 12S         | 24E | 14  | NW SE     | 654533 | 4403991 | 176            | 6165                   | 6067                |
| U135        | 12S         | 25E | 7   | SE NE     | 658311 | 4406094 | 443            | 6540                   | 6190                |
| U140        | 12S         | 25E | 18  | SE SW     | 657356 | 4403625 | 196            | 6340                   | 6202                |
| U143        | 12S         | 25E | 17  | SE SW     | 658938 | 4403501 | 338            | 6700                   | 6462                |
| U144        | 12S         | 24E | 1   | SE SE     | 656357 | 4406641 | 440            | 6340                   | 5984                |
| U145        | 12S         | 24E | 15  | SW NW     | 652302 | 4404186 | 503            | 6300                   | 5880                |
| U149        | 115         | 25E | 24  |           | 665023 | 4413046 |                | 6500                   | 5999                |
| U152        | 12S         | 25E | 17  | NW NW     | 658452 | 4404632 | 341            | 6600                   | 6341                |
| U153        | 12S         | 24E | 25  | NW NE     | 656186 | 4401431 | 239            | 6660                   | 6514                |
| U156        | 12S         | 24E | 12  | SW SW     | 655201 | 4405283 | 200            | 6110                   | 5986                |







#### Table A- 5. Bed R6 Tops (see footnote for sources of data).

| Well ID | Tnp | Rng | Sec | 1/4 - 1/4 | UTM E  | UTM N   | TD<br>(ft bgs) | Collar<br>(ft<br>amsl) | R6 Top<br>(ft amsl) |
|---------|-----|-----|-----|-----------|--------|---------|----------------|------------------------|---------------------|
| U177    | 13S | 24E | 2   | NW NW     | 654056 | 4398315 |                | 6611                   | 6521                |
| U178    | 13S | 24E | 2   | SW SW     | 653924 | 4396901 | 128            | 6933                   | 6831                |
| U179    | 12S | 24E | 36  | SW NW     | 655473 | 4399653 | 100            | 6804                   | 6714                |
| U457    | 12S | 25E | 8   | SW NW     | 658468 | 4405835 |                | 6430                   | 6215.3              |

SOURCES:

No shading: TomCo GWDP (2014) Green: Vanden Berg (2008)

Pink: Vanden Berg (2008); Johnson et al. (2010)



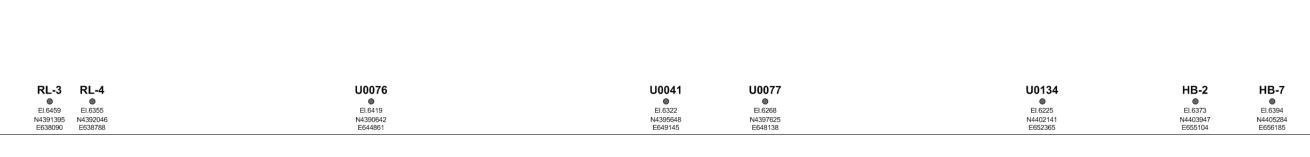


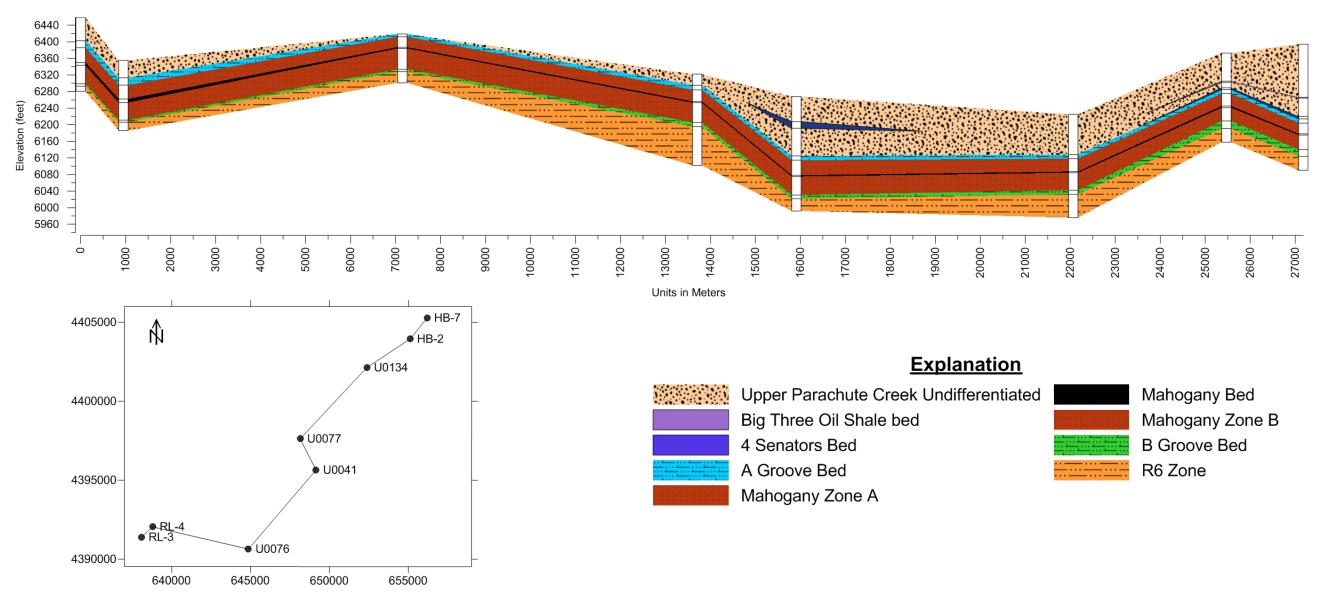


# APPENDIX B: SOUTHWEST TO NORTHEAST CROSS SECTION OF THE RED LEAF PROJECT AREA TO THE TOMCO PROJECT AREA












## SW to NE Cross Section - Red Leaf Project Area to TomCo Project Area



